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Preface

“Environmental Modeling using MATLAB R© ” by Ekkehard Holzbecher is
an excellent publication and a novel approach covering the intersection of
two important, growing worlds – the world of environmental modeling and of
mathematical software.

Environmental modeling is a science that uses mathematics and comput-
ers to simulate physical and chemical phenomena in the environment (e.g.,
environmental pollution). This science was initially based on pen-and-paper
calculations using simple equations. In the last 50 years, with the develop-
ment of digital computers, environmental models have become more and more
complex, requiring often numerical solutions for systems of partial differential
equations.

Mathematical software, such as MATLAB R© , has been developed in the
last two decades. These packages have been particularly successful for users of
personal computers. Mathematical software provides a set of tools for solving
equations both analytically and numerically. This is a major improvement in
comparison to the programming tools (e.g., FORTRAN) previously used by
scientists. Mathematical software offers extremely valuable and cost-effective
tools that improve the productivity of the programmer by at least an order
of magnitude. The use of these tools also minimizes the risk of programming
errors. In addition, mathematical software offers unique visualization tools
that allow the user to immediately visualize and often animate simulation
results.

Scientists who become familiar with a tool like MATLAB R© will never go
back to previous ways of computer programming.

The book “Environmental Modeling using MATLAB R© ” provides a clear,
comprehensive, and very instructive introduction to the science of environ-
mental modeling, and more importantly, includes the MATLAB R© codes
for the actual solutions to the environmental equations. MATLAB R© codes
are listed in the book and also included as more complete versions in an
attached CD.



VIII Preface

I highly recommend this book to both beginners and expert environmental
professionals. The book will be particularly useful to those scientists who have
postponed the learning and using mathematical software. This book will open
a new world to them!

Paolo Zannetti
President, The EnviroComp Institute
Editor of Book Series on Environmental Modeling



Foreword

The book has two aims:

A. to introduce basic concepts of environmental modeling and
B. to exercise the application of current mathematical software packages.

To the target group belong all natural scientists who are dealing with
the environment: engineers from process and chemical engineering, physicists,
chemists, biologists, biochemists, hydrogeologists, geochemists, ecologists. . .!

As the book is concerned with modeling, it inevitably demands some math-
ematical insight. The book is designed to

1. be a door opener to the field for novices without any background knowl-
edge of environmental modeling and of MATLAB R© , and

2. to surprise those, who have some expertise, with advanced methods which
they have not been aware of.

For this book MATLAB R© was chosen as the computer tool for modeling,
because

i. it is powerful, and
ii. it is available at most academic institutions, at all universities and at the

research departments of companies.

Other mathematical products could have been selected from the market,
which would perform similarly well for most application problems presented
in the various chapters. But MATLAB R© is rather unique in it’s strong capa-
bilities in numerical linear algebra.

There are twenty chapters in the book. The first chapters are concerned
with environmental processes and their simulation: (1) transport, consisting of
advection, diffusion and dispersion, (2) sorption, (3) decay or degradation, (4)
reaction, either kinetic or thermodynamic. Following aim (B) there are sub-
chapters inserted for the introduction of MATLAB R© modeling techniques.
The first part of the book ends with chapters on ordinary differential equations
and parameter estimation (inverse modeling).



X Foreword

The second part of the book starts with chapters on flow modeling. Flow, if
present, is an important, but mostly also complex part within an environmen-
tal compartment. Core MATLAB R© allows simple flow set-ups only. Therefore
the focus is on potential flow, which has applications in hydro (water) and
aero (air) -dynamics as well as in porous media (seepage and groundwater).
Concepts of MATLAB R© are deepened within these chapters. At the very end
special topics appear: image processing and geo-referencing, graphs, linear
systems, the phase space and graphical user interfaces.

Berlin, December 2006
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De groei van de reken – en geheugencapaciteit van computers is nog steeds
indrukwekkend, maar de spectaculaire ontwickelingen zien we momenteel toch
gebeuren of het gebiet van de software. Geladen met moderne wiskundpro-
gramma’s zijn computers allang geen domme nummerkrakers meer, en de
toekomst ligt weer helemaal open voor methoden die een groter appel doen
doen op de menselijke geest. In dit artikel willen we ... laten zien hoe analytis-
che formules ... hanteerbaaar worden, door gebruik te maken van – het klinkt
tegenstrijdig – het numerieke wiskundepakket MATLAB.

(Maas K./ Olsthoorn T., Snelle oudjes gaan MATLAB, Stromingen, Vol. 3,
No. 4, 21–42, 1997; in Dutch)

The growth of performance and storage capacity of computers is still im-
pressive, but we see the most spectacular development in the field of software.
Equipped with modern mathematical packages computers are not stupid num-
ber crunchers any more, and the future lies again wide open for methods,
which appeal more to the human mind. In this contribution we show . . . how
analytical formulae become manageable by using – it sounds contradictory -
the numerical mathematical tool MATLAB R©.

(translated by E.H)
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Introduction

1.1 Environmental Modeling using MATLAB R©
There are various types of models in the environmental sciences, and surely
there is no unique opinion about the essence of an environmental model. Differ-
ences may mainly concern the scope of the models and the modeling methods.
Concerning the scope, this book is relatively open; i.e. examples from differ-
ent branches of environmental science and technology are included, mainly
from the hydrosphere and the geosphere, and also from the biosphere and the
atmosphere. However, the examples are selected for demonstration purposes
and can in no way represent the vast variety of phenomena and approaches,
which can be met in publications and studies of all types of environmental
systems.

Concerning the methods, the book does not represent the entire field ei-
ther. In this book modeling is process-oriented and deterministic. These two
terms characterize almost all presented methods, which, according to many
opinions, represent the most important approach to understand environmen-
tal systems. There are environmental problems, for which other approaches
not tackled here work more successfully. Statistical or stochastic methods are
not mentioned, for example. Data processing, either graphical or numerical,
as for example in Geo-Information Systems (GIS), appears rudimentary in
this book.

Processes are in the focus of the presented approach. In the modeling con-
cept of this book processes can be of physical, chemical or biological nature.
The reproduction of biological species is a process, death is another; degrada-
tion of biochemical species, or decay of radioactive species are other examples.
Some relevant processes are explained in detail: diffusion, dispersion, advec-
tion, sorption, reactions, kinetic and/or thermodynamic and others.

A view into journal or book publications shows that models of the treated
kind, process-oriented and deterministic, are applied to different environmen-
tal compartments, to different phases and to different scales, as well as to
multi-phase and multi-scale problems. There are models of the entire globe,
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of earth atmosphere and oceans, of the global atmosphere, of the sea, of rivers,
lakes and glaciers, of watersheds, of the soil, of terrestrial or aquatic sediments,
of aquifers, and of parts of streams, and so forth. There are models of techni-
cal devices for environmental purposes, in addition. Experimental set-ups in
laboratories are simulated in order to understand relevant processes.

The methods presented in this book are deterministic, throughout. A
search for any statistics would be in vain. The description of processes is trans-
lated into mathematical terms. Often the approach leads to differential equa-
tions, which are conditions concerning the change of a variable, like concentra-
tion or population density, in space and time. Nowadays the solution of such
equations is not as tedious as in former times. Using core MATLAB R©, prob-
lems in 0 and 1 space dimensions can be solved comfortably. Core MATLAB R©
is also convenient for solving 2 and 3-dimensional problems with analytical
solutions. For more complex modeling in more than one dimension, toolboxes,
especially the MATLAB R© partial differential toolbox, can be recommended.

The aim of the book is to introduce basic concepts of environmental mod-
eling. Starting from basic concepts the problems are transformed into mathe-
matical formulations. Strategies for the solution of the mathematical problems
on the computer are outlined. The main aim of the book is to communicate the
entire path of such a modeling approach. At some points algorithmic details
will be omitted for the general aim. Who is interested strictly in computer
algorithms, will be better served with a book on numerics, applied mathemat-
ics or computational methods. It is important that the modeler has a basic
understanding of the underlying numerics. There is no need, however, to dive
so deep into the algorithms that one would be able to program them oneself.
In fact, it is an advantage of the chosen software that modeling tasks, which
could be handled only by people with profound programming knowledge and
skills, become now available to a wider audience.

Who is addressed? In a broader sense everyone is addressed, who is dealing
with or is interested in the simulation of environmental systems on a com-
puter. In a considerable part of the book concepts of environmental modeling
are introduced, starting from basic principles, tackling differential equations
and numerical solutions. In another similarly big part of the book special
implementations are introduced and described. If someone is very familiar
with another mathematical software, the book may be of help too, as most
of the described models can also be realized using other maths computer
programs.

There are several good and excellent books on environmental model-
ing and on MATLAB R©. Richter (1985) deals with ecological systems and
with time dependencies (but no space dependencies), as well as Deaton &
Winebrake (1999) using STELLA R©1. Shampine et al. (2003) also present
MATLAB R© modeling of ordinary differential equations; concerning appli-
cations they do not address environmental modeling particularly; concerning

1 See: http://www.iseesystems.com/
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methods, they do not address partial differential equations. Gander & Hrebicek
(1997) offer little to the specialized environmental modeler, although some of
the presented mathematical tools could be applied to environmental problems.
Christakos et al. (2002) focus on the connection of time dependent simulation
and GIS using MATLAB R©. McCuen (2002) treats statistical methods (which
do not appear here) for modeling hydrologic change. Cantrell & Cosner (2004)
examine spatial ecology via reaction-diffusion models, without reference to
any specific software package. Lynch (2005) addresses scientists and engineers
in his general introduction to numerical methods without preference for any
specific software and with few references to applied environmental model-
ing. In his introduction to MATLAB R© Kiusalaas (2005) addresses engineers
in general. The topic of Zimmerman (2004) is chemical process simulation
using FEMLAB2 code. Hornberger & Wiberg (2005) have the hydrologist’s
perspective on numerical methods. Trauth (2006) focuses on image- and data-
processing, as well as statistical methods for geoscientists. Finlayson (2006)
deals with the chemical aspects and gives an introduction to MATLAB R© as
one of several modeling tools. All these books3 differ concerning scope and
methods; and none of them has the same constellation of scope and methods,
as it is presented in this book.

The book is divided into twenty chapters which differ concerning scope
and complexity. The first ten chapters form a primer on fundamental concepts
and basic environmental modeling. All of the model examples presented are
0- or 1-dimensional. In the further ten chapters more complex models, as
for example spatial 2D, are outlined with an explanation of the underlying
methods. Concepts of flow modeling are introduced.

In this book the focus on basic ‘core’ MATLAB R©4 is intended. There is
the hope to address a wider audience, as not all readers may have access to
the complete palette of MATLAB R© toolboxes. On the other hand, there are
lots of powerful commands in core MATLAB R© and novice users might be
confused being confronted with more specialized tools. It turns out that this
is not a severe restriction, as most basic tasks, which are of interest to the en-
vironmental modeler, can be performed using core MATLAB R©. For advanced
higher dimensional and coupled problems the MATLAB R© partial differential
equation toolbox has to be used, or COMSOL alternatively. COMSOL has
developed a multi-physics software environment, which can be applied with
MATLAB R© in the background, and which is also known under the former
name FEMLAB.

Although other mathematical codes have developed a similar extension
from a special purpose module to a toolbox for mathematical calculations

2 Now COMSOL; see: http://www.comsol.com/
3 There are numerous other books on MATLAB R©, which could not all be

checked by the author. The reader can get a list on the MathWorks Website
http://www.mathworks.com/support/books

4 For this book MATLAB version 7, release 14 was mainly used. Thanks to Math-
Works for providing access to the most recent MATLAB R© versions during the
work on the book.
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in general, matrix manipulation is the backbone and stronghold of the
MATLAB R© package and explains its strong competitiveness. Therefore sub-
chapter 1.2 gives a brief reminder of basic matrix operations.

The book is accompanied by a CD-ROM containing advanced and final
versions of the program files described in the text. The Mathworks logo

appears where MATLAB R© files of the CD-ROM are referenced.
The terms ‘modeling’ and ‘simulation’ are synonymously in the concerned

scientific and technical literature. However, the term ‘model’ appears to be
more general, encompassing all types of attempts to capture one or more
aspects of a real system, and is therefore preferred in this book. The term
‘simulation’ also fits to the presented approach, as it suggests that pro-
cesses which are relevant for the behavior of a system are included in the
computer simulation. In the sequel the term is used for time-dependent
dynamics.

The book contains relatively simple models throughout. It is not the case
that complex models constructed by MATLAB R© don’t exist, but they are
not appropriate for an introduction into modeling techniques. For such an
aim models should be as simple as possible, even more, when novice modelers
are addressed.

Usually the extensive work with a model leads to renewed extensions,
which turn simple models into complex ones almost as a rule. Not all models
are improved by doing this. Jørgensen (1994) envisages the connection be-
tween model complexity and knowledge, gained by the model, as shown in
Fig. 1.1. Simple models can be improved by extensions, but there is a certain
peak position after which further extensions do not add to the knowledge –
rather quite the contrary. An improved model design increases the quality
of the model (lets take gained knowledge as a quality measure), but further
extensions of the improved model may finally lead to a situation in which the
increase of model complexity is counter-productive.

0
0

complexity

knowledge reference
improved

Fig. 1.1. Model evaluation: knowledge gained vs. complexity
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The model evaluation study of Constanza & Sklar (1985) provides a plot
similar to Fig. 1.1, but with ‘articulation’ on the x-axis and ‘effectiveness’ on
the y-axis. Chwif & Barretto (2000) envisage a similar picture, putting ‘level
of detail’ on the x-axis and ‘model confidence’ on the y-axis. All these terms
can be taken as different terms for the complexity of a model on one side and
its performance on the other side.

The method, how to construct complex models, is another topic which is
left out in the book. The major drawback of complex models is the increased
number of parameters, sometimes to a drastical extend. The situation may
be worsened by the fact that many new parameters are usually difficult to
obtain or have to be determined by parameter estimation runs with the model.
Another drawback may appear, if the model becomes very sensitive to one or
more parameters, i.e. that relatively small changes of a parameter induce a
tremendous effect on the output results. A complex model which depends
sensitively on numerous unknown parameters can surely not be used as a
predictive tool.

However, complex models have their justification. Whether they can be
successful also depends on the architecture, design and construction itself,
especially on the analytical and/or numerical techniques.

A complex model concerning sediment phosphorus and nitrogen pro-
cesses is presented by Harper (2000): the SNAPP model is constructed in
MATLAB R© and contains even a graphical user interface. As another exam-
ple Luff et al. (2001) present a MATLAB library to calculate pH distributions
in marine systems. Kumblad et al. (2003) construct an ecosystem model of
the environmental transport and fate of carbon-14 in a bay of the Baltic Sea,
just to give another example. A complex MATLAB R© surface fluid flow model
for rivers, streams and estuaries is presented by Martin & Gorelick (2005).

It is not the aim of modeling to set up complex models. The opposite of
that statement is a more suitable goal: the aim of modeling is to find simple
models that explain some aspects of a real system. Unfortunately that aim
turns out to be a tricky one, because every real system appears to be complex,
as long as there is ample knowledge about the driving mechanisms. Moreover,
if a system is complex, a simple model can explain a few aspects at the most
and that may nor be enough to solve a real problem.

1.2 Introduction to MATLAB R©
MATLAB R© is a mathematical software, originated and mainly developed by
mathematicians (Moler 2004). The name envisages a laboratory for matrix
calculations, where the mathematical term of a matrix refers to an array of
numbers such as

A =
(

1 2
3 4

)
(1.1)
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Linear algebra is the name of the mathematical field in which calculations
with matrices are treated. Some basic terms are listed in the appendix of this
chapter.

While MATLAB R© was designed for numerical linear algebra in the begin-
ning, it has become a tool for all types of mathematical calculations in the
meantime. Nowadays, MATLAB R© has been applied in nearly every field of
scientific or technical calculations. In the academic branch there is almost no
university where MATLAB R© is not available.

With MATLAB R© innumerable types of mathematical operations can be
performed. Of course, numerous linear algebra calculations are available, such
as inversion of matrices, eigenvalue and eigenvector determination, which
can be applied to perform various tasks, for example, the solution of sys-
tems of linear equations. One may perform basic statistics, numerical dif-
ferentiation and integration, evaluate all types of functions, solve dynami-
cal systems and partial differential equations, estimate parameters and so
forth. All this is part of core MATLAB R©, a collection of basic mathematical
tools5.

Before some details of linear algebra are examined, an introduction into
the work with MATLAB R© is necessary. This should be read by novices, but
can be skipped by those who have already worked with the program.

Getting Started with MATLAB R©

When MATLAB R© is opened, the user obtains a graphical user interface on
the display, as it is shown in Fig. 1.2, containing several windows. The main
window, to start with, is the ‘Command Window’, where commands are given
and answered. In the command window the MATLAB R© prompt ‘>>’ stands
at the position where the user command is shown on the display, during and
after entering.

In order to start type the command:

a = 2

Press the return button and the program gives an answer, here with the in-
formation that a variable a was created in the machine containing the value 2:

a =
2

A new prompt appears after the answer of the system, in order to enable
the user to give the next command. Note that only the line after the last
prompt in the command window can be used for a new command. The former
lines remain in the command window to allow the user to have an overview

5 Core MATLAB R© can be extended by numerous toolboxes for special purposes,
for details see: http://www.mathworks.com/products/product listing; most in-
teresting for environmental modeling, as it is tackled here, are the optimization
toolbox and the partial differential equations toolbox.
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Fig. 1.2. Appearance of MATLAB R© graphical user interface

on the previous work and the produced answers. Confirm that the ; as closing
character of the command, for example

a = 2;

prevents that the answer is shown in the command window.
The command window is good for an introduction into MATLAB R©.

Finally, the work with M-files replaces extensive operating in the com-
mand window (see Chap. 2.5). Nevertheless, for certain tasks, the com-
mand window will remain the most direct and simple way to compute with
MATLAB R©.

Aside from the command window, the user may select numerous other
views of the desktop. The different options are depicted in Fig. 1.3. Very
important is the workspace view, where all variables of the current session
are visible and directly available. The workspace of the just started session,
shown in Fig. 1.2, is depicted on the left side of the figure. The workspace
appears only if the view is selected in the ‘Desktop’ submenu, as shown in
Fig. 1.3. Using who or whos in the command window is an alternative way to
access the workspace (and its contents).

Here, a is the only variable in the workspace which is of ‘double’ type and
of 1× 1 size (a single variable and not a ‘real’ matrix). A double-click on the
block-panel symbol, left of the variable name in the workspace, delivers an
array editor, in which the contents of variables can be viewed directly. In the
simple example case the result is given in Fig. 1.4. With the array editor it
is not only possible to view variables, but also to change them. The user can
easily explore the use of the editor on her/his own.

To mention is the ‘command history’ view, in which all commands are
listed. An example with one command only is listed in Fig. 1.5. The user
can initiate the repeated command, mostly with some workspace variables
changed, by double-click in the command history window. It is an alternative
method to copy a former command in the history view and to paste it
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Fig. 1.3. Submenu-entries of desktop main entry, listing all possible views of the
desktop

in the command window. The user may wish to perform some alterations
in the command and can do that easily, before the command is executed
after pressing the return button. The up-arrow and down-arrow keys of the
keyboards offer an alternative, allowing a sequential loop through former
commands.

Matrices in MATLAB R©
The name ‘MATLAB’ is a combination of ‘matrix’ and ‘laboratory’. With
respect to the suite of various mathematical tools, which are made available by
recent versions of the software, one might think the origin of the MATLAB R©
software is numerical linear algebra.

Fig. 1.4. MATLAB R© array editor
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Fig. 1.5. MATLAB R© command history window

A matrix is a 2-dimensional array of numbers, for which examples are
given right below. Matrices can be specified directly by the user. Entries in
lines are separated by blanks; lines are separated by ‘;’.

A = [1 2 3; 4 5 6]

A =
1 2 3
4 5 6

The example matrix has 2 rows and 3 columns. Matrix dimensions are 2
and 3. A is a 2 × 3 matrix. It is thus non-square, as a square matrix has the
same number of rows and columns. Once a matrix is constructed, its elements
can be called by using usual round brackets, which is exemplified by:

A(2,1)

ans =
4

The element in the second row and first column of A is 4. As no variable
is used in the command, MATLAB R© uses the notation ans = in order to
indicate an answer to the given command. Sub-matrices of a matrix can be
called by using ‘:’, as the following example illustrates:

A(2,2:3)

ans =
5 6

Elements in the second line, second and third column are given in the
answer. The ‘:’ without any numbers is used to indicate the entire range. In
the example, the entire first column of A is given

A(:,1)

ans =
1
4

There are several special commands to input special types of matrices.
Vectors are multi-element matrices, for which either the number of rows or
the number of columns is 1. Row vectors with constant increment can be
specified as follows:
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v = [2:0.5:5]

v =
2.0000 2.5000 3.0000 3.5000 4.0000 4.5000 5.0000

v is a row vector, containing all values between 2 and 5 with increment
0.56. A column can easily be obtained by using the transponation operation,
which in MATLAB R© is performed by the ’:

v’

ans =
2.0000
2.5000
3.0000
3.5000
4.0000
4.5000
5.0000

Matrices containing 1s are given by:

B = ones(2,3)

B =
1 1 1
1 1 1

Matrices containing zeros are produced analogously:

B = zeros(3,1)

B =
0
0
0

How matrices containing a constant, different from 0 and 1, can be ob-
tained easily, is demonstrated by the following command:

C = 4.5*ones(3,5)

C =
4.5000 4.5000 4.5000 4.5000 4.5000
4.5000 4.5000 4.5000 4.5000 4.5000
4.5000 4.5000 4.5000 4.5000 4.5000

The ones–matrix is multiplied by a single value, a so called scalar, here
4.5. The * stands for multiplication. As will be explained in more details in the
next sub-chapter, there are several multiplication operations in linear algebra
and in MATLAB R©. In the previous command line the * stands for scalar

6 The comma in common numbers is a dot in all mathematics software products,
thus also in MATLAB R©.
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multiplication, where all elements of the matrix are multiplied by the same
scalar value.

The command for random matrices is
C = rand(2,5)

C =
0.9501 0.6068 0.8913 0.4565 0.8214
0.2311 0.4860 0.7621 0.0185 0.4447

Random values between 0 and 1 are entries of the matrix. If there is only
one integer argument in the preceding matrix types, a square matrix results:

D = rand(2)

D =
0.9501 0.6068
0.2311 0.4860

As mentioned above matrices are 2-dimensional arrays. Single numbers
can be regarded as 1-dimensional arrays. MATLAB R© can, of course, handle
arrays of higher dimensions. We demonstrate this by introducing the randn
command:

E = randn(2,4,2)

E(:,:,1) =
0.0000 1.0950 0.4282 0.7310
-0.3179 -1.8740 0.8956 0.5779

E(:,:,2) =
0.0403 0.5689 -0.3775 -1.4751
0.6771 -0.2556 -0.2959 -0.2340

which is a 3-dimensional array of random numbers with mean value μ = 0 and
standard deviation σ = 1. In the same manner, all previous matrix generating
commands can be applied to obtain higher dimensional arrays if the number
of arguments in the call exceeds 2. Multi-dimensional arrays can be viewed
using the array editor, but they cannot be edited within the editor. In order
to do this, address single elements from the command window, or specify
2-dimensional sub-arrays:

E1 = E(:,:,2)

and edit those. Last but not least, lets mention that MATLAB R© has the
empty matrix as zero-dimensional array:

e = [ ]

Basic Matrix Operations

It is expected that readers are already familiar with matrix operations and
basics of linear algebra. The purpose of the following is (1) to be a reminder
for those, to whom matrices are not (yet) part of daily practice and (2) to
introduce the notation used in the following chapters of this book.



14 1 Introduction

A matrix is a 2-dimensional array of numbers. A matrix has a certain
number of lines and columns, and the single numbers in the matrix are called
elements (sometimes the term ‘entries’ is used here as alternative). The ma-
trix in (1.1) has 2 lines and 2 columns, and the element in the second line
and first column is 3. A single number can be conceived as special case of a
matrix with one line and one column. Thus matrix algebra is a generalization
of the usual calculations with single numbers. However, in order to distin-
guish ‘real’ arrays from single numbers, bold letters are used for matrices and
vectors.7

Basic operations as known from single numbers can be generalized for
matrices. Matrices can be added. The sum of the matrices A and B

A =

⎛
⎜⎜⎝
a11 a12 · · · a1m

a21 a22 · · · a2m

· · · · · · · · · · · ·
an1 an2 · · · anm

⎞
⎟⎟⎠ and B =

⎛
⎜⎜⎝
b11 b12 · · · b1m

b21 b22 · · · b2m

· · · · · · · · · · · ·
bn1 bn2 · · · bnm

⎞
⎟⎟⎠
(1.2)

is given by:

A + B =

⎛
⎜⎜⎝
a11 + b11 a12 + b12 · · · a1m + b1m

a21 + b21 a22 + b22 · · · a2m + b2m

· · · · · · · · · · · ·
an1 + bn1 an2 + bn2 · · · anm + bnm

⎞
⎟⎟⎠ (1.3)

In order to add two matrices, both need to have the same number of lines
and columns. In each element of the matrix A+B, the sum of the correspond-
ing elements of A and B appears. One may also say that in order to obtain
the element in the i-th row and j-th column of A+B, the elements in the i-th
row and j-th column of A and B have to be added:

(A + B)ij = aij + bij (1.4)

Example in MATLAB R©:

A = [1 2; 3 4]; B = [-1 0; 1 2]; C = A+B

C =
0 2
4 6

When the number of columns or the number of lines do not coincide,
MATLAB R© produces an error:

D = [5 6 7 8];
A+D
??? Error using ==> +
Matrix dimensions must agree.

7 A vector is a matrix consisting of one line or one column only. Terms as line-
vectors or column-vectors are used, too.
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Clearly the subtraction of matrices is defined analogously. One may also
formally introduce subtraction by the definition that subtraction of B is the
addition of –B. As one may expect –B contains the negative of the elements
of B and is the inverse of B with respect to the addition operation. The gen-
eralizations of matrix multiplication and division are slightly more complex.

It was already mentioned that there are several multiplication operations.
Correspondingly there are several division operations. Aside from scalar mul-
tiplication, there are several matrix multiplications. The standard matrix mul-
tiplication for the two matrices A and B, given by

A =

⎛
⎜⎜⎝
a11 a12 · · · a1k

a21 a22 · · · a2k

· · · · · · · · · · · ·
an1 an2 · · · ank

⎞
⎟⎟⎠ and B =

⎛
⎜⎜⎝
b11 b12 · · · b1m

b21 b22 · · · b2m

· · · · · · · · · · · ·
bk1 bk2 · · · bkm

⎞
⎟⎟⎠
(1.5)

in order to obtain a new matrix A ·B, is defined by the following formula:

(A ·B)ij =
k∑

l=1

aikbkj (1.6)

This is a formula for the element in the i-th row and j-th column of the
matrix AB. Matrices can be multiplied if the first matrix has the same number
of columns as the second matrix has columns (inner dimension). In formula
(1.6) that number is k. Elements in lines of the first matrix are multiplied
with columns of the second matrix, and the products are summed in order to
obtain an entry in the result matrix A ·B.

Example in MATLAB:

C = A*B

C =
1 4
1 8

If the inner dimensions of the matrices do not agree an error message
results. Matrix multiplication is a generalization of the multiplication of single
numbers. Clearly, if the product A ·B is possible, the product B ·A is only
possible if A and B are square matrices. Even then the identity A ·B = B ·A
is not valid generally (see exercises below).

The multiplication, described by formula (1.6), is the standard multi-
plication of matrices, denoted by a ‘·’-dot in the formulae and by a * in
MATLAB R© commands. Analogously to the definition of addition, given
in (1.4), there exists also an element-wise multiplication:

(A ·B)ij = aijbij (1.7)

In order to perform this multiplication, matrices A and B need to have the
same number of rows and columns. In formulae element-wise multiplication is
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denoted by .* in MATLAB R© commands, distinguishing element-wise opera-
tion from the standard matrix multiplication. In formulae we use the ‘·’-dot or
omit the operator symbol entirely. There are scalar multiplication and vector
product as further operations which are explained below.

Division of matrices can be defined for both multiplications. To start with
the simple case: element-wise division is performed with element values. In
MATLAB R© element-wise division is denoted by ./. Element-wise division
with the same matrix delivers a matrix containing 1 in each entry, which is
the unit matrix with respect to element-wise multiplication.

Example in MATLAB R©:

C = A./B

Warning: Divide by zero.
(Type ‘‘warning off MATLAB:divideByZero’’ to suppress this
warning.)
C =

-1 Inf
3 2

Obviously, in three entries the element-wise division is performed. In the
second entry of the first row Inf stands for infinity, which is the result of a
division by zero8.

Example in MATLAB R©:

C = A./A

C =
1 1
1 1

The matrix with entries 1 everywhere is the unit matrix of pointwise matrix
multiplication.

The unit matrix with respect to matrix multiplication is given by:

I =

⎛
⎜⎜⎝

1 0 · · · 0
0 1 · · · 0
· · · · · · · · · · · ·
0 0 · · · 1

⎞
⎟⎟⎠ (1.8)

This matrix is a diagonal matrix, as there are non-zero elements only in
the main diagonal from the top left to the bottom right. The unit matrix
within the matrix algebra corresponds to the 1 in usual multiplications using

8 In contrast to school knowledge, division by zero is allowed in MATLAB R©. The
result is infinity. MATLAB R© shows a warning (but no error) in order to remind
the user that such an operation may result in some errors in further operations.


