
Introduction to Genetic Algorithms

S.N.Sivanandam · S.N.Deepa

Introduction to Genetic
Algorithms

With 193 Figures and 13 Tables

Authors
S.N.Sivanandam
Professor and Head
Dept. of Computer Science and Engineering
PSG College of Technology
Coimbatore - 641 004
TN, India

S.N.Deepa
Ph.D Scholar Dept. of Computer Science
and Engineering
PSG College of Technology
Coimbatore - 641 004
TN, India

Library of Congress Control Number: 2007930221

ISBN 978-3-540-73189-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com
c© Springer-Verlag Berlin Heidelberg 2008

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Typesetting: Integra Software Services Pvt. Ltd., India

Cover design: Erich Kirchner, Heidelberg

Printed on acid-free paper SPIN: 12053230 89/3180/Integra 5 4 3 2 1 0

Preface

The origin of evolutionary algorithms was an attempt to mimic some of the processes
taking place in natural evolution. Although the details of biological evolution are
not completely understood (even nowadays), there exist some points supported by
strong experimental evidence:

• Evolution is a process operating over chromosomes rather than over organisms.
The former are organic tools encoding the structure of a living being, i.e., a crea-
ture is “built” decoding a set of chromosomes.

• Natural selection is the mechanism that relates chromosomes with the efficiency
of the entity they represent, thus allowing that efficient organism which is well-
adapted to the environment to reproduce more often than those which are not.

• The evolutionary process takes place during the reproduction stage. There exists
a large number of reproductive mechanisms in Nature. Most common ones are
mutation (that causes the chromosomes of offspring to be different to those of
the parents) and recombination (that combines the chromosomes of the parents
to produce the offspring).

Based upon the features above, the three mentioned models of evolutionary com-
puting were independently (and almost simultaneously) developed.

An Evolutionary Algorithm (EA) is an iterative and stochastic process that op-
erates on a set of individuals (population). Each individual represents a potential
solution to the problem being solved. This solution is obtained by means of a en-
coding/decoding mechanism. Initially, the population is randomly generated (per-
haps with the help of a construction heuristic). Every individual in the population
is assigned, by means of a fitness function, a measure of its goodness with respect
to the problem under consideration. This value is the quantitative information the
algorithm uses to guide the search.

Among the evolutionary techniques, the genetic algorithms (GAs) are the most
extended group of methods representing the application of evolutionary tools. They
rely on the use of a selection, crossover and mutation operators. Replacement is
usually by generations of new individuals.

Intuitively a GA proceeds by creating successive generations of better and better
individuals by applying very simple operations. The search is only guided by the
fitness value associated to every individual in the population. This value is used
to rank individuals depending on their relative suitability for the problem being

v

vi Preface

solved. The problem is the fitness function that for every individual is encharged
of assigning the fitness value.

The location of this kind of techniques with respect to other deterministic and
non-deterministic procedures is shown in the following tree. This figure below out-
lines the situation of natural techniques among other well-known search procedures.

Combinations of EAs with Hill-Climbing algorithms are very powerful. Ge-
netic algorithms intensively using such local search mechanism are termed Memetic
Algorithms. Also parallel models increase the extension and quality of the search.
The EAs exploration compares quite well against the rest of search techniques for
a similar search effort. Exploitation is a more difficult goal in EAs but nowadays
many solutions exist for EAs to refine solutions.

Genetic algorithms are currently the most prominent and widely used compu-
tational models of evolution in artificial-life systems. These decentralized models
provide a basis for understanding many other systems and phenomena in the world.
Researches on GAs in alife give illustrative examples in which the genetic algorithm
is used to study how learning and evolution interact, and to model ecosystems, im-
mune system, cognitive systems, and social systems.

About the Book

This book is meant for a wide range of readers, who wishes to learn the basic
concepts of Genetic Algorithms. It can also be meant for programmers, researchers
and management experts whose work is based on optimization techniques. The ba-
sic concepts of Genetic Algorithms are dealt in detail with the relevant information
and knowledge available for understanding the optimization process. The various
operators involved for Genetic Algorithm operation are explained with examples.
The advanced operators and the various classifications have been discussed in lucid
manner, so that a starter can understand the concepts with a minimal effort.

The solutions to specific problems are solved using MATLAB 7.0 and the solu-
tions are given. The MATLAB GA toolbox has also been included for easy reference
of the readers so that they can have hands on working with various GA functions.
Apart from MATLAB solutions, certain problems are also solved using C and C++
and the solutions are given.

The book is designed to give a broad in-depth knowledge on Genetic Algorithm.
This book can be used as a handbook and a guide for students of all engineering
disciplines, management sector, operational research area, computer applications,
and for various professionals who work in Optimization area.

Genetic Algorithms, at present, is a hot topic among academicians, researchers
and program developers. Due to which, this book is not only for students, but also
for a wide range of researchers and developers who work in this field. This book can
be used as a ready reference guide for Genetic Algorithm research scholars. Most
of the operators, classifications and applications for a wide variety of areas covered
here fulfills as an advanced academic textbook.

To conclude, we hope that the reader will find this book a helpful guide and a
valuable source of information about Genetic Algorithm concepts for their several
practical applications.

1 Organization of the Book

The book contains 11 chapters altogether. It starts with the introduction to Evolu-
tionary Computing. The various application case studies are also discussed.

The chapters are organized as follows:

vii

viii About the Book

• Chapter 1 gives an introduction to Evolutionary computing, its development and
its features.

• Chapter 2 enhances the growth of Genetic Algorithms and its comparison with
other conventional optimization techniques. Also the basic simple genetic algo-
rithm with its advantages and limitations are discussed.

• The various terminologies and the basic operators involved in genetic algorithm
are dealt in Chap. 3. Few example problems, enabling the readers to understand
the basic genetic algorithm operation are also included.

• Chapter 4 discusses the advanced operators and techniques involved in genetic
algorithm.

• The different classifications of genetic algorithm are provided in Chap. 5. Each
of the classifications is discussed with their operators and mode of operation to
achieve optimized solution.

• Chapter 6 gives a brief introduction to genetic programming. The steps involved
and characteristics of genetic programming with its applications are described
here.

• Chapter 7 discusses on various genetic algorithm optimization problems which
includes fuzzy optimization, multi objective optimization, combinatorial opti-
mization, scheduling problems and so on.

• The implementation of genetic algorithm using MATLAB is discussed in Chap. 8.
The toolbox functions and simulated results to specific problems are provided in
this chapter.

• Chapter 9 gives the implementation of genetic algorithm concept using C and
C++. The implementation is performed for few benchmark problems.

• The application of genetic algorithm in various emerging fields along with case
studies is given in Chapter 10.

• Chapter 11 gives a brief introduction to particle swarm optimization and ant
colony optimization.

The Bibliography is given at the end for the ready reference of readers.

2 Salient Features of the Book

The salient features of the book include:

• Detailed explanation of Genetic Algorithm concepts
• Numerous Genetic Algorithm Optimization Problems
• Study on various types of Genetic Algorithms
• Implementation of Optimization problem using C and C++
• Simulated solutions for Genetic Algorithm problems using MATLAB 7.0
• Brief description on the basics of Genetic Programming
• Application case studies on Genetic Algorithm on emerging fields

S.N. Sivanandam completed his B.E (Electrical and Electronics Engineering) in
1964 from Government College of Technology, Coimbatore and M.Sc (Engineering)

About the Book ix

in Power System in 1966 from PSG College of Technology, Coimbatore. He
acquired PhD in Control Systems in 1982 from Madras University. He has received
Best Teacher Award in the year 2001 and Dhakshina Murthy Award for Teaching
Excellence from PSG College of Technology. He received The CITATION for best
teaching and technical contribution in the Year 2002, Government College of Tech-
nology, Coimbatore. He has a total teaching experience (UG and PG) of 41 years.
The total number of undergraduate and postgraduate projects guided by him for both
Computer Science and Engineering and Electrical and Electronics Engineering is
around 600. He is currently working as a Professor and Head Computer Science
and Engineering Department, PSG College of Technology, Coimbatore [from June
2000]. He has been identified as an outstanding person in the field of Computer
Science and Engineering in MARQUIS “Who’s Who”, October 2003 issue, New
providence, New Jersey, USA. He has also been identified as an outstanding person
in the field of Computational Science and Engineering in “Who’s Who”, December
2005 issue, Saxe-Coburg Publications, United Kingdom. He has been placed as a
VIP member in the continental WHO’s WHO Registry of national Business Leaders,
Inc. 33 West Hawthorne Avenue Valley Stream, NY 11580, Aug 24, 2006.

S.N. Sivanandam has published 12 books. He has delivered around 150 special
lectures of different specialization in Summer/Winter school and also in various
Engineering colleges. He has guided and coguided 30 Ph.D research works and at
present 9 Ph.D research scholars are working under him. The total number of tech-
nical publications in International/National journals/Conferences is around 700. He
has also received Certificate of Merit 2005–2006 for his paper from The Institution
of Engineers (India). He has chaired 7 International conferences and 30 National
conferences. He is a member of various professional bodies like IE (India), ISTE,
CSI, ACS and SSI. He is a technical advisor for various reputed industries and En-
gineering Institutions. His research areas include Modeling and Simulation, Neural
networks , Fuzzy Systems and Genetic Algorithm, Pattern Recognition, Multi di-
mensional system analysis, Linear and Non linear control system, Signal and Image
processing, Control System, Power system, Numerical methods, Parallel Comput-
ing, Data Mining and Database Security.

S.N. Deepa has completed her B.E Degree from Government College of Technol-
ogy, Coimbatore, 1999 and M.E Degree from PSG College of Technology, Coim-
batore, 2004. She was a gold medalist in her B.E Degree Programme. She has
received G.D Memorial Award in the year 1997 and Best Outgoing Student Award
from PSG College of Technology, 2004. Her M.E Thesis won National Award from
the Indian Society of Technical Education and L&T, 2004. She has published 5
books and papers in International and National Journals. Her research areas include
Neural Network, Fuzzy Logic, Genetic Algorithm, Digital Control, Adaptive and
Non-linear Control.

Acknowledgement

The authors are always thankful to the Almighty for perseverance and achievements.
They wish to thank Shri G. Rangaswamy, Managing Trustee, PSG Institutions,
Shri C.R. Swaminathan, Chief Executive; and Dr. R. Rudramoorthy, Principal, PSG
College of Technology, Coimbatore, for their whole-hearted cooperation and great
encouragement given in this successful endeavor. They also wish to thank the staff
members of computer science and engineering for their cooperation. Deepa wishes
to thank her husband Anand, daughter Nivethitha and parents for their support.

xi

Contents

1 Evolutionary Computation . 1
1.1 Introduction . 1
1.2 The Historical Development of EC . 2

1.2.1 Genetic Algorithms . 2
1.2.2 Genetic Programming . 3
1.2.3 Evolutionary Strategies . 4
1.2.4 Evolutionary Programming . 5

1.3 Features of Evolutionary Computation . 5
1.3.1 Particulate Genes and Population Genetics 6
1.3.2 The Adaptive Code Book . 7
1.3.3 The Genotype/Phenotype Dichotomy . 8

1.4 Advantages of Evolutionary Computation . 9
1.4.1 Conceptual Simplicity . 10
1.4.2 Broad Applicability . 10
1.4.3 Hybridization with Other Methods . 11
1.4.4 Parallelism . 11
1.4.5 Robust to Dynamic Changes . 11
1.4.6 Solves Problems that have no Solutions . 12

1.5 Applications of Evolutionary Computation . 12
1.6 Summary . 13

2 Genetic Algorithms . 15
2.1 Introduction . 15
2.2 Biological Background . 16

2.2.1 The Cell . 16
2.2.2 Chromosomes . 16
2.2.3 Genetics . 17
2.2.4 Reproduction . 17
2.2.5 Natural Selection . 19

2.3 What is Genetic Algorithm? . 20
2.3.1 Search Space . 20
2.3.2 Genetic Algorithms World . 20
2.3.3 Evolution and Optimization . 22
2.3.4 Evolution and Genetic Algorithms . 23

xiv Contents

2.4 Conventional Optimization and Search Techniques 24
2.4.1 Gradient-Based Local Optimization Method 25
2.4.2 Random Search . 26
2.4.3 Stochastic Hill Climbing . 27
2.4.4 Simulated Annealing . 27
2.4.5 Symbolic Artificial Intelligence (AI) . 29

2.5 A Simple Genetic Algorithm . 29
2.6 Comparison of Genetic Algorithm with Other

Optimization Techniques . 33
2.7 Advantages and Limitations of Genetic Algorithm 34
2.8 Applications of Genetic Algorithm . 35
2.9 Summary . 36

3 Terminologies and Operators of GA . 39
3.1 Introduction . 39
3.2 Key Elements . 39
3.3 Individuals . 39
3.4 Genes . 40
3.5 Fitness . 41
3.6 Populations . 41
3.7 Data Structures . 42
3.8 Search Strategies . 43
3.9 Encoding . 43

3.9.1 Binary Encoding . 43
3.9.2 Octal Encoding . 44
3.9.3 Hexadecimal Encoding . 44
3.9.4 Permutation Encoding (Real Number Coding) 44
3.9.5 Value Encoding . 45
3.9.6 Tree Encoding . 45

3.10 Breeding . 46
3.10.1 Selection . 46
3.10.2 Crossover (Recombination) . 50
3.10.3 Mutation . 56
3.10.4 Replacement . 57

3.11 Search Termination (Convergence Criteria) . 59
3.11.1 Best Individual . 59
3.11.2 Worst individual . 60
3.11.3 Sum of Fitness . 60
3.11.4 Median Fitness . 60

3.12 Why do Genetic Algorithms Work? . 60
3.12.1 Building Block Hypothesis . 61
3.12.2 A Macro-Mutation Hypothesis . 62
3.12.3 An Adaptive Mutation Hypothesis . 62
3.12.4 The Schema Theorem . 63
3.12.5 Optimal Allocation of Trials . 65

Contents xv

3.12.6 Implicit Parallelism . 66
3.12.7 The No Free Lunch Theorem. 68

3.13 Solution Evaluation . 68
3.14 Search Refinement . 69
3.15 Constraints . 69
3.16 Fitness Scaling . 70

3.16.1 Linear Scaling . 70
3.16.2 Sigma Truncation . 71
3.16.3 Power Law Scaling . 72

3.17 Example Problems . 72
3.17.1 Maximizing a Function . 72
3.17.2 Traveling Salesman Problem . 76

3.18 Summary . 78
Exercise Problems . 81

4 Advanced Operators and Techniques in Genetic Algorithm 83
4.1 Introduction . 83
4.2 Diploidy, Dominance and Abeyance . 83
4.3 Multiploid . 85
4.4 Inversion and Reordering . 86

4.4.1 Partially Matched Crossover (PMX) . 88
4.4.2 Order Crossover (OX) . 88
4.4.3 Cycle Crossover (CX) . 89

4.5 Niche and Speciation . 89
4.5.1 Niche and Speciation in Multimodal Problems 90
4.5.2 Niche and Speciation in Unimodal Problems. 93
4.5.3 Restricted Mating . 96

4.6 Few Micro-operators . 97
4.6.1 Segregation and Translocation . 97
4.6.2 Duplication and Deletion . 97
4.6.3 Sexual Determination . 98

4.7 Non-binary Representation . 98
4.8 Multi-Objective Optimization . 99
4.9 Combinatorial Optimizations . 100
4.10 Knowledge Based Techniques . 100
4.11 Summary . 102

Exercise Problems . 103

5 Classification of Genetic Algorithm . 105
5.1 Introduction . 105
5.2 Simple Genetic Algorithm (SGA) . 105
5.3 Parallel and Distributed Genetic Algorithm (PGA and DGA) 106

5.3.1 Master-Slave Parallelization . 109
5.3.2 Fine Grained Parallel GAs (Cellular GAs) 110
5.3.3 Multiple-Deme Parallel GAs (Distributed GAs or Coarse

Grained GAs) . 111

xvi Contents

5.3.4 Hierarchical Parallel Algorithms . 113
5.4 Hybrid Genetic Algorithm (HGA) . 115

5.4.1 Crossover . 116
5.4.2 Initialization Heuristics . 117
5.4.3 The RemoveSharp Algorithm . 117
5.4.4 The LocalOpt Algorithm . 119

5.5 Adaptive Genetic Algorithm (AGA) . 119
5.5.1 Initialization . 120
5.5.2 Evaluation Function . 120
5.5.3 Selection operator . 121
5.5.4 Crossover operator . 121
5.5.5 Mutation operator . 122

5.6 Fast Messy Genetic Algorithm (FmGA) . 122
5.6.1 Competitive Template (CT) Generation . 123

5.7 Independent Sampling Genetic Algorithm (ISGA) 124
5.7.1 Independent Sampling Phase . 125
5.7.2 Breeding Phase . 126

5.8 Summary . 127
Exercise Problems . 129

6 Genetic Programming . 131
6.1 Introduction . 131
6.2 Comparison of GP with Other Approaches . 131
6.3 Primitives of Genetic Programming . 135

6.3.1 Genetic Operators . 136
6.3.2 Generational Genetic Programming . 136
6.3.3 Tree Based Genetic Programming . 136
6.3.4 Representation of Genetic Programming . 137

6.4 Attributes in Genetic Programming . 141
6.5 Steps of Genetic Programming . 143

6.5.1 Preparatory Steps of Genetic Programming 143
6.5.2 Executional Steps of Genetic Programming 146

6.6 Characteristics of Genetic Programming . 149
6.6.1 What We Mean by “Human-Competitive” 149
6.6.2 What We Mean by “High-Return” . 152
6.6.3 What We Mean by “Routine” . 154
6.6.4 What We Mean by “Machine Intelligence” 154

6.7 Applications of Genetic Programming . 156
6.7.1 Applications of Genetic Programming

in Civil Engineering . 156
6.8 Haploid Genetic Programming with Dominance . 159

6.8.1 Single-Node Dominance Crossover . 161
6.8.2 Sub-Tree Dominance Crossover . 161

6.9 Summary . 161
Exercise Problems . 163

Contents xvii

7 Genetic Algorithm Optimization Problems . 165
7.1 Introduction . 165
7.2 Fuzzy Optimization Problems . 165

7.2.1 Fuzzy Multiobjective Optimization . 166
7.2.2 Interactive Fuzzy Optimization Method . 168
7.2.3 Genetic Fuzzy Systems . 168

7.3 Multiobjective Reliability Design Problem . 170
7.3.1 Network Reliability Design . 170
7.3.2 Bicriteria Reliability Design . 174

7.4 Combinatorial Optimization Problem . 176
7.4.1 Linear Integer Model . 178
7.4.2 Applications of Combinatorial Optimization 179
7.4.3 Methods . 182

7.5 Scheduling Problems . 187
7.5.1 Genetic Algorithm for Job Shop Scheduling Problems (JSSP) . . 187

7.6 Transportation Problems . 190
7.6.1 Genetic Algorithm in Solving Transportation

Location-Allocation Problems with Euclidean Distances 191
7.6.2 Real-Coded Genetic Algorithm (RCGA) for Integer Linear

Programming in Production-Transportation Problems
with Flexible Transportation Cost . 194

7.7 Network Design and Routing Problems . 199
7.7.1 Planning of Passive Optical Networks . 199
7.7.2 Planning of Packet Switched Networks . 202
7.7.3 Optimal Topological Design of All Terminal Networks 203

7.8 Summary . 208
Exercise Problems . 209

8 Genetic Algorithm Implementation Using Matlab 211
8.1 Introduction . 211
8.2 Data Structures . 211

8.2.1 Chromosomes . 212
8.2.2 Phenotypes . 212
8.2.3 Objective Function Values . 213
8.2.4 Fitness Values . 213
8.2.5 Multiple Subpopulations . 213

8.3 Toolbox Functions . 214
8.4 Genetic Algorithm Graphical User Interface Toolbox 219
8.5 Solved Problems using MATLAB . 224
8.6 Summary . 260

Review Questions . 261
Exercise Problems . 261

9 Genetic Algorithm Optimization in C/C++ . 263
9.1 Introduction . 263
9.2 Traveling Salesman Problem (TSP) . 263

xviii Contents

9.3 Word Matching Problem . 271
9.4 Prisoner’s Dilemma . 280
9.5 Maximize f(x) = x2 . 286
9.6 Minimization a Sine Function with Constraints . 292

9.6.1 Problem Description . 293
9.7 Maximizing the Function f(x) = x∗sin(10∗Π∗x)+ 10 302
9.8 Quadratic Equation Solving . 310
9.9 Summary . 315

9.9.1 Projects . 315

10 Applications of Genetic Algorithms . 317
10.1 Introduction . 317
10.2 Mechanical Sector . 317

10.2.1 Optimizing Cyclic-Steam Oil Production
with Genetic Algorithms . 317

10.2.2 Genetic Programming and Genetic Algorithms
for Auto-tuning Mobile Robot Motion Control 320

10.3 Electrical Engineering . 324
10.3.1 Genetic Algorithms in Network Synthesis 324
10.3.2 Genetic Algorithm Tools for Control Systems Engineering 328
10.3.3 Genetic Algorithm Based Fuzzy Controller for Speed Control

of Brushless DC Motor . 334
10.4 Machine Learning . 341

10.4.1 Feature Selection in Machine learning using GA 341
10.5 Civil Engineering . 345

10.5.1 Genetic Algorithm as Automatic Structural Design Tool 345
10.5.2 Genetic Algorithm for Solving Site Layout Problem 350

10.6 Image Processing . 352
10.6.1 Designing Texture Filters with Genetic Algorithms 352
10.6.2 Genetic Algorithm Based Knowledge Acquisition

on Image Processing . 357
10.6.3 Object Localization in Images Using Genetic Algorithm 362
10.6.4 Problem Description . 363
10.6.5 Image Preprocessing . 364
10.6.6 The Proposed Genetic Algorithm Approach 365

10.7 Data Mining . 367
10.7.1 A Genetic Algorithm for Feature Selection in Data-Mining 367
10.7.2 Genetic Algorithm Based Fuzzy Data Mining

to Intrusion Detection . 370
10.7.3 Selection and Partitioning of Attributes in Large-Scale Data

Mining Problems Using Genetic Algorithm 379
10.8 Wireless Networks . 386

10.8.1 Genetic Algorithms for Topology Planning
in Wireless Networks . 386

10.8.2 Genetic Algorithm for Wireless ATM Network 387
10.9 Very Large Scale Integration (VLSI) . 395

Contents xix

10.9.1 Development of a Genetic Algorithm Technique
for VLSI Testing . 395

10.9.2 VLSI Macro Cell Layout Using Hybrid GA 397
10.9.3 Problem Description . 398
10.9.4 Genetic Layout Optimization . 399

10.10 Summary . 402

11 Introduction to Particle Swarm Optimization and Ant Colony
Optimization . 403

11.1 Introduction . 403
11.2 Particle Swarm Optimization . 403

11.2.1 Background of Particle Swarm Optimization 404
11.2.2 Operation of Particle Swarm Optimization 405
11.2.3 Basic Flow of Particle Swarm Optimization 407
11.2.4 Comparison Between PSO and GA . 408
11.2.5 Applications of PSO . 410

11.3 Ant Colony Optimization . 410
11.3.1 Biological Inspiration . 410
11.3.2 Similarities and Differences Between Real Ants

and Artificial Ants . 414
11.3.3 Characteristics of Ant Colony Optimization 415
11.3.4 Ant Colony Optimization Algorithms . 416
11.3.5 Applications of Ant Colony Optimization 422

11.4 Summary . 424
Exercise Problems . 424

Bibliography . 425

Chapter 1
Evolutionary Computation

1.1 Introduction

Charles Darwinian evolution in 1859 is intrinsically a so bust search and optimization
mechanism. Darwin’s principle “Survival of the fittest” captured the popular imag-
ination. This principle can be used as a starting point in introducing evolutionary
computation. Evolved biota demonstrates optimized complex behavior at each level:
the cell, the organ, the individual and the population. Biological species have solved
the problems of chaos, chance, nonlinear interactivities and temporality. These prob-
lems proved to be in equivalence with the classic methods of optimization. The
evolutionary concept can be applied to problems where heuristic solutions are not
present or which leads to unsatisfactory results. As a result, evolutionary algorithms
are of recent interest, particularly for practical problems solving.

The theory of natural selection proposes that the plants and animals that exist
today are the result of millions of years of adaptation to the demands of the environ-
ment. At any given time, a number of different organisms may co-exist and compete
for the same resources in an ecosystem. The organisms that are most capable of
acquiring resources and successfully procreating are the ones whose descendants
will tend to be numerous in the future. Organisms that are less capable, for whatever
reason, will tend to have few or no descendants in the future. The former are said
to be more fit than the latter, and the distinguishing characteristics that caused the
former to be fit are said to be selected for over the characteristics of the latter. Over
time, the entire population of the ecosystem is said to evolve to contain organisms
that, on average, are more fit than those of previous generations of the population
because they exhibit more of those characteristics that tend to promote survival.

Evolutionary computation (EC) techniques abstract these evolutionary principles
into algorithms that may be used to search for optimal solutions to a problem. In
a search algorithm, a number of possible solutions to a problem are available and
the task is to find the best solution possible in a fixed amount of time. For a search
space with only a small number of possible solutions, all the solutions can be ex-
amined in a reasonable amount of time and the optimal one found. This exhaustive
search, however, quickly becomes impractical as the search space grows in size.
Traditional search algorithms randomly sample (e.g., random walk) or heuristically
sample (e.g., gradient descent) the search space one solution at a time in the hopes

1

2 1 Evolutionary Computation

of finding the optimal solution. The key aspect distinguishing an evolutionary search
algorithm from such traditional algorithms is that it is population-based. Through
the adaptation of successive generations of a large number of individuals, an evolu-
tionary algorithm performs an efficient directed search. Evolutionary search is gen-
erally better than random search and is not susceptible to the hill-climbing behaviors
of gradient-based search.

Evolutionary computing began by lifting ideas from biological evolutionary the-
ory into computer science, and continues to look toward new biological research
findings for inspiration. However, an over enthusiastic “biology envy” can only be to
the detriment of both disciplines by masking the broader potential for two-way intel-
lectual traffic of shared insights and analogizing from one another. Three fundamen-
tal features of biological evolution illustrate the range of potential intellectual flow
between the two communities: particulate genes carry some subtle consequences
for biological evolution that have not yet translated mainstream EC; the adaptive
properties of the genetic code illustrate how both communities can contribute to a
common understanding of appropriate evolutionary abstractions; finally, EC explo-
ration of representational language seems pre-adapted to help biologists understand
why life evolved a dichotomy of genotype and phenotype.

1.2 The Historical Development of EC

In the case of evolutionary computation, there are four historical paradigms that
have served as the basis for much of the activity of the field: genetic algorithms
(Holland, 1975), genetic programming (Koza, 1992, 1994), evolutionary strategies
(Recheuberg, 1973), and evolutionary programming (Forgel et al., 1966). The basic
differences between the paradigms lie in the nature of the representation schemes,
the reproduction operators and selection methods.

1.2.1 Genetic Algorithms

The most popular technique in evolutionary computation research has been the ge-
netic algorithm. In the traditional genetic algorithm, the representation used is a
fixed-length bit string. Each position in the string is assumed to represent a particu-
lar feature of an individual, and the value stored in that position represents how that
feature is expressed in the solution. Usually, the string is “evaluated as a collection
of structural features of a solution that have little or no interactions”. The analogy
may be drawn directly to genes in biological organisms. Each gene represents an
entity that is structurally independent of other genes.

The main reproduction operator used is bit-string crossover, in which two strings
are used as parents and new individuals are formed by swapping a sub-sequence
between the two strings (see Fig. 1.1). Another popular operator is bit-flipping mu-
tation, in which a single bit in the string is flipped to form a new offspring string

1.2 The Historical Development of EC 3

Fig. 1.1 Bit-string crossover
of parents a & b to form
offspring c & d

(see Fig. 1.2). A variety of other operators have also been developed, but are used
less frequently (e.g., inversion, in which a subsequence in the bit string is reversed).
A primary distinction that may be made between the various operators is whether or
not they introduce any new information into the population. Crossover, for example,
does not while mutation does. All operators are also constrained to manipulate the
string in a manner consistent with the structural interpretation of genes. For exam-
ple, two genes at the same location on two strings may be swapped between parents,
but not combined based on their values. Traditionally, individuals are selected to be
parents probabilistically based upon their fitness values, and the offspring that are
created replace the parents. For example, if N parents are selected, then N offspring
are generated which replace the parents in the next generation.

1.2.2 Genetic Programming

An increasingly popular technique is that of genetic programming. In a standard
genetic program, the representation used is a variable-sized tree of functions and
values. Each leaf in the tree is a label from an available set of value labels. Each
internal node in the tree is label from an available set of function labels.

The entire tree corresponds to a single function that may be evaluated. Typically,
the tree is evaluated in a leftmost depth-first manner. A leaf is evaluated as the
corresponding value. A function is evaluated using arguments that is the result of the
evaluation of its children. Genetic algorithms and genetic programming are similar
in most other respects, except that the reproduction operators are tailored to a tree
representation. The most commonly used operator is subtree crossover, in which an
entire subtree is swapped between two parents (see Fig. 1.3). In a standard genetic
program, all values and functions are assumed to return the same type, although
functions may vary in the number of arguments they take. This closure principle
(Koza, 1994) allows any subtree to be considered structurally on par with any other
subtree, and ensures that operators such as sub-tree crossover will always produce
legal offspring.

Fig. 1.2 Bit-flipping mutation of parent a to form offspring b

4 1 Evolutionary Computation

Fig. 1.3 Subtree crossover of parents a & b to form offspring c & d

1.2.3 Evolutionary Strategies

In evolutionary strategies, the representation used is a fixed-length real-valued
vector. As with the bitstrings of genetic algorithms, each position in the vector
corresponds to a feature of the individual. However, the features are considered
to be behavioral rather than structural. “Consequently, arbitrary non-linear interac-
tions between features during evaluation are expected which forces a more holistic
approach to evolving solutions” (Angeline, 1996).

The main reproduction operator in evolutionary strategies is Gaussian mutation,
in which a random value from a Gaussian distribution is added to each element of an
individual’s vector to create a new offspring (see Fig. 1.4). Another operator that is
used is intermediate recombination, in which the vectors of two parents are averaged
together, element by element, to form a new offspring (see Fig. 1.5). The effects of
these operators reflect the behavioral as opposed to structural interpretation of the
representation since knowledge of the values of vector elements is used to derive
new vector elements.

The selection of parents to form offspring is less constrained than it is in genetic
algorithms and genetic programming. For instance, due to the nature of the repre-
sentation, it is easy to average vectors from many individuals to form a single off-
spring. In a typical evolutionary strategy, N parents are selected uniformly randomly

Fig. 1.4 Gaussian mutation of parent a to form offspring b

1.3 Features of Evolutionary Computation 5

Fig. 1.5 Intermediate
recombination of parents a &
b to form offspring c

(i.e., not based upon fitness), more than N offspring are generated through the use
of recombination, and then N survivors are selected deterministically. The survivors
are chosen either from the best N offspring (i.e., no parents survive) or from the best
N parents and offspring.

1.2.4 Evolutionary Programming

Evolutionary programming took the idea of representing individuals’ phenotypic
ally as finite state machines capable of responding to environmental stimuli and
developing operators for effecting structural and behavioral change over time. This
idea was applied to a wide range of problems including prediction problems, opti-
mization and machine learning.

The above characterizations, leads one to the following observations. GA practi-
tioners are seldom constrained to fixed-length binary implementations. GP enables
the use of variable sized tree of functions and values. ES practitioners have incor-
porated recombination operators into their systems. EP is used for the evolution of
finite state machines.

The representations used in evolutionary programming are typically tailored to
the problem domain. One representation commonly used is a fixed-length real-
valued vector. The primary difference between evolutionary programming and the
previous approaches is that no exchange of material between individuals in the
population is made. Thus, only mutation operators are used. For real-valued vector
representations, evolutionary programming is very similar to evolutionary strategies
without recombination.

A typical selection method is to select all the individuals in the population to
be the N parents, to mutate each parent to form N offspring, and to probabilistically
select, based upon fitness, N survivors from the total 2N individuals to form the next
generation.

1.3 Features of Evolutionary Computation

In an evolutionary algorithm, a representation scheme is chosen by the researcher
to define the set of solutions that form the search space for the algorithm. A num-
ber of individual solutions are created to form an initial population. The following
steps are then repeated iteratively until a solution has been found which satisfies
a pre-defined termination criterion. Each individual is evaluated using a fitness
function that is specific to the problem being solved. Based upon their fitness values,

6 1 Evolutionary Computation

a number of individuals are chosen to be parents. New individuals, or offspring, are
produced from those parents using reproduction operators. The fitness values of
those offspring are determined. Finally, survivors are selected from the old popula-
tion and the offspring to form the new population of the next generation.

The mechanisms determining which and how many parents to select, how many
offspring to create, and which individuals will survive into the next generation to-
gether represent a selection method. Many different selection methods have been
proposed in the literature, and they vary in complexity. Typically, though, most
selection methods ensure that the population of each generation is the same size.

EC techniques continue to grow in complexity and desirability, as biological re-
search continues to change our perception of the evolutionary process.

In this context, we introduce three fundamental features of biological evolution:

1. particulate genes and population genetics
2. the adaptive genetic code
3. the dichotomy of genotype and phenotype

Each phenomenon is chosen to represent a different point in the spectrum of
possible relationships between computing and biological evolutionary theory. The
first is chosen to ask whether current EC has fully transferred the basics of bio-
logical evolution. The second demonstrates how both biological and computational
evolutionary theorists can contribute to common understanding of evolutionary ab-
stractions. The third is chosen to illustrate a question of biological evolution that EC
seems better suited to tackle than biology.

1.3.1 Particulate Genes and Population Genetics

Mainstream thinking of the time viewed the genetic essence of phenotype as a liq-
uid that blended whenever male and female met to reproduce. It took the world’s
first professor of engineering, Fleming Jenkin (1867), to point out the mathematical
consequence of blending inheritance: a novel advantageous mutation arising in a
sexually reproducing organism would dilute itself out of existence during the early
stages of its spread through any population comprising more than a few individ-
uals. This is a simple consequence of biparental inheritance. Mendels’ theory of
particulate genes (Mendel, 1866) replaced this flawed, analogue concept of blend-
ing inheritance with a digital system in which the advantageous version (allele)
of a gene is either present or absent and biparental inheritance produces diploidy.
Thus natural selection merely alters the proportions of alleles in a population, and
an advantageous mutation can be selected into fixation (presence within 100% of
individuals) without any loss in its fitness. Though much has been written about
the Neo-Darwinian Synthesis that ensured from combining Mendelian genetics
with Darwinian theory, it largely amounts to biologists’ gradual acceptance that
the particulate nature of genes alone provided a solid foundation to build detailed,
quantitative predictions about evolution.

1.3 Features of Evolutionary Computation 7

Indeed, decision of mathematical models of genes in populations as “bean bag
genetics” overlooks the scope of logical deductions that follow from particulate
genetics. They extend far beyond testable explanations for adaptive phenomena
and into deeper, abstract concepts of biological evolution. For example, particu-
late genes introduce stochasticity into evolution. Because genes are either present
or absent from any given genome, the genetic makeup of each new individual in
a sexually reproducing population is a probabilistic outcome of which particular
alleles it inherits from each parent. Unless offspring are infinite in number, their
allele frequencies will not accurately mirror those of the parental generation, but
instead will show some sampling error (genetic drift).

The magnitude of this sampling error is inversely proportional to the size of
a population. Wright (1932) noted that because real populations fluctuate in size,
temporary reductions can briefly relax selection, potentially allowing gene pools to
diffuse far enough away from local optima to find new destinations when popula-
tion size recovers and selection reasserts itself. In effect, particulate genes in finite
populations improve the evolutionary heuristic from a simple hill climbing algo-
rithm to something closer to simulated annealing under a fluctuating temperature.
One final property of particulate genes operating in sexual populations is worthy of
mention. In the large populations where natural selection works most effectively,
any novel advantageous mutation that arises will only reach fixation over the course
of multiple generations. During this spread, recombination and diploidy together
ensure that the allele will temporarily find itself in many different genetic contexts.
Classical population genetics (e.g., Fisher, 1930) and experimental EC systems (e.g.,
O’Reilly, 1999) have focused on whether and how this context promotes selective
pressure for gene linkage into “co-adapted gene complexes”. A simpler observation
is that a novel, advantageous allele’s potential for negative epistatic effects is inte-
gral to its micro-evolutionary success. Probability will favor the fixation of alleles
that are good “team players” (i.e., reliably imbue their advantage regardless of ge-
netic background. Many mainstream EC methods simplify the population genetics
of new mutations (e.g., into tournaments), to expedite the adaptive process. This
preserves non-blending inheritance and even genetic drift, but it is not clear that it
incorporates population genetics’ implicit filter for “prima donna” alleles that only
offer their adaptive advantage when their genetic context is just so. Does this basic
difference between biology and EC contribute anything to our understanding of why
recombination seems to play such different roles in the two systems?

1.3.2 The Adaptive Code Book

Molecular biology’s Central Dogma connects genes to phenotype by stating that
DNA is transcribed into RNA, which is then translated into protein.

The terms transcription and translation are quite literal: RNA is a chemical
sister language to DNA. Both are polymers formed from an alphabet of four
chemical letters (nucleotides), and transcription is nothing more than a process
of complementing DNA, letter by letter, into RNA. It is the next step, translation

8 1 Evolutionary Computation

that profoundly influences biological evolution. Proteins are also linear polymers of
chemical letters, but they are drawn from a qualitatively different alphabet (amino
acids) comprising 20 elements. Clearly no one-to-one mapping could produce a
genetic code for translating nucleotides unambiguously into amino acids, and by
1966 it was known that the combinatorial set of possible nucleotide triplets forms
a dictionary of “codons” that each translate into a single amino acid meaning. The
initial surprise for evolutionary theory was to discover that something as fundamen-
tal as the code-book for life would exhibit a high degree of redundancy (an alphabet
of 4 RNA letters permits 4×4×4 = 64 possible codons that map to one of only 20
amino acid meanings). Early interpretation fuelled arguments for Non-Darwinian
evolution: genetic variations that make no difference to the protein they encode
must be invisible to selection and therefore governed solely by drift. More recently,
both computing and biological evolutionary theory have started to place this coding
neutrality in the bigger picture of the adaptive heuristic. Essentially, findings appear
to mirror Wright’s early arguments on the importance of genetic drift: redundancy
in the code adds selectively neutral dimensions to the fitness landscape that renders
adaptive algorithms more effective by increasing the connectedness of local optima.

At present, an analogous reinterpretation is underway for a different adaptive
feature of the genetic code: the observation that biochemically similar amino acids
are assigned to codons that differ by only a single nucleotide. Early speculations
that natural selection organized the genetic code so as to minimize the phenotypic
impact of mutations have gained considerable evidential support as computer simu-
lation enables exploration of theoretical codes that nature passed over. However, it
seems likely that once again this phenomenon has more subtle effects in the broader
context of the adaptive heuristic. An “error minimizing code” may in fact maximize
the probability that a random effects on both traits defines a circle of radius around
the organism.

The probability that this mutation will improve fitness (i.e., that the organism
will move within the white area) is inversely proportional to its magnitude, muta-
tion produces an increase in fitness according to Geometric Theory of gradualism
(Fig. 1.6). Preliminary tests for this phenomenon reveal an even simpler influence:
the error minimizing code smoothes the fitness landscape where a random genetic
code would render it rugged. By clustering biochemically similar amino acids within
mutational reach of one another it ensures that any selection towards a specific
amino acid property (e.g., hydrophobicity) will be towards an interconnected region
of the fitness landscape rather than to an isolated local optimum.

1.3.3 The Genotype/Phenotype Dichotomy

Implicit to the concept of an adaptive genetic code is a deeper question that remains
largely unanswered by biology: why does all known life use two qualitatively differ-
ent polymers, nucleic acids and proteins, with the associated need for translation?
Current theories for the origin of this dichotomy focus on the discovery that RNA
can act both as a genetic storage medium, and as a catalytic molecule. Within the

1.4 Advantages of Evolutionary Computation 9

Fig. 1.6 The fitness landscape for an organism of 2 phenotypic traits: (a) for any organism, we may
define an isocline that connects all trait combinations of equal fitness; (b) (the fitness landscape
from above): a random mutation of magnitude that has tradeoff

most highly conserved core of metabolism, all known organisms are found to use
RNA molecules in roles we normally attribute to proteins (White, 1976).

However, the answer to how the dichotomy evolved has largely eclipsed the
question of why RNA evolved a qualitatively different representation for pheno-
type. A typical biological answer would be that the larger alphabet size of amino
acids unleashed a greater catalytic diversity for the replicators, with an associated
increase in metabolic sophistication that optimized self-replication. Interestingly,
we know that nucleic acids are not limited to the 4 chemical letters we see today:
natural metabolically active RNA’s utilize a vast repertoire of posttranscriptional
modifications and synthetic chemistry has demonstrated that multiple additional
nucleotide letters can be added to the genetic alphabet even with today’s cellular
machinery. Furthermore, an increasing body of indirect evidence suggests that the
protein alphabet itself underwent exactly the sort of evolutionary expansion early in
life’s history.

Given the ubiquity of nucleic acid genotype and protein phenotype within life,
biology is hard-pressed to assess the significance of evolving this “representational
language”. The choice of phrase is deliberate: clearly the EC community is far ahead
of biology in formalizing the concept of representational language, and exploring
what it means. Biology will gain when evolutionary programmers place our system
within their findings, illustrating the potential for biological inspiration from EC.

1.4 Advantages of Evolutionary Computation

Evolutionary computation, describes the field of investigation that concerns all
evolutionary algorithms and offers practical advantages to several optimization
problems. The advantages include the simplicity of the approach, its robust response
to changing circumstances, and its flexibility and so on. This section briefs some of

10 1 Evolutionary Computation

these advantages and offers suggestions in designing evolutionary algorithms for
real-world problem solving.

1.4.1 Conceptual Simplicity

A key advantage of evolutionary computation is that it is conceptually simple.
Figure 1.7 shows a flowchart of an evolutionary algorithm applied for function op-
timization. The algorithm consists of initialization, iterative variation and selection
in light of a performance index. In particular, no gradient information needs to be
presented to the algorithm. Over iterations of random variation and selection, the
population can be made to converge to optimal solutions. The effectiveness of an
evolutionary algorithm depends on the variation and selection operators as applied
to a chosen representation and initialization.

1.4.2 Broad Applicability

Evolutionary algorithms can be applied to any problems that can be formulated as
function optimization problems. To solve these problems, it requires a data structure
to represent solutions, to evaluate solutions from old solutions. Representations can
be chosen by human designer based on his intuition. Representation should allow
for variation operators that maintain a behavioral link between parent and offspring.
Small changes in structure of parent will lead to small changes in offspring, and
similarly large changes in parent will lead to drastic alterations in offspring. In this
case, evolutionary algorithms are developed, so that they are tuned in self adaptive

Fig. 1.7 Flowchart of an
evolutionary algorithm

Randomly vary
individuals

Initialize
Population

Stop

Evaluate Fitness

Apply Selection

Start

1.4 Advantages of Evolutionary Computation 11

manner. This makes the evolutionary computation to be applied to broad areas which
includes, discrete combinatorial problems, mixed-integer problems and so on.

1.4.3 Hybridization with Other Methods

Evolutionary algorithms can be combined with more traditional optimization tech-
niques. This is as simple as the use of a conjugate-gradient minimization used after
primary search with an evolutionary algorithm. It may also involve simultaneous
application of algorithms like the use of evolutionary search for the structure of
a model coupled with gradient search for parameter values. Further, evolutionary
computation can be used to optimize the performance of neural networks, fuzzy
systems, production systems, wireless systems and other program structures.

1.4.4 Parallelism

Evolution is a highly parallel process. When distributed processing computers be-
come more popular are readily available, there will be increased potential for apply-
ing evolutionary computation to more complex problems. Generally the individual
solutions are evaluated independently of the evaluations assigned to competing so-
lutions. The evaluation of each solution can be handled in parallel and selection only
requires some serial operation. In effect, the running time required for an applica-
tion may be inversely proportional to the number of processors. Also, the current
computing machines provide sufficient computational speed to generate solutions
to difficult problems in reasonable time.

1.4.5 Robust to Dynamic Changes

Traditional methods of optimization are not robust to dynamic changes in the
environment and they require a complete restart for providing a solution. In contrary,
evolutionary computation can be used to adapt solutions to changing circumstances.
The generated population of evolved solutions provides a basis for further improve-
ment and in many cases, it is not necessary to reinitialize the population at random.
This method of adapting in the face of a dynamic environment is a key advantage.
For example, Wielaud (1990) applied genetic algorithm to evolve recurrent neural
networks to control a cart-pole system consisting of two poles as shown in Fig. 1.2.

In the above Fig. 1.8, the objective is to maintain the cart between the limits of
the track while not allowing either pole to exceed a specified maximum angle of
deflection. The control available here is the force, with which pull and push action
on the cart is performed. The difficulty here is the similarity in pole lengths. Few
researchers used evolutionary algorithms to optimize neural networks to control this
plant for different pole lengths.

12 1 Evolutionary Computation

Fig. 1.8 A cart with two
poles

θ2θ1

x

1.4.6 Solves Problems that have no Solutions

The advantage of evolutionary algorithms includes its ability to address problems
for which there is no human expertise. Even though human expertise should be
used when it is needed and available; it often proves less adequate for automated
problem-solving routines. Certain problems exist with expert system: the experts
may not agree, may not be qualified, may not be self-consistent or may simply cause
error. Artificial intelligence may be applied to several difficult problems requiring
high computational speed, but they cannot compete with the human intelligence,
Fogel (1995) declared artificial intelligence as “They solve problems, but they do not
solve the problem of how to solve problems.” In contrast, evolutionary computation
provides a method for solving the problem of how to solve problems.

1.5 Applications of Evolutionary Computation

Evolutionary computation techniques have drawn much attention as optimization
methods in the last two decades. From the optimization point of view, the main
advantage of evolutionary computation techniques is that they do not have much
mathematical requirements about the optimization problems. All they need is an
evaluation of the objective function. As a result, they are applied to non-linear
problems, defined on discrete, continuous or mixed search spaces, constrained or
unconstrained.

The applications of evolutionary computation include the following fields:

• Medicine (for example in breast cancer detection).
• Engineering application (including electrical, mechanical, civil, production, aero-

nautical and robotics).
• Traveling salesman problem.
• Machine intelligence.
• Expert system

1.6 Summary 13

• Network design and routing
• Wired and wireless communication networks and so on.

Many activities involve unstructured, real life problems that are difficult to
model, since they require several unusual factors. Certain engineering problems are
complex in nature: job shop scheduling problems, timetabling, traveling salesman
or facility layout problems. For all these applications, evolutionary computation
provides a near-optimal solution at the end of an optimization run. Evolutionary
algorithms are thus made efficient because they are flexible, and relatively easy to
hybridize with domain-dependent heuristics.

1.6 Summary

The basics of evolutionary computation with its historical development were dis-
cussed in this chapter. Although the history of evolutionary computation dates back
to the 1950s and 1960s, only within the last decade have evolutionary algorithms be-
came practicable for solving real-world problems on desktop computers. The three
basic features of the biological evolutionary algorithms were also discussed. For
practical genes, we ask whether Evolutionary computation can gain from biology by
considering the detailed dynamics by which an advantageous allele invades a wild-
type population. The adaptive genetic code illustrates how Evolutionary computa-
tion and biological evolutionary research can contribute to a common understanding
of general evolutionary dynamic. For the dichotomy of genotype and phenotype,
biology is hard-pressed to assess the significance of representational language. The
various advantages and applications of evolutionary computation are also discussed
in this chapter.

Review Questions

1. Define Evolutionary computation.
2. Briefly describe the historical developments of evolutionary computation.
3. State three fundamental features of biological evolutionary computation.
4. Draw a flowchart and explain an evolutionary algorithm.
5. Define genotype and phenotype.
6. Mention the various advantages of evolutionary computation.
7. List a few applications of evolutionary computation.
8. How are evolutionary computational methods hybridized with other methods?
9. Differentiate: Genetic algorithm and Genetic Programming.

10. Give a description of how evolutionary computation is applied to engineering
applications.

Chapter 2
Genetic Algorithms

2.1 Introduction

Charles Darwin stated the theory of natural evolution in the origin of species. Over
several generations, biological organisms evolve based on the principle of natural se-
lection “survival of the fittest” to reach certain remarkable tasks. The perfect shapes
of the albatross wring the efficiency and the similarity between sharks and dolphins
and so on, are best examples of achievement of random evolution over intelligence.
Thus, it works so well in nature, as a result it should be interesting to simulate natural
evolution and to develop a method, which solves concrete, and search optimization
problems.

In nature, an individual in population competes with each other for virtual re-
sources like food, shelter and so on. Also in the same species, individuals compete
to attract mates for reproduction. Due to this selection, poorly performing individ-
uals have less chance to survive, and the most adapted or “fit” individuals produce
a relatively large number of offspring’s. It can also be noted that during repro-
duction, a recombination of the good characteristics of each ancestor can produce
“best fit” offspring whose fitness is greater than that of a parent. After a few gen-
erations, species evolve spontaneously to become more and more adapted to their
environment.

In 1975, Holland developed this idea in his book “Adaptation in natural and ar-
tificial systems”. He described how to apply the principles of natural evolution to
optimization problems and built the first Genetic Algorithms. Holland’s theory has
been further developed and now Genetic Algorithms (GAs) stand up as a powerful
tool for solving search and optimization problems. Genetic algorithms are based on
the principle of genetics and evolution.

The power of mathematics lies in technology transfer: there exist certain models
and methods, which describe many different phenomena and solve wide variety of
problems. GAs are an example of mathematical technology transfer: by simulating
evolution one can solve optimization problems from a variety of sources. Today,
GAs are used to resolve complicated optimization problems, like, timetabling, job-
shop scheduling, games playing.

15

