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Preface

During the 11 years since the first edition was published the field of quantum
kinetics has experienced a great expansion, and the methods described in
the first edition are now widely used in a large number of different subfields.
Literally thousands of papers have been published in this area and an attempt
to give an exhaustive review is clearly beyond the present scope. In this revised
edition we have attempted to include some examples of modern topics, essen-
tially from the research areas we have been active in. We are fully aware of the
fact that this approach will leave many important topics untouched, and our
hope is that the leading researchers in those areas write their own books! 1

More specifically, in our revision we have left the first nine chapters essentially
unchanged, only supplying a few updated references, and correcting misprints.
On the other hand, the last nine chapters have been substantially revised, re-
organized, and expanded. In the sections describing transport phenomena we
have included a number of new topics, such as transport in a superlattice,
molecular electronics (and inelastic interactions), and noise calculations. We
have added a new chapter, describing the dynamical Franz–Keldysh effect,
which follows directly from the field-dependent Green functions, originally in-
troduced to describe high-field transport in semiconductors. In the sections
dealing with optical properties we emphasize that the concepts of quantum
kinetics have proved to be extremely fruitful for the analysis of new exper-
iments in ultrafast semiconductor spectroscopy. Some highlights included in
the new edition are: The femtosecond build-up of screening and of polaron
correlations, four-wave mixing studies of the plasma-density dependent de-
phasing, the femtosecond formation of phonon–plasmon mixed modes, detec-
tion of light-induced band gaps, and non-Markovian relaxation in the short
femtosecond regime. None of these fascinating new observations can be under-
stood in the framework of a semiclassical Markovian Boltzmann kinetics, but
require for their description the theory of quantum kinetics as demonstrated

1 Recent progress in research using nonequilibrium Green functions is reviewed in
a very useful series of edited volumes due to M. Bonitz and co-workers [55–57].
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in the new edition. Even with these new topics we have attempted to keep the
total page number essentially unchanged, which naturally has led to omission
of some material which we no longer felt was necessary. Our hope is that the
readers, new and old, will find the revised book useful in their research work.

We have worked with many colleagues on the new topics included here.
We would particularly like to mention Mads Brandbyge, Thomas Frederiksen,
Paul Gartner, Alfred Leitenstorfer, Bernhard Mieck, Tomáš Novotný, Gloria
Platero, Arne Schmenkel, Oli Schmidt, Fabricio Souza, Alexandra Stein, and
Tuyen Vu. Also, the many students who have found mistakes and misprints,
and suggested improvements, deserve our sincere thanks.

Frankfurt and Copenhagen, Hartmut Haug
July 2007 Antti-Pekka Jauho



Preface to the First Edition

New textbooks on various aspects of theoretical physics seem to overflow the
market. A prospective author must be able to provide convincing answers to
at least the following questions (posed by the publisher, colleagues, and last
but not least, by him/herself and the associated family members). (1) Why
bother writing the book? (2) Is there a sufficient audience for the text? (3) Is
not the topic already covered by a number of books, and is not the author’s
best hope just to add a new wrinkle to the existing lore (and perhaps enhance
his/her own publication record)? (4) Is there any practical need for the book?
(5) Are there any important open problems that the book will contribute to
finding solutions to (or, at least, be able to identify points where the present
understanding is insufficient).

We have thought carefully about the above questions, and have become
convinced (at least between ourselves), that indeed there is a purpose in writ-
ing the book that you are holding in your hands.

In what follows we will try to outline reasons why we feel that this book
might be useful and define its scope and ultimate goals. First of all, this is a
book on a technique. More precisely, this is a book on nonequilibrium Green
functions (NEGF). Narrowing the definition down even more precisely, this
is a book about how NEGF are applied in semiconductor science. To identify
the final qualifier, we are mostly interested in systems where extremely short
length scales (� 1 nm) and extremely fast time scales (� 1 fs) play a crucial
role. In these short length and timescales the electrons exhibit their quantum
mechanical wave nature: the quantum coherence of the electronic excitations
becomes important. To properly describe phenomena of this kind, one needs
a quantum theory of nonequilibrium phenomena and the NEGF provide such
a technique. One of the purposes of this book is to show how deeply the
quantum coherence modifies the physics in short time and length scales: the
relaxation and dephasing dynamics differ radically from their semiclassical
counterparts, and the collision terms of the quantum kinetic equations have
a non-Markovian memory structure.
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Equilibrium Green functions (EGF) have been one of the central items
in the toolbox of a theoretical physicist for many years, and the interested
student can find many excellent treatises on the topic (a brief bibliography
is given in Chap. 3). Many of these books are written by the very people
who invented the formalism, and obviously our ambitions must be set on a
lower level. Nonequilibrium Green functions, on the other hand, are much less
frequently mentioned in the canonical textbooks. An exception is, of course,
the classic work by Kadanoff and Baym [191], where the whole topic was
introduced, but this work is now more than 30 years old, and obviously should
be followed by a more modern treatise.

One may wonder why the beautiful techniques developed by Kadanoff and
Baym [191] (and, independently, by Keldysh [198]), have so far not acquired
the same popularity as equilibrium Green functions. For some reason there
seems to be a rather widespread prejudice to the effect that the nonequilib-
rium techniques are accessible to only a very small select group of experts.
We strongly disagree with this standpoint; in fact one of the main goals of
our work is to emphasize that NEGF are conceptually no more difficult (or
easy) than normal Green functions are. In our opinion there are several fac-
tors that have contributed to this misconception. The first is that the physics
of degenerate Fermi systems has defined the central topic of interest for the
majority of many-body theorists. For this particular class of problems an ex-
tremely powerful formalism exists: quasi-classical Green functions, which take
advantage of the fact that the electronic momenta are confined to the neigh-
borhood of the Fermi surface, and thus allow the development of an essentially
linear (in terms of the external driving field) theory. Consequently, the full
potential power of the Kadanoff–Baym–Keldysh theory has not been called
for. The second reason is that once the Fermi energy does not provide the
overall largest energy scale, the all-important (in sense of the Landau school
of theoretical physics) “small parameter” is not so easy to define. Thus apply-
ing rigorous many-body techniques to semiconductors under nonequilibrium
conditions is, by definition, a topic that purists would be hesitant to touch.
To quote a remark attributed to W. Pauli: “One should not work on semi-
conductors, that is a filthy mess; who knows whether they really exist,” and
this remark was made long before highly nonequilibrium semiconductors were
even considered. We are fully aware that some of the theories described in
this book suffer from this lack of rigor; nevertheless we have taken the risks
of writing down expressions that later developments may require to be modi-
fied. Our philosophy has consistently been that we try to expose our topic as
it stands today, and not have any false pretense in that what we are saying
would be the final truth. (Parenthetically, if everything was well-known and
understood, would there be real challenge in writing the book?!)

Perhaps another reason for the not-so-widespread use of nonequilibrium
Green functions is that there are relatively few texts available that offer a
systematic treatment. In book form we, of course, have the classic work of
Kadanoff and Baym [191], but in addition to that, it has been necessary to look
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for journals. A few review articles exist; we have particularly benefitted from
those by Langreth [231], Chou et al. [80], and Rammer and Smith [287], but
these works are written for an experienced scientist and not for a (graduate)
student. It is interesting to note that during the last few years several books
addressing many-body physics in general have added sections on NEGF, (see,
e.g., books by Datta [93], Enz [105], Ferry [109], or Mahan [254]), but always
as a kind of side remark. Many authors still feel that it is necessary to add
an appendix or two in their research papers explaining the basic notions of
NEGF whenever they are needed in their research. If our book contributes
towards a weakening of this feeling, one of our main goals has been achieved.

Semiconductor microscience has developed dramatically throughout the
1980s and 1990s. Many laboratories have access to samples and instruments
that probe new and exciting effects in parameter ranges where standard theo-
ries, such as the Boltzmann equation or the Kubo formula, are not applicable.
Hence there is a strong experimental motivation to search for theories that
can applied in these new situations. We feel that nonequilibrium Green func-
tions are a good candidate for such a theoretical framework. It was already
mentioned that this is a book on a technique, and not on a topic. A highly
respected approach among the theoretical community is to attack a problem
and then use whatever technique is necessary to sort out the problem. This
is at the same time the distinction between a monograph and a textbook (in
our definition): we do not attempt to cover a single topic in all its variations;
what we do attempt to do is to take a given technique (NEGF in our case)
and use it in a number of carefully chosen topics. The textbook approach has
dictated rather stringently the choice of topics: throughout the book we have
chosen a level of presentation where a diligent student can follow all steps
with a finite amount of pencils and paper. This may have occasionally led to
rather trivial algebraic steps, at least for some of our sophisticated colleagues,
but we have deliberately chosen this route. Our justification is based on the
experience that students learn more from a text, and feel more secure about
its essential contents, if they know that all the materials are carefully chosen
so that no essential steps are hidden behind elusive statements like “it can
be shown,” etc. Thus we are essentially providing an engineering approach:
take our book, make sure that you can reproduce every single equation in it,
and we will guarantee that you have acquired the weaponry to attack many
as of yet unresolved issues in contemporary physics! Or, more modestly, after
studying our book you should not be intimidated by a reference to NEGF,
and will be prepared to continue the conversation on whatever physics that
was discussed.

The pedagogical approach chosen in this book has necessarily had its price.
We do not show many experimental curves and their best theoretical fits.
Rather, we focus on different theoretical approaches, and compare their inter-
relations. In particular this means that our “semiconductor” seldom has a real
band structure with several (anisotropic) conduction and/or valence bands,
or that we do not dwell in detail on various aspects of the self-consistent
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calculations (where the dynamical quantities determine the effective parame-
ters that define the structures under investigation), nor do we dwell in detail
on the many possible different scattering mechanisms that take place in a
real semiconductor (thus we consider only “impurities,” not worrying about
their charge or internal degrees of freedom, and most of our “phonons” are
of the dispersionless optical variety). We hope that this somewhat weakened
connection to real materials is compensated for by the ability to carry out
the calculations analytically, as far as it is possible, and that whenever the
practical need arises, the general structure of the theory, as it is outlined here,
can be applied to the real materials one is interested in.

We also need to comment about the prerequisites for the students app-
roaching our text. A solid command of statistical physics and quantum
mechanics is necessary. Some familiarity with second quantization would
certainly be helpful, even though we give a brief summary on the topic.
The hardest issue concerns the required background knowledge on equilibrium
Green functions. This topic is viewed as a rather advanced issue in standard
curricula, and we have no way of approaching the topics that lie at the core
of our book without assuming some prior knowledge of EGF. However, we do
provide a summary of EGF in Chap. 3, and since one of our most important
messages is that NEGF are conceptually no more difficult than EGF, our
hope is that even a reader with a slightly rusty command of EGF will not
shun away from our book; rather our hope is that this reader will learn more
about EGF’s as a by-product of studying our book!

There is yet another philosophical point that has contributed to the birth
of this book. We are strong believers that different disciplines in science can
learn and benefit from a forced contact with each other. In this day and age
of ever increasing specialization, different physics communities find it ever
more difficult to communicate with each other, even though the mathemati-
cal principles underlying their respective research topics can be (once stripped
of the everyday jargon) actually quite similar. To make a point in case, one
of the standard books in Green function theory, Fetter and Walecka [110],
nicely talks about common themes in solid-state physics and nuclear physics.
We have tried to follow the same route, but with a much more restrictive
definition: we emphasize throughout our book that the optical and trans-
port communities in semiconductor physics are actually tackling very similar
problems. Thus we conceive as one of our main tasks the abolishment of any
artificial barriers between these two groups of scientists.

The structure of this book is clear-cut: the text is divided into four parts,
the first of which serves as a summary of some the concepts needed later, and
also gives some Boltzmann-level results relevant to our topic; Part II develops
the general theoretical framework; Part III applies it to transport in semicon-
ductor microstructures, and, finally, Part IV discusses optical applications.
Parts III and IV are independent of each other, but our belief is that a serious
student will greatly benefit by comparing the similar theoretical structures
arising from superficially different physical starting points.
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Last, but not least, it is our great pleasure to thank the many colleagues
we have worked together with, and without whose expertise and (at times)
friendly criticism we would not have been able to complete the book. (Nat-
urally, the responsibility for all errors and inaccuracies lies with us.) Our
special thanks go to Laci Bányai, Rita Bertoncinı, John Davies, Claudia
Ell, Karim El Sayed, David Ferry, Karsten Flensberg, Klaus Henneberger,
Ben Hu, Kristinn Johnsen, Leonid Keldysh, Stephan Koch, Tillman Kuhn,
David Langreth, Pavel Lipavský, Gerry Mahan, Yigal Meir, Jørgen Rammer,
Lino Reggiani, Ernst Reitsamer, Christian Remling, Wilfried Schäfer, Stefan
Schuster, Henrik Smith, Bao Tran Thoai, Bedřich Velický, Andreas Wacker,
Martin Wegener, John Wilkins, Ned Wingreen, and Roland Zimmermann.

Frankfurt and Copenhagen, Hartmut Haug
August 1996 Antti-Pekka Jauho
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Part I

Introduction to Kinetics
and Many-Body Theory



1

Boltzmann Equation

Summary. We review some of the general properties of the semiclassical Boltzmann
equation - not necessarily restricting ourselves to the dilute electron gas - paying
special attention to its irreversible properties.

1.1 Heuristic Derivation
of the Semiclassical Boltzmann Equation

The kinetic theory of Boltzmann which connects the regime of dynamics
with that of thermodynamics has been a milestone in the development of
theoretical physics. In order to describe the kinetics of, e.g., an atomic gas,
Boltzmann [51] introduced, with great intuition, more than half a century
before the rise of quantum mechanics, a probabilistic description for the evo-
lution of a single-particle distribution which anticipated atomistic scattering
concepts. Boltzmann introduced a single-particle probability distribution in
the phase space of the canonical variables r and p. This Boltzmann distri-
bution function is usually denoted as f(r,p, t). Obviously, this object is clas-
sical, because in quantum mechanics r and p are noncommuting operators
so that they cannot be simultaneously measured with arbitrary precision. We
will analyze in the following chapter how this conceptual difficulty affects
the limits of validity of the Boltzmann equation. Here we will first present
a heuristic derivation of the semiclassical Boltzmann equation. Later in this
book we will pay special attention to the more detailed quantum mechanical
justifications of the Boltzmann kinetics, present discussions of the limits of
this semiclassical theory, and, most importantly, derive and study the quan-
tum kinetics which has to be used instead of the Boltzmann kinetics on small
length and/or short timescales. In the framework of the classical Hamilton
theory the total change in time of this distribution function is
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df(r,p, t)
dt

=
∂f

∂t
+

dr

dt
· ∇rf +

dp

dt
· ∇pf

=
∂f

∂t
+

p

m
· ∇rf − [∇rV (r)] · ∇pf =

∂f

∂t

∣∣∣
coll
, (1.1)

where V (r) is a single-particle potential. The left-hand side of (1.1) describes
the dynamics of a single particle. The influence of the other particles will give
rise to a further change of the distribution function ∂f/∂t|coll which describes
the effect of the collisions in the gas. We will not proceed historically, but
include directly the proper quantum statistics for quantum gases, so that
we are not limited to nondegenerate gases. This extension is necessary for
the application of the Boltzmann kinetics to electron gases in semiconductors
which are often degenerate, whether they are produced by doping, injection, or
optical excitation. Fermi’s golden rule gives us the transition probability per
unit time and thus the wanted change of f due to collisions. For an interacting
Fermi gas we calculate this change by considering approximately free-particle
collisions in which the particle is scattered from a momentum state p to a
momentum state p′ and simultaneously another particle is scattered from
state p1 to p′

1, as well as the inverse process

∂f(p)
∂t

∣∣∣
coll

= −
∑

p′,p1,p′
1

w(p,p1; p′,p′
1)
{
f(p)f(p1)[1 − f(p′)][1 − f(p′

1)]

− [1 − f(p)][1 − f(p1)]f(p′)f(p′
1)
}
, (1.2)

where the intrinsic transition probalility per unit time is given by

w(p,p1; p′,p′
1) = 1

2 |Wp,p1;p′,p′
1
−Wp,p1;p′

1,p′ |2

× δp+p1,p′+p′
1

2π
h̄
δ(εp + εp1 − εp′ − εp′

1
) . (1.3)

Here

Wp,p1;p′,p′
1

= 〈pp1|W |p′p′
1〉 (1.4)

is the interaction matrix element and εp is the energy of the particle. The
second matrix element in (1.3) is the exchange term in which p′

1 and p′ are
interchanged. This form of the intrinsic transition probability is called the first
Born approximation. The population factors take care that the initial states in
the scattering event are populated and that the final states are empty in accor-
dance with the Pauli principle. The scattering p+p1 → p′ +p′

1 is a loss term
which reduces f(p), while the inverse process p′ + p′

1 → p + p1 increases the
distribution function. For shortness of notation, the parametric dependencies
on the spatial coordinate r and time t are not shown in the collision integral.
The form of the collision integral leads to five conservation laws for: (a) the
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number of particles, (b) the vector of the total momentum, and (c) the to-
tal energy. In a dilute, nondegenerate gas the final state population can be
neglected, so that (1.2) can be simplified by the approximation 1− f(p) � 1.

A second important scattering rate for an electron gas in a perfect crystal
is the scattering by emission or absorption of a phonon. Its form is

∂f(p)
∂t

∣∣∣
coll

= −
∑
p′,q

w(p,p′;±q) ×
{
f(p)[1 − f(p′)]

[
1
2 + n(q) ± 1

2

]
−
[
1 − f(p)

]
f(p′)

[
1
2 + n(q) ∓ 1

2

]}
, (1.5)

where the intrinsic transition probabilty per unit time is given by

w(p,p′;±q) = |Mq|2δp,p′±q
2π
h̄
δ
(
εp′ ± h̄ωq − εp

)
. (1.6)

Here,Mq is the electron–phonon interaction matrix element, and n(q) and ωq

are the phonon distribution and frequency, respectively. Consider the upper
sign first, then the first term in (1.5) describes a scattering of an electron from
p into the state p′ accompanied with an emission of a phonon. The final state
boson population factor [1+n(q)] shows that the emission can be spontaneous
or stimulated. The energy conservation also shows that the energy εp of the
initially populated state is shared between the particle in the final state and
the phonon. The contribution of the lower sign in (1.5) describes a scattering
from p to p′ via absorption of a phonon with an occupation factor n(q).
The form of (1.5) shows that for the electron–phonon scattering rate only
the electron particle number is conserved, but no longer the total momentum
and the total energy of the electron gas which both can be transferred to the
phonon system. The phonon distribution in turn is also governed by a similar
Boltzmann equation which we will not give explicitly here.

Obviously the semiclassical Boltzmann equation cannot be used on very
short timescales because the assumption that the energy is conserved in an
isolated collision (1.2), (1.5) breaks down. In a short time interval δt the energy
remains undetermined due to the uncertainty relation δtδE ≥ h̄. Therefore
the strict energy conservation in an individual collision is not an inherent
property of the quantum kinetic description.

The mathematical properties of the Boltzmann kinetics contained in
(1.1), (1.2), and (1.5) have been thoroughly investigated. Its full theory is
a wide subject in its own; we will discuss only a few properties here. For a
much more complete treatment and for studies of its applications we have to
refer to such excellent books as Ziman [380], Cercignani [76], and Smith and
Jensen [327].

1.2 Approach to Equilibrium: H-Theorem

It is easy to convince oneself that the semiclassical Boltzmann equation (1.2)
describes indeed an evolution toward the thermal equilibrium in the absence
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of external fields. We introduce first an arbitrary function F (p, fp) which
depends on the momentum and the distribution f(r,p, t). Its local density is

〈F (r, t)〉 =
∑

p

F (p, fp)fp . (1.7)

The change of this function due to the collisions is [here we consider explicitly
the collision operator (1.2)]

∂〈F (r, t)〉
∂t

∣∣∣
coll

=
∑

p

[
∂F (p)
∂f(p)

+ F (p)
]
∂f(p)
∂t

∣∣∣
coll

= −
∑

pp′,p1,p′
1

w(p,p1; p′p′
1)
∂[F (p)f(p)]
∂f(p)

×
{
f(p)f(p1)[1 − f(p′)][1 − f(p′

1)]

− [1 − f(p)][1 − f(p′)]f(p1)f(p′
1)
}
. (1.8)

Exploiting the symmetry of the intrinsic transition probability w(p,p1; p′
1p

′)
with respect to the exchange of particle coordinates

w(p,p1; p′,p′
1) = w(p1,p; p′

1,p
′)

= w(p′,p′
1; p,p1) = w(p′

1,p
′; p1,p) , (1.9)

one finds that

∂〈F (r, t)〉
∂t

∣∣∣
coll

= −1
4

∑
pp′,p1,p′

1

w(p,p1; p′,p′
1)

×
[
∂(Ff)
∂f

+
∂(Ff)
∂f1

− ∂(Ff)
∂f ′

− ∂(Ff)
∂f ′1

]
×
[
ff1(1 − f ′)(1 − f ′1) − (1 − f)(1 − f1)f ′f ′1

]
. (1.10)

In (1.10) we have introduced a shorthand notation, for example in ∂(Ff)/∂f
all involved functions are evaluated at the argument p. Now consider the
following choice for F :

f(p)F (p, fp) = f(p) ln f(p) + [1 − f(p)] ln[1 − f(p)] . (1.11)

The partial derivative with repect to f yields

∂(Ff)
∂f(p)

= ln
f(p)

1 − f(p)
. (1.12)
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Equation (1.10) becomes

∂

∂t

∣∣∣
coll

∑
p

f(p) ln f(p) + [1 − f(p)] ln[1 − f(p)] =
∂

∂t
H(r, t)

∣∣∣
coll

= −1
4

∑
pp′,p1,p′

1

w(p,p1; p′,p′
1) ln

[
ff1(1 − f ′)(1 − f ′1)
(1 − f)(1 − f1)f ′f ′1

]
×
[
ff1(1 − f ′)(1 − f ′1) − (1 − f)(1 − f1)f ′f ′1

]
. (1.13)

The integrand is of the form (x− y) ln(x/y), and hence nonnegative, because
x − y and ln(x/y) have the same sign. Thus the H-function (called
“eta”-function, the capital greek eta looks like a latin H) always decreases
in the approach to equilibrium. This is the content of Boltzmann’s famous
eta-theorem, generalized to a Fermi gas.

The eta-theorem shows that the entropy density, which for a Fermi gas is
given by [226]

s(r, t) = −kBH(r, t)

= −kB
∑

p

{
f(p) ln f(p) + [1−f(p)] ln[1−f(p)]

}
, (1.14)

reaches a maximum in the equilibrium. Here, kB is Boltzmann’s constant.
Finally, we will show that the Boltzmann equation (1.2) describes indeed

an approach to the well-known Fermi equilibrium function. For this purpose
we formalize the already mentioned conservation laws. We define the functions
Fi(p) with i = 1, . . . , 5 as

F1 = 1, Fi = pi, i = 2, 3, 4, F5 = εp , (1.15)

we see immediately from (1.10) that the corresponding 〈Fi〉 are not changed
by the collisions. In equilibrium the term in curly brackets in (1.2) has to
vanish: [

f0f0
1 (1 − f0′)(1 − f0

1
′
) − (1 − f0)(1 − f0

1 )f0′f0
1
′]

= 0 . (1.16)

From this relation one sees that

ln
f0

(1 − f0)
+ ln

f0
1

(1 − f0
1 )

= ln
f0′

(1 − f0′)
+ ln

f0
1
′

(1 − f0
1
′)
. (1.17)

In other words, ln[f0/(1 − f0)] is also a conserved quantity. Because we have
only five basic conservation laws, this quantity can be expressed as a linear
combination of 1,p, and εp:

ln
f0

(1 − f0)
= A+ B · p + Cεp (1.18)
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with
A = βµ, B = βu, C = −β , (1.19)

where β = 1/(kBT ), µ is the chemical potential and u is the drift velocity. All
the expressions in (1.19) can still be – slowly varying – functions of r and t.
Such a situation is called a local equilibrium. Equation (1.18) has the solution

f0(p) =
1

eβ(εp−p·u−µ) + 1
, (1.20)

which is the Fermi distribution function. A similar derivation for the
Boltzmann equation with electron–phonon scattering results in an equilib-
rium phonon distribution function of the form

n0(p) =
1

eβ(h̄ωp−p·u) − 1
, (1.21)

because the chemical potential of bosons, whose total number is not conserved,
is identical to zero.

1.3 Linearization: Eigenfunction Expansion

Close to thermal equilibrium the nonlinear Boltzmann equation, e.g., (1.2),
can be linearized with respect to the deviation δf ≡ f − f0 from the thermal
equilibrium solution (1.20). For simplicity we consider here a spatially homo-
geneous electron gas without drift. It turns out that it is advantageous to use
a normalized deviation φ(p, t) which is introduced by writing

f(p, t) =
1

eβ(εp−µ)−φ(p,t) + 1
. (1.22)

Expanding this function with respect to φ(p, t) yields

δf(p, t) = f0(p)[1 − f0(p)]φ(p, t) . (1.23)

The linearized Boltzmann equation yields the following net scattering rate for
the state p:

∂φ(p, t)
∂t

= − 2
f0(p)[1 − f0(p)]

∑
p1,p′,p′

1

w(p,p1; p′,p′
1)

×
{
φ(p, t)

[
f0(1 − f0)f0

1 (1 − f0′)(1 − f0
1
′
)

+ f0(1 − f0)(1 − f0
1 )f0′f0

1
′]

+ · · ·
}
. (1.24)

The dots indicate terms of similar structure proportional to φ(p1, t), φ(p′, t),
and φ(p′

1, t). In equilibrium
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f0f0
1 (1 − f0′)(1 − f0

1
′
) = (1 − f0)(1 − f0

1 )f0′f0
1
′
. (1.25)

Using relation (1.25), the linearized Boltzmann equation (1.24) reduces to

∂φ(p, t)
∂t

= − 2
f0(p)[1 − f0(p)]

∑
p1,p′,p′

1

W(p,p1; p′,p′
1) (1.26)

×
[
φ(p, t) + φ(p1, t) − φ(p′, t) − φ(p′

1, t)
]

= −L φ(p, t), (1.27)

with

W(p,p1; p′,p′
1) = w(p,p1; p′,p′

1)f
0f0

1 (1 − f0′)(1 − f0
1
′
) . (1.28)

The transition matrix W of the linearized Boltzmann equation has the
following symmetry properties:

W(p,p1; p′,p′
1) = W(p1,p; p′,p′

1)

= W(p′,p′
1; p,p1) = W(p,p1; p′

1,p
′) . (1.29)

The linearized Boltzmann equation also conserves the total particle number,
the total momentum, and the total energy. If one chooses a φ(p, t) which is
proportional to either 1,p, or εp, the r.h.s of the Boltzmann equation (1.26)
vanishes. Thus, these particular forms of φ(p) are eigenfunctions to the col-
lision operator L with a vanishing eigenvalue. The collision operator is an
integral operator

Lφ(p) =
∑
p′

L(p,p′)φ(p′) . (1.30)

In general the eigenfunctions φλ(p) are solutions of the stationary equation

Lφλ(p) = λφλ(p) . (1.31)

One can define a scalar product 〈σ|φ〉 and a norm |φ| by

〈σ|φ〉 =
∑

p

f0(p)[1 − f0(p)]σ∗(p)φ(p) , |φ|2 = 〈φ|φ〉 , (1.32)

and span a Hilbert space by the eigenfunctions of L. Using the symmetry
relations of W , one shows that L is a hermitian, real, and positive semidefinite
operator in this Hilbert space, i.e.,

〈σ|Lφ〉 = 〈Lσ|φ〉; 〈φ|Lφ〉 ≥ 0 . (1.33)

The equality sign holds, if φ is one of the five collision invariants. With these
definitions the solution of the time-dependent linearized Boltzmann equation
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with a given initial deviation φ(t = 0) = φ0 can be found by expanding φ0

in terms of the set of eigenfunctions φλ of L. The solution is then of the
form

φ(p, t) =
∑

λ

Aλe−λtφλ(p) . (1.34)

The eigenvalues λ are true relaxation frequencies for deviations φλ. However,
it is obvious from (1.34) that, in general, a description of the Boltzmann rel-
axation kinetics with only one relaxation time is not possible. Therefore the
most frequently used linear approximation to the collision rate, the so-called
relaxation-time approximation,

∂f(p)
∂t

∣∣∣
coll

� −δf(p)
τ

(1.35)

is only a very crude description of the relaxation kinetics toward equilibrium.
The effective relaxation time τ in the resulting exponential decay of a devia-
tion from the thermal equilibrium distribution has, in general, no well-defined
meaning, and is known not to describe adequately the experimentally observed
transport properties (e.g., viscosities and thermal conductivity of simple
mono- and diatomic gases) [327]. Since the linearized collision operator com-
mutes with the operator for the angular momentum in p-space, the normalized
deviation φ(p) can be factorized into a radial function and an angular part.
Unfortunately, the eigenfunctions have to be evaluated numerically. Only for
a nondegenerate system of Maxwell molecules with a repulsive interaction
potential ∝ r−4 analytical eigenfunctions have been found. In the case of deg-
enerate Fermi systems, where all momenta are confined to the neighborhood
of pF, the eigenfunction expansions have provided rapidly converging series
for various transport coefficients [60, 190].

We will illustrate in Chap. 2 the use of the eigenfunction expansion for
the numerical evaluation of the relaxation kinetics due to Coulomb scattering
in a quasi-two-dimensional (2D) electron gas. Such a 2D electron gas can be,
for example, realized in a semiconductor quantum well structure. This exam-
ple simultaneously addresses an important relaxation process of hot electrons
in semiconductors, because in a dense electron gas in semiconductors the
Coulomb scattering provides the fastest relaxation process.
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Numerical Solutions
of the Boltzmann Equation

Summary. Various concepts for the numerical solution of the semiclassical
Boltzmann equation are discussed, including an illustration of the use of a linearized
Boltzmann equation and its eigenfunction expansion for a 2D electron gas. The nu-
merical results for the linearized Boltzmann equation are compared with those of
an ensemble Monte Carlo simulation of the Master equation. Finally the Boltzmann
equation together with the Poisson equation is solved self-consistently for a spatially
inhomogeneous electron gas in the relaxation time approximation.

2.1 Introduction

In general, the solution of the Boltzmann equation requires numerical methods.
One possibility, which has been applied to the study of the Boltzmann kinet-
ics for electron systems in semiconductors, is the direct numerical integra-
tion [85,317,329]. Several examples of such direct numerical integrations will
be discussed in Part IV of this book as limiting cases of the treatment of the
more general quantum kinetics, and we postpone the further discussion of this
method up to that point.

If one studies only the relaxation of a small deviation from an equilib-
rium distribution, one can linearize the Boltzmann equation as discussed in
Chap. 1. Powerful mathematical solution methods are available for linear int-
egral equations. We will illustrate the use of the eigenfunction expansion by
treating the relaxation kinetics due to Coulomb collisions in a dense electron
gas in a quasi-two-dimensional quantum well structure in Sect. 2.2. If one can
make, in addition to the linearization, an expansion in the small momentum
change in the collision, the Boltzmann integral equation can be approximated
by the Fokker–Planck equation [241, 295] which is a second-order differential
equation and describes the relaxation in terms of a drift and a diffusion of
the distribution in momentum space. The Fokker–Planck approximation is
particularly useful for electron–phonon scattering, while the additional mom-
entum and energy conservation laws of the Coulomb scattering lead to a more
complicated integro-differential equation [144].
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Finally, the collision kinetics can be simulated by stochastic methods,
called Monte Carlo simulation [42]. Many simulations make use of the semi-
classical concept of the population of small phase space volume elements
∆3x∆3p [109,126,168,169,188,213,277,334]. These methods allow one to treat
very naturally spatially inhomogeneous systems and they are very important
in the simulation of actual semiconductor devices. Due to the semiclassi-
cal nature of the method, the treatment of degenerate electron gases is less
accurate. In this respect the ensemble Monte Carlo simulations for homoge-
neous systems in k-space [102] are more accurate because they simulate the
underlying Master equation rather than the Boltzmann equation. For spatially
homogeneous systems, one studies directly the stochastic time development
of the occupation of momentum states, and obtains Boltzmann distribution
probabilities from averaging over many microscopic realizations. The algo-
rithm for the ensemble Monte Carlo simulation can be derived rather explic-
itly from the corresponding Master equation, and we will describe this method
in Sect. 2.3, and demonstrate its use again in Sect. 2.4 in the case of Coulomb
relaxation kinetics of a dense electron gas in a semiconductor quantum well
structure.

2.2 Linearized Coulomb Boltzmann Kinetics
of a 2D Electron Gas

The Boltzmann relaxation kinetics of an electron gas in semiconductors can be
studied experimentally by time-resolved pump and probe spectroscopy. There-
fore we will illustrate the eigenfunction expansion technique for the example
of an electron gas in a quantum well structure following [102]. We assume that
the quantum well is so narrow, that we can consider only the two-dimensional
motion of the electrons in the lowest subband [31,146]. The 2D electron mo-
mentum is p = h̄k, where k is the wavevector, the effective electron mass is
m. The field lines of the Coulomb forces also enter the barrier material which
often has very similar dielectric properties as the well material. Therefore, the
Coulomb potential retains its three-dimensional 1/r form in these mesoscopic
microstructures in real space. Its 2D Fourier transform is [146]

Vq =
2πe2

ε0L2q
, (2.1)

where q is the wavenumber, L2 the 2D volume, and ε0 is the background
dielectric constant. In Coulomb systems the bare Coulomb potential in the
collision integral has to be replaced by its screened counterpart [191, 380].
In the simplest approximation the statically screened 2D Coulomb potential
Vs,q is [146]

Vs,q =
2πe2

ε0L2(q + κ)
, (2.2)
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where κ is the screening wavenumber [102],

κ =
2mL2

h̄2
e2fk=0 . (2.3)

Because, in general, the distribution of the lowest k-state changes in time
during the relaxation process, the screening wavenumber will depend para-
metrically on the time. However, in the linearized Boltzmann equation this
time dependence does not contribute because f0(t) → f0

0 .
In the following only isotropic distributions fk(t) will be considered, thus

only the eigenfunctions with angular momentum l = 0 are needed. With this
restriction only the particle number and the energy remain as collision
invariants with eigenvalues λ = 0. For isotropic deviations an angular int-
egration allows us to write the action of the collision operator (1.26) as that
of a matrix with continuous wavenumber indices k:

Lφk =
∑
k′

Lk,k′φk′ , (2.4)

where the integral kernel follows from (1.3), (1.26), and (1.28) as

Lk,k′ =
me4

πh̄3ε20

∫
d2p

∫
d2q
δ[(p − k)·q−q2]

(q + κ)2
f0

p (1−f0
|k+q|)(1−f0

|p−q|)

(1 − f0
k )

×
[
δ(k′ − k) + δ(k′ − p) − δ(k′−|k + q|) − δ(k′−|p − q|)

]
. (2.5)

Here the exchange term of (1.3) has been disregarded for simplicity. In order to
determine the eigenfunctions numerically, the integral has to be approximated
by a discrete sum on an equidistant grid ki = i∆k with i = 0, 1, . . . , N .
Thus a cutoff wavenumber kN > kF is introduced, which certainly has to be
larger than the Fermi wavenumber, defined as h̄2k2F/2m = µ. The diagonal
elements of the collision operator are usually called the collision frequencies
νk. A further simplification of the calculation can be achieved by symmetrizing
L via a similarity transformation,

L̃ = g−1Lg , φ̃ = g−1φ with L̃φ̃λ = λφ̃λ , (2.6)

where g is a diagonal matrix with the elements

gk,k′ = δk,k′
1√

kf0
k (1 − f0

k )
. (2.7)

As a first step, the matrix elements Lk,k′ are computed for k, k′ ≤ kN. Next
the eigenfunctions and eigenvalues λ of the symmetric matrix L̃ are evalu-
ated. The eigenfunctions are finally transformed back by multiplication with
the matrix g to get the desired eigenfunctions φλ. The step width for all
calculations is taken to be ∆k = kF/50. A further reduction of the step width
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does not change the results essentially. The dependence of the results on the
cutoff wavenumber kN will be discussed below.

The collision frequency νk is sometimes used [249] to get an estimate for
the relaxation times due to inelastic carrier–carrier scattering. In Fig. 2.1 the
collision frequency νk is shown for four different carrier densities. The mate-
rial parameters are those of the conduction band of GaAs, i.e., m = 0.0665m0

and ε0 = 13.71. The collision frequency decreases with increasing density.
This effect is caused by the Pauli-blocking of the final scattering states and
the enhanced screening of the Coulomb potential. For increasing degeneracy
a pronounced dip appears in the vicinity of the Fermi energy. This dip can be
understood, if one recalls that νk is the sum of the equilibrium scattering rates
in and out of the state with energy εk. These rates are related by detailed
balance, i.e.,

νk = Γ in
k + Γ out

k ; Γ out
k =

1 − f0
k

f0
k

Γ in
k . (2.8)

At low temperatures these rates around kF are very small. Consider, e.g.,
a state k, above but close to kF; its rate out is small because of the small
number of empty final states between k and kF . For k → ∞ the collision
frequency tends to 0. Generally one finds a dense spectrum of eigenvalues λn,
n = 1, 2, . . . , N , therefore we define a density of eigenstates

�(λn) =
2∆k

λn+1 − λn−1
, (2.9)

which becomes independent of the step width for small ∆k. The density of
eigenstates �(λn) is shown in Fig. 2.2 as a function of λ for two carrier densities

Fig. 2.1. Collision frequency νk vs. k/kF for various 2D plasma densities in units
of 1012 cm−2: (Full line) n = 0.64; (dashed line) n = 1.28; (dashed-dotted line)
n = 2.56; (dotted line) n = 5.12 according to [102]


