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Preface to the Fourth Edition

Almost twenty years after conception of the first edition, it was a challenge to
prepare an updated version of this text on the Calculus of Variations. The field
has truely advanced dramatically since that time, to an extent that I find it
impossible to give a comprehensive account of all the many important devel-
opments that have occurred since the last edition appeared. Fortunately, an
excellent overview of the most significant results, with a focus on functional
analytic and Morse theoretical aspects of the Calculus of Variations, can be
found in the recent survey paper by Ekeland-Ghoussoub [1]. I therefore have
only added new material directly related to the themes originally covered.

Even with this restriction, a selection had to be made. In view of the fact
that flow methods are emerging as the natural tool for studying variational
problems in the field of Geometric Analysis, an emphasis was placed on ad-
vances in this domain. In particular, the present edition includes the proof
for the convergence of the Yamabe flow on an arbitrary closed manifold of
dimension 3 ≤ m ≤ 5 for initial data allowing at most single-point blow-up.
Moreover, we give a detailed treatment of the phenomenon of blow-up and dis-
cuss the newly discovered results for backward bubbling in the heat flow for
harmonic maps of surfaces.

Aside from these more significant additions, a number of smaller changes
have been made throughout the text, thereby taking care not to spoil the fresh-
ness of the original presentation. References have been updated, whenever pos-
sible, and several mistakes that had survived the past revisions have now been
eliminated. I would like to thank Silvia Cingolani, Irene Fonseca, Emmanuel
Hebey, and Maximilian Schultz for helpful comments in this regard. Moreover,
I am indebted to Gilles Angelsberg, Ruben Jakob, Reto Müller, and Melanie
Rupflin, for carefully proof-reading the new material.

Zürich, July 2007 Michael Struwe



Preface to the Third Edition

The Calculus of Variations continues to be an area of very rapid growth. Vari-
ational methods are indispensable as a tool in mathematical physics and ge-
ometry.

Results on Ginzburg-Landau type variational problems inspire research on
the related Seiberg-Witten functional on a Kähler surface and invite specula-
tions about possible applications in topology (Ding-Jost-Li-Peng-Wang [1]).

Variational methods are applied in cosmology, as in the recent work of
Fortunato-Giannoni-Masiello [1] and Giannoni-Masiello-Piccione [1] on geode-
sics in Lorentz manifolds and gravitational lenses.

Applications to Hamiltonian dynamics now include a proof of the Seifert
conjecture on brake orbits (Giannoni [1]) and results on homoclinic and hete-
roclinic solutions (Coti Zelati-Ekeland-Séré [1], Rabinowitz [1], Séré [1]) with
interesting counterparts in the field of semilinear elliptic equations (Coti-Zelati-
Rabinowitz [1], Rabinowitz [13]).

The Calculus of Variations also has advanced on a more technical level.
Campa-Degiovanni [1], Corvellec-Degiovanni-Marzocchi [1], Degiovanni-Mar-
zocchi [1], Ioffe [1], and Ioffe-Schwartzman [1] have extended critical point
theory to functionals on metric spaces, with applications, for instance, to quasi-
linear elliptic equations (Arioli [1], Arioli-Gazzola [1], Canino-Degiovanni [1]).

Bolle [1] has proposed a new approach to perturbation theory, as treated
in Section II.7 of this monograph. Numerous applications are studied in Bolle-
Ghoussoub-Tehrani [1].

The method of parameter dependence as in Sections I.7 and II.9 has found
further striking applications in Chern-Simons theory (Struwe-Tarantello [1])
and independently for a related problem in mean field theory (Ding-Jost-Li-
Wang [1]). Inspired by these results, Wang-Wei [1] were able to solve a problem
in chemotaxis with a similar structure. Jeanjean [1] and Jeanjean-Toland [1]
have discovered an abstract setting where parameter dependence may be ex-
ploited.

Ambrosetti [1], Ambrosetti-Badiale-Cingolani [1], and Ambrosetti-Badiale
[1], [2] have found new applications of variational methods in bifurcation theory,
refining the classical results of Böhme [1] and Marino [1]. In Ambrosetti-Garcia
Azorero-Peral [1] these ideas are applied to obtain precise existence results for
conformal metrics of prescribed scalar curvature close to a constant, which shed
new light on the work of Bahri-Coron [1], [2], Chang-Yang [1] quoted in Section
III.4.11.

The field of critical equations as in Chapter III has been particularly active.
Concentration profiles for Palais-Smale sequences as in Theorem III.3.1

have been studied in more detail by Rey [1] and Flucher [1].



viii Preface to the Third Edition

Quite surprisingly, results analogous to Theorem III.3.1 have been dis-
covered also for sequences of solutions to critical semilinear wave equations
(Bahouri-Gérard [1]).

For the semilinear elliptic equations of critical exponential growth related
to the Moser-Trudinger inequality on a planar domain the patterns for exis-
tence and non-existence results are strikingly analogous to the higher dimen-
sional case (Adimurthi [1], Adimurthi-Srikanth-Yadava [1]), and, on a macro-
scopic scale, quantization phenomena analogous to Theorem III.3.1 are ob-
served for concentrating solutions of semilinear equations with exponential
growth (Brezis-Merle [1], Li-Shafrir [1]). However, results of Struwe [17] and
Ogawa-Suzuki [1] on the one hand and an example by Adimurthi-Prashanth
[1] on the other suggest that there may be many qualitatively distinct types of
blow-up behavior for Palais-Smale sequences in this case. Still, Theorem III.3.1
remains valid for solutions (Adimurthi-Struwe [1]) and also the analogue of The-
orem III.3.4 has been obtained (Struwe [25]). The many similarities and subtle
differences to the critical semilinear equations in higher dimensions make this
field particularly attractive for further study.

References have been updated and a small number of mistakes have been
rectified. I am indepted to Gerd Müller, Paul Rabinowitz, and Henry Wente
for their comments.

Zürich, July 1999 Michael Struwe



Preface to the Second Edition

During the short period of five years that have elapsed since the publication
of the first edition a number of interesting mathematical developments have
taken place and important results have been obtained that relate to the theme
of this book.

First of all, as predicted in the Preface to the first edition, Morse theory, in-
deed, has gone through a dramatic change, influenced by the work by Andreas
Floer on Hamiltonian systems and in particular, on the Arnold conjecture.
There are now also excellent accounts of these developments and their ramifi-
cations; see, in particular, the monograph by Matthias Schwarz [1]. The book
by Hofer-Zehnder [2] on Symplectic Geometry shows that variational methods
and, in particular, Floer theory have applications that range far beyond the
classical area of analysis.

Second, as a consequence of an observation by Stefan Müller [1] which
prompted the seminal work of Coifman-Lions-Meyer-Semmes [1], Hardy spaces
and the space BMO are now playing a very important role in weak conver-
gence results, in particular, when dealing with problems that exhibit a special
(determinant) structure. A brief discussion of these results and some model
applications can be found in Section I.3.

Moreover, variational problems depending on some real parameter in cer-
tain cases have been shown to admit rather surprising a-priori bounds on critical
points, with numerous applications. Some examples will be given in Sections
I.7 and II.9.

Other developments include the discovery of Hamiltonian systems with
no periodic orbits on some given energy hypersurface, due to Ginzburg and
Herman, and the discovery, by Chang-Ding-Ye, of finite time blow-up for the
evolution problem for harmonic maps of surfaces, thus completing the results
in Sections II.8, II.9 and III.6, respectively.

A beautiful recent result of Ye concerns a new proof of the Yamabe theorem
in the case of a locally conformally flat manifold. This proof is presented in
detail in Section III.4 of this new edition.

In view of their numerous and wide-ranging applications, interest in vari-
ational methods is very strong and growing. Out of the large number of recent
publications in the general field of the calculus of variations and its applica-
tions some 50 new references have been added that directly relate to one of the
themes in this monograph.

Owing to the very favorable response with which the first edition of this
book was received by the mathematical community, the publisher has sug-
gested that a second edition be published in the Ergebnisse series. It is a
pleasure to thank all the many mathematicians, colleagues, and friends who
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have commented on the first edition. Their enthusiasm has been highly in-
spiring. Moreover, I would like to thank, in particular, Matts Essen, Martin
Flucher and Helmut Hofer for helpful suggestions in preparing this new edition.

All additions and changes to the first edition were carefully implemented by
Suzanne Kronenberg, using the Springer TeX-Macros package, and I gratefully
acknowledge her help.

Zürich, June 1996 Michael Struwe
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It would be hopeless to attempt to give a complete account of the history of
the calculus of variations. The interest of Greek philosophers in isoperimetric
problems underscores the importance of “optimal form” already in ancient
cultures; see Hildebrandt-Tromba [1] for a beautiful treatise of this subject.
While variational problems thus are part of our classical cultural heritage, the
first modern treatment of a variational problem is attributed to Fermat, see
Goldstine [1; p. 1]. Postulating that light follows a path of least possible time,
in 1662 Fermat was able to derive the laws of refraction, thereby using methods
which may already be termed analytic.

With the development of the Calculus by Newton and Leibniz, the basis
was laid for a more systematic development of the calculus of variations. The
brothers Johann and Jakob Bernoulli and Johann’s student Leonhard Euler, all
from the city of Basel in Switzerland, were to become the “founding fathers”
(Hildebrandt-Tromba [1; p. 21]) of this new discipline. In 1743 Euler [1] sub-
mitted “A method for finding curves enjoying certain maximum or minimum
properties”, published in 1744, the first textbook on the calculus of variations.
In an appendix to this book Euler [1; Appendix II, p. 298] expresses his belief
that “every effect in nature follows a maximum or minimum rule” (see also
Goldstine [1; p. 106]), a credo in the universality of the calculus of variations as
a tool. The same conviction also shines through Maupertuis’ [1] work on the
famous “least action principle”, also published in 1744. (In retrospect, how-
ever, it seems that Euler was the first to observe this important principle. See
for instance Goldstine [1; p. 67 f. and p. 101 ff.] for a more detailed histori-
cal account.) Euler’s book was a great source of inspiration for generations of
mathematicians following.

Major contributions were made by Lagrange, Legendre, Jacobi, Clebsch,
Mayer, and Hamilton to whom we owe what we now call “Euler-Lagrange
equations”, the “Jacobi differential equation” for a family of extremals, or
“Hamilton-Jacobi theory”.

The use of variational methods was not at all limited to one-dimensional
problems in the mechanics of mass-points. In the 19th century variational
methods also were employed for instance to determine the distribution of an
electrical charge on the surface of a conductor from the requirement that the
energy of the associated electrical field be minimal (“Dirichlet’s principle”; see
Dirichlet [1] or Gauss [1]) or were used in the construction of analytic functions
(Riemann [1]).

However, none of these applications was carried out with complete rigor.
Often the model was confused with the phenomenon that it was supposed to
describe and the fact (?) that for instance in nature there always exists an
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equilibrium distribution for an electrical charge on a conducting surface was
taken as sufficient evidence for the corresponding mathematical problem to
have a solution. A typical reasoning reads as follows:

“In any event therefore the integral will be non-negative and hence there
must exist a distribution (of charge) for which this integral assumes its mini-
mum value,” (Gauss [1; p. 232], translation by the author).

However, towards the end of the 19th century progress in abstraction and a
better understanding of the foundations of the calculus opened such arguments
to criticism. Soon enough, Weierstrass [1; pp. 52–54] found an example of a vari-
ational problem that did not admit a minimum solution. Weierstrass challenged
his colleagues to find a continuously differentiable function u: [−1, 1]→ IR min-
imizing the integral

I(u) =
∫ 1

−1

∣∣∣∣x d

dx
u

∣∣∣∣
2

dx

subject (for instance) to the boundary conditions u(±1) = ±1. Choosing

uε(x) =
arctan(xε )
arctan( 1

ε
)
, ε > 0,

as a family of comparison functions, Weierstrass was able to show that the
infinium of I in the above class was 0; however, the value 0 is not attained.
(See also Goldstine [1; p. 371 f.].) Weierstrass’ critique of Dirichlet’s principle
precipitated the calculus of variations into a Grundlagenkrise comparable to the
crisis in set theory and logic after Russel’s discovery of antinomies in Cantor’s
set theory or Gödel’s incompleteness proof.

However, through the combined efforts of several mathematicians who did
not want to give up the wonderful tool that Dirichlet’s principle had been –
including Weierstrass, Arzéla, Fréchet, Hilbert, and Lebesgue – the calculus of
variations was revalidated and emerged from its crisis with new strength and
vigor.

Hilbert’s speech at the centennial assembly of the International Congress
1900 in Paris, where he proposed his famous 20 problems – two of which were
devoted to questions related to the calculus of variatons – marks this newly
found confidence.

In fact, following Hilbert’s [1] and Lebesgue’s [1] solution of the Dirichlet
problem, a development began which within a few decades brought tremendous
success, highlighted by the 1929 theorem of Ljusternik and Schnirelman [1] on
the existence of three distinct prime closed geodesics on any compact surface
of genus zero, or the 1930/31 solution of Plateau’s problem by Douglas [1], [2]
and Radò [1].

The Ljusternik-Schnirelman result (and a previous result by Birkhoff [1],
proving the existence of one closed geodesic on a surface of genus 0) also
marks the beginning of global analyis. This goes beyond Dirichlet’s princi-
ple as we no longer consider only minimizers (or maximizers) of variational
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integrals, but instead look at all their critical points. The work of Ljusternik
and Schnirelman revealed that much of the complexity of a function space
is invariably reflected in the set of critical points of any variational integral
defined on it, an idea whose importance for the further development of math-
ematics can hardly be overestimated, whose implications even today may only
be conjectured, and whose applications seem to be virtually unlimited. Later,
Ljusternik and Schnirelman [2] laid down the foundations of their method in a
general theory. In honor of their pioneering effort any method which seeks to
draw information concerning the number of critical points of a functional from
topological data today often is referred to as Ljusternik-Schnirelman theory.

Around the time of Ljusternik and Schnirelman’s work, another – equally
important – approach towards a global theory of critical points was pursued
by Marston Morse [2]. Morse’s work also reveals a deep relation between the
topology of a space and the number and types of critical points of any function
defined on it. In particular, this led to the discovery of unstable minimal
surfaces through the work of Morse-Tompkins [1], [2] and Shiffman [1], [2].
Somewhat reshaped and clarified, in the 50’s Morse theory was highly successful
in topology (see Milnor [1] and Smale [1]). After Palais [1], [2] and Smale [2] in
the 60’s succeeded in generalizing Milnor’s constructions to infinite-dimensional
Hilbert manifolds – see also Rothe [1] for some early work in this regard –
Morse theory finally was recognized as a useful (and usable) instrument also
for dealing with partial differential equations.

However, applications of Morse theory seemed somewhat limited in view of
prohibitive regularity and non-degeneracy conditions to be met in a variational
problem, conditions which – by the way – were absent in Morse’s original
work. Today, inspired by the deep work of Conley [1], Morse theory seems to
be turning back to its origins again. In fact, a Morse-Conley theory is emerging
which one day may provide a tool as universal as Ljusternik-Schnirelman theory
and still offer an even better resolution of the relation between the critical set
of a functional and topological properties of its domain. However, in spite
of encouraging results, for instance by Benci [4], Conley-Zehnder [1], Jost-
Struwe [1], Rybakowski [1], [2], Rybakowski-Zehnder [1], Salamon [1], and – in
particular – Floer [1], a general theory of this kind does not yet exist.

In these notes we want to give an overview of the state of the art in some
areas of the calculus of variations. Chapter I deals with the classical direct
methods and some of their recent extensions. In Chapters II and III we discuss
minimax methods, that is, Ljusternik-Schnirelman theory, with an emphasis on
some limiting cases in the last chapter, leaving aside the issue of Morse theory
whose face is currently changing all too rapidly.

Examples and applications are given to semilinear elliptic partial differ-
ential equations and systems, Hamiltonian systems, nonlinear wave equations,
and problems related to harmonic maps of Riemannian manifolds or surfaces
of prescribed mean curvature. Although our selection is of course biased by
the interests of the author, an effort has been made to achieve a good balance
between different areas of current research. Most of the results are known;
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some of the proofs have been reworked and simplified. Attributions are made
to the best of the author’s knowledge. No attempt has been made to give an
exhaustive account of the field or a complete survey of the literature.

General references for related material are Berger-Berger [1], Berger [1],
Chow-Hale [1], Eells [1], Nirenberg [1], Rabinowitz [11], Schwartz [2], Zeidler
[1]; in particular, we recommend the recent books by Ekeland [2] and Mawhin-
Willem [1] on variational methods with a focus on Hamiltonian systems and
the forthcoming works of Chang [7] and Giaquinta-Hildebrandt. Besides, we
mention the classical textbooks by Krasnoselskii [1] (see also Krasnoselskii-
Zabreiko [1]), Ljusternik-Schnirelman [2], Morse [2], and Vainberg [1]. As for
applications to Hamiltonian systems and nonlinear variational problems, the
interested reader may also find additional references on a special topic in these
fields in the short surveys by Ambrosetti [2], Rabinowitz [9], or Zehnder [1].

The material covered in these notes is designed for advanced graduate
or Ph.D. students or anyone who wishes to acquaint himself with variational
methods and possesses a working knowledge of linear functional analysis and
linear partial differential equations. Being familiar with the definitions and
basic properties of Sobolev spaces as provided for instance in the book by
Gilbarg-Trudinger [1] is recommended. However, some of these prerequisites
can also be found in the appendix.

In preparing this manuscript I have received help and encouragement from
a number of friends and colleagues. In particular, I wish to thank Proff. Her-
bert Amann and Hans-Wilhelm Alt for helpful comments concerning the first
two sections of Chapter I. Likewise, I am indebted to Prof. Jürgen Moser for
useful suggestions concerning Section I.4 and to Proff. Helmut Hofer and Ed-
uard Zehnder for advice on Sections I.6, II.5, and II.8, concerning Hamiltonian
systems.

Moreover, I am grateful to Gabi Hitz, Peter Bamert, Jochen Denzler, Mar-
tin Flucher, Frank Josellis, Thomas Kerler, Malte Schünemann, Miguel Sofer,
Jean-Paul Theubet, and Thomas Wurms for going through a set of preliminary
notes for this manuscript with me in a seminar at ETH Zürich during the win-
ter term of 1988/89. The present text certainly has profited a great deal from
their careful study and criticism.

Special thanks I also owe to Kai Jenni for the wonderful typesetting of this
manuscript with the TEX text processing system.

I dedicate this book to my wife Anne.

Zürich, January 1990 Michael Struwe
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Glossary of Notations

V, V ∗ generic Banach space with dual V ∗

‖ · ‖ norm in V

‖ · ‖∗ induced norm in V ∗, often also denoted ‖ · ‖
〈·, ·〉:V × V ∗ → IR dual pairing, occasionally also used to denote scalar

product in IRn

E generic energy functional
DE Fréchet derivative
Dom(E) domain of E
〈v,DE(u)〉 = DE(u)v = DvE(u) directional derivative of E at u in di-

rection v
Lp(Ω; IRn) space of Lebesgue-measurable functions u:Ω → IRn

with finite Lp-norm

‖u‖Lp =
(∫
Ω

|u|p dx)1/p, 1 ≤ p <∞

L∞(Ω; IRn) space of Lebesgue-measurable and essentially
bounded functions u:Ω → IRn with norm

‖u‖L∞ = ess sup
x∈Ω

|u(x)|

Hm,p(Ω; IRn) Sobolev space of functions u ∈ Lp(Ω; IRn) with
|∇ku| ∈ Lp(Ω) for all k ∈ INn

0 , |k| ≤ m, with norm
‖u‖Hm,p =

∑
0≤|k|≤m ‖∇ku‖Lp

Hm,p
0 (Ω; IRn) completion of C∞

0 (Ω; IRn) in the norm ‖ · ‖Hm,p ;
if Ω is bounded an equivalent norm is given by
‖u‖Hm,p0

=
∑

|k|=m ‖∇ku‖Lp
H−m,q(Ω; IRn) dual of Hm,p

0 (Ω; IRn), where 1
p

= 1
q

= 1; q is omit-
ted, if p = q = 2

Dm,p(Ω; IRn) completion of C∞
0 (Ω; IRn) in the norm ‖u‖Dm,p =∑

|k|=m ‖∇ku‖Lp



xx Glossary of Notations

Cm,α(Ω; IRn) space of m times continuously differentiable func-
tions u:Ω → IRn whose mth order derivatives are
Hölder continuous with exponent 0 ≤ α ≤ 1

C∞
0 (Ω; IRn) space of smooth functions u:Ω → IRn with compact

support in Ω

supp(u) = {x ∈ Ω ; u(x) 
= 0} support of a function u:Ω → IRn

Ω′ ⊂⊂ Ω the closure of Ω′ is compact and contained in Ω

restriction of a measure
Ln Lebesgue measure on IRn

Bρ(u;V ) = {v ∈ V ; ‖u− v‖ < ρ} open ball of radius ρ around u ∈
V ; in particular, if V = IRn, then Bρ(x0) =
Bρ(x0; IRn), Bρ = Bρ(0)

Re real part
Im imaginary part
c, C generic constants
Cross-references (N.x.y) refers to formula (x, y) in Chapter N

(x.y) within Chapter N refers to formula (N.x.y)



Chapter I

The Direct Methods
in the Calculus of Variations

Many problems in analysis can be cast into the form of functional equations
F (u) = 0, the solution u being sought among a class of admissible functions
belonging to some Banach space V .

Typically, these equations are nonlinear; for instance, if the class of ad-
missible functions is restricted by some (nonlinear) constraint.

A particular class of functional equations is the class of Euler-Lagrange
equations

DE(u) = 0

for a functional E on V , which is Fréchet-differentiable with derivative DE.
We say such equations are of variational form.

For equations of variational form an extensive theory has been developed,
and variational principles play an important role in mathematical physics and
differential geometry, optimal control and numerical anlysis.

We briefly recall the basic definitions that will be needed in this and the follow-
ing chapters, see Appendix C for details: Suppose E is a Fréchet-differentiable
functional on a Banach space V with normed dual V ∗ and duality pairing
〈·, ·〉 : V × V ∗ → IR, and let DE : V → V ∗ denote the Fréchet-derivative of
E. Then the directional (Gateaux-) derivative of E at u in the direction of v
is given by

d

dε
E(u+ εv)

ε = 0
= 〈v,DE(u)〉 = DE(u) v.

For such E, we call a point u ∈ V critical if DE(u) = 0; otherwise, u is called
regular. A number β ∈ IR is a critical value of E if there exists a critical point u
of E with E(u) = β. Otherwise, β is called regular. Of particular interest (also
in the non-differentiable case) will be relative minima of E, possibly subject
to constraints. Recall that for a set M ⊂ V a point u ∈ M is an absolute
minimizer for E on M if for all v ∈ M there holds E(v) ≥ E(u). A point
u ∈ M is a relative minimizer for E on M if for some neighborhood U of u in
V it is absolutely E-minimizing in M ∩U . Moreover, in the differentiable case,
we shall also be interested in the existence of saddle points, that is, critical
points u of E such that any neighborhood U of u in V contains points v, w
such that E(v) < E(u) < E(w). In physical systems, saddle points appear as
unstable equilibria or transient excited states.
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In this chapter we review some basic methods for proving the existence
of relative minimizers. Somewhat imprecisely we summarily refer to these
methods as the direct methods in the calculus of variations. However, besides
the classical lower semi-continuity and compactness method we also include the
compensated compactness method of Murat and Tartar, and the concentration-
compactness principle of P.L. Lions. Moreover, we recall Ekeland’s variational
principle and the duality method of Clarke and Ekeland.

Applications will be given to problems concerning minimal hypersurfaces,
semilinear and quasi-linear elliptic boundary value problems, finite elasticity,
Hamiltonian systems, and semilinear wave equations.

From the beginning it will be apparent that in order to achieve a satisfac-
tory existence theory the notion of solution will have to be suitably relaxed.
Hence, in general, the above methods will at first only yield generalized or
“weak” solutions of our problems. A second step often will be necessary to
show that these solutions are regular enough to be admitted as classical solu-
tions. The regularity theory in many cases is very subtle and involves a delicate
machinery. It would go beyond the scope of this book to cover this topic com-
pletely. However, for the problems that we will mostly be interested in, the
regularity question can be dealt with rather easily. The reader will find this
material in Appendix B. References to more advanced texts on the regularity
issue will be given where appropriate.

1. Lower Semi-continuity

In this section we give sufficient conditions for a functional to be bounded from
below and to attain its infimum.

The discussion can be made largely independent of any differentiability as-
sumptions on E or structure assumptions on the underlying space of admissible
functions M . In fact, we have the following classical result.

1.1 Theorem. Let M be a topological Hausdorff space, and suppose E : M →
IR ∪+∞ satisfies the condition of bounded compactness:

For any α ∈ IR the set
Kα = {u ∈M ; E(u) ≤ α}(1.1)

is compact (Heine-Borel property).

Then E is uniformly bounded from below on M and attains its infimum. The
conclusion remains valid if instead of (1.1) we suppose that any sub-level set
Kα is sequentially compact.
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Remark. Necessity of condition (1.1) is illustrated by simple examples: The
function E: [−1, 1] → IR given by E(x) = x2 if x 
= 0, E(x) = 1 if x = 0, or
the exponential function E(x) = exp(x) on IR are bounded from below but do
not admit a minimizer. Note that the space M in the first example is compact
while in the second example the function E is smooth – even analytic.

Proof of Theorem 1.1. Suppose (1.1) holds. We may assume E 
≡ +∞. Let

α0 = inf
M
E ≥ −∞,

and let (αm) be the strictly decreasing sequence

αm ↘ α0 (m→∞) .

Let Km = Kαm . By assumption, each Km is compact and non-empty. More-
over, Km ⊃ Km+1 for all m. By compactness of Km there exists a point
u ∈ ⋂m∈INKm, satisfying

E(u) ≤ αm, for all m.

Passing to the limit m→∞ we obtain that

E(u) ≤ α0 = inf
M
E,

and the claim follows.
If instead of (1.1) each Kα is sequentially compact, we choose a minimizing

sequence (um) in M such that E(um) → α0. Then for any α > α0 the sequence
(um) will eventually lie entirely within Kα. By sequential compactness of Kα

therefore (um) will accumulate at a point u ∈ ⋂α>α0
Kα which is the desired

minimizer.

Note that if E : M → IR satisfies (1.1), then for any α ∈ IR the set

{u ∈M ; E(u) > α} = M \Kα

is open, that is, E is lower semi-continuous. (Respectively, if each Kα is sequen-
tially compact, then E will be sequentially lower semi-continuous.) Conversely,
if E is (sequentially) lower semi-continuous and for some α ∈ IR the set Kα is
(sequentially) compact, then Kα will be (sequentially) compact for all α ≤ α
and again the conclusion of Theorem 1.1 will be valid.

Note that the lower semi-continuity condition can be more easily fulfilled
the finer the topology on M . In contrast, the condition of compactness of the
sub-level sets Kα , α ∈ IR, calls for a coarse topology and both conditions are
competing. In practice, there is often a natural weak Sobolev space topology
where both conditions can be simultaneously satisfied. However, there are
many interesting cases where condition (1.1) cannot hold in any reasonable
topology (even though relative minimizers may exist). Later in this chapter we
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shall see some examples and some more delicate ways of handling the possible
loss of compactness. See Section 4; see also Chapter III.

In applications, the conditions of the following special case of Theorem 1.1
can often be checked more easily.

1.2 Theorem. Suppose V is a reflexive Banach space with norm ‖ · ‖, and let
M ⊂ V be a weakly closed subset of V . Suppose E : M → IR ∪+∞ is coercive
and (sequentially) weakly lower semi-continuous on M with respect to V , that
is, suppose the following conditions are fullfilled:
(1◦) E(u)→∞ as ‖u‖ → ∞, u ∈M .
(2◦) For any u ∈ M , any sequence (um) in M such that um ⇁ u weakly in V
there holds:

E(u) ≤ lim inf
m→∞ E(um) .

Then E is bounded from below on M and attains its infimum in M .

The concept of minimizing sequences offers a direct and (apparently) construc-
tive proof.

Proof. Let α0 = infM E and let (um) be a minimizing sequence in M , that is,
satisfying E(um) → α0. By coerciveness, (um) is bounded in V . Since V is
reflexive, by the Eberlein-Šmulian theorem (see Dunford-Schwartz [1; p. 430])
we may assume that um ⇁ u weakly for some u ∈ V . But M is weakly closed,
therefore u ∈M , and by weak lower semi-continuity

E(u) ≤ lim inf
m→∞ E(um) = α0 .

Examples. An important example of a sequentially weakly lower semi-
continous functional is the norm in a Banach space V . Closed and convex
subsets of Banach spaces are important examples of weakly closed sets. If V is
the dual of a separable normed vector space, Theorem 1.2 and its proof remain
valid if we replace weak by weak∗-convergence.

We present some simple applications.

Degenerate Elliptic Equations

1.3 Theorem. Let Ω be a bounded domain in IRn, p ∈ [2,∞[ with conjugate
exponent q satisfying 1

p + 1
q = 1, and let f ∈ H−1,q(Ω), the dual of H1,p

0 (Ω),
be given. Then there exists a weak solution u ∈ H1,p

0 (Ω) of the boundary value
problem

−∇ · (|∇u|p−2∇u) = f in Ω(1.2)
u = 0 on ∂Ω(1.3)

in the sense that u satisfies the equation
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(1.4)
∫
Ω

(∇u|∇u|p−2∇ϕ− fϕ )dx = 0 , ∀ϕ ∈ C∞
0 (Ω) .

Proof. Note that the left part of (1.4) is the directional derivative of the C1-
functional

E(u) =
1
p

∫
Ω

|∇u|p dx −
∫
Ω

fu dx

on the Banach space V = H1,p
0 (Ω) in direction ϕ; that is, problem (1.2), (1.3)

is of variational form.
Note that H1,p

0 (Ω) is reflexive. Moreover, E is coercive. In fact, we have

E(u) ≥ 1
p
‖u‖p

H1,p
0

− ‖f‖H−1,q ‖u‖H1,p
0
≥ 1
p

(
‖u‖p

H1,p
0
− c‖u‖H1,p

0

)

≥ c−1‖u‖p
H1,p

0
− C.

Finally, E is (sequentially) weakly lower semi-continuous: It suffices to show
that for um ⇁ u weakly in H1,p

0 (Ω) we have

∫
Ω

f um dx →
∫
Ω

f u dx .

Since f ∈ H−1,q(Ω) , however, this follows from the very definition of weak
convergence. Hence Theorem 1.2 is applicable and there exists a minimizer
u ∈ H1,p

0 (Ω) of E, solving (1.4).

Note that for p ≥ 2 the p-Laplacian is strongly monotone in the sense that

∫
Ω

(|∇u|p−2∇u− |∇v|p−2∇v) · (∇u−∇v) dx ≥ c‖u− v‖p
H1,p

0
.

In particular, the solution u to (1.4) is unique.
If f is more regular, say f ∈ Cm,α(Ω), we would expect the solution u of

(1.4) to be more regular as well. This is true if p = 2, see Appendix B, but
in the degenerate case p > 2, where the uniform ellipticity of the p-Laplace
operator is lost at zeros of |∇u|, the best that one can hope for is u ∈ C1,α(Ω);
see Uhlenbeck [1], Tolksdorf [2; p. 128], Di Benedetto [1].

In Theorem 1.3 we have applied Theorem 1.2 to a functional on a reflexive
space. An example in a non-reflexive setting is given next.
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Minimal Partitioning Hypersurfaces

For a domain Ω ⊂ IRn let BV (Ω) be the space of functions u ∈ L1(Ω) such
that

∫
Ω

|Du| = sup
{∫

Ω

n∑
i=1

uDigi dx ;

g = (g1, . . . , gn) ∈ C1
0 (Ω; IRn), |g| ≤ 1

}
<∞ ,

endowed with the norm

‖u‖BV = ‖u‖L1 +
∫
Ω

|Du| .

BV (Ω) is a Banach space, embedded in L1(Ω), and – provided Ω is bounded
and sufficiently smooth – by Rellich’s theorem the injection BV (Ω) ↪→ L1(Ω)
is compact; see for instance Giusti [1; Theorem 1.19, p. 17]. Moreover, the
function u �→ ∫

Ω
|Du| is lower semi-continuous with respect to L1-convergence.

Let χG be the characteristic function of a set G ⊂ IRn; that is, χG(x) = 1
if x ∈ G, χG(x) = 0 else. Also let Ln denote the n-dimensional Lebesgue
measure.

1.4 Theorem. Let Ω be a smooth, bounded domain in IRn. Then there exists
a subset G ⊂ Ω such that

(1◦) Ln(G) = Ln(Ω \G) =
1
2
Ln(Ω)

and such that its perimeter with respect to Ω,

(2◦) P (G,Ω) =
∫
Ω

|DχG| ,

is minimal among all sets satisfying (1◦).

Proof. Let M = {χG ; G ⊂ Ω is measurable and satisfies (1◦)}, endowed with
the L1-topology, and let E : M → IR ∪+∞ be given by

E(u) =
∫
Ω

|Du| .

Since ‖χG‖L1 ≤ Ln(Ω), the functional E is coercive on M with respect to the
norm in BV (Ω). Since bounded sets in BV (Ω) are relatively compact in L1(Ω)
and since M is closed in L1(Ω), by weak lower semi-continuity of E in L1(Ω)
the sub-level sets of E are compact. The conclusion now follows from Theorem
1.1.

The support of the distribution DχG, where G has minimal perimeter (2◦)
with respect to Ω, can be interpreted as a minimal bisecting hypersurface,
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dividing Ω into two regions of equal volume. The regularity of the dividing
hypersurface is intimately connected with the existence of minimal cones in
IRn. See Giusti [1] for further material on functions of bounded variation, sets
of bounded perimeter, the area integrand, and applications.

A related setting for the study of minimal hypersurfaces and related objects
is offered by geometric measure theory. Also in this field variational principles
play an important role; see for instance Almgren [1], Morgan [1], or Simon [1]
for introductory material and further references.

Our next example is concerned with a parametric approach.

Minimal Hypersurfaces in Riemannian Manifolds

Let Ω be a bounded domain in IRn, and let S be a compact subset in IRN .
Also let u0 ∈ H1,2(Ω; IRN ) with u0(Ω) ⊂ S be given. Define

H1,2(Ω;S) =
{
u ∈ H1,2(Ω; IRN ) ; u(Ω) ⊂ S almost everywhere

}

and let
M =

{
u ∈ H1,2(Ω;S) ; u− u0 ∈ H1,2

0 (Ω; IRN )
}
.

Then, by Rellich’s theorem, M is closed in the weak topology of V =
H1,2(Ω; IRN ). For u = (u1, . . . , uN ) ∈ H1,2(Ω;S) let

E(u) =
∫
Ω

gij(u)∇ui∇uj dx ,

where g = (gij)1≤i,j≤N is a given positively definite symmetric matrix with
coefficients gij(u) depending continuously on u ∈ S, and where, by convention,
we tacitly sum over repeated indices 1 ≤ i, j ≤ N . Note that since S is
compact g is uniformly positive definite on S, and there exists λ > 0 such that
E(u) ≥ λ ‖∇u‖2L2 for u ∈ H1,2(Ω;S). In addition, since S and Ω are bounded,
we have that ‖u‖L2 ≤ c uniformly, for u ∈ H1,2(Ω;S). Hence E is coercive on
H1,2(Ω;S) with respect to the norm in H1,2(Ω; IRN ).

Finally, E is lower semi-continuous in H1,2(Ω;S) with respect to weak
convergence in H1,2(Ω; IRN ). Indeed, if um ⇁ u weakly in H1,2(Ω; IRN ), by
Rellich’s theorem um → u strongly in L2 and hence a subsequence (um) con-
verges almost everywhere. By Egorov’s theorem, given δ > 0 there is an excep-
tional set Ωδ of measure Ln(Ωδ) < δ such that um → u uniformly on Ω \ Ωδ.
We may assume that Ωδ ⊂ Ωδ′ for δ ≤ δ′. By weak lower semi-continuity of
the semi-norm on H1,2(Ω; IRN ), defined by

|v|2 =
∫
Ω\Ωδ

gij(u)∇vi∇vj dx,

then
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∫
Ω\Ωδ

gij(u)∇ui∇uj dx

≤ lim inf
m→∞

∫
Ω\Ωδ

gij(u)∇uim∇ujm dx

= lim inf
m→∞

∫
Ω\Ωδ

gij(um)∇uim∇ujm dx

≤ lim inf
m→∞ E(um) .

Passing to the limit δ → 0, from Beppo Levi’s theorem we obtain

E(u) = lim
δ→0

∫
Ω\Ωδ

gij(u)∇ui∇uj dx

≤ lim inf
m→∞ E(um) .

Applying Theorem 1.2 to E on M we obtain

1.5 Theorem. For any boundary data u0 ∈ H1,2(Ω;S) there exists an E-
minimal extension u ∈M .

In differential geometry Theorem 1.5 arises in the study of harmonic maps
u : Ω → S from a domain Ω into an N -dimensional manifold S with metric
g for prescribed boundary data u = u0 on ∂Ω. Like in the previous example,
the regularity question is related to the existence of special harmonic maps; in
this case, singularities of harmonic maps from Ω into S are related to harmonic
mappings of spheres into S. For further references see Eells-Lemaire [1], [2],
Hildebrandt [3], Jost [2]. For questions concerning regularity see Giaquinta-
Giusti [1], Schoen-Uhlenbeck [1], [2].

A General Lower Semi-continuity Result

We now conclude this short list of introductory examples and return to the
development of the variational theory. Note that the property of E being lower
semi-continuous with respect to some weak kind of convergence is at the core
of the above existence results. In Theorem 1.6 below we establish a lower semi-
continuity result for a very broad class of variational integrals, including and
going beyond those encountered in Theorem 1.5, as Theorem 1.6 would also
apply in the case of unbounded targets S and possibly degenerate or singular
metrics g.

We consider variational integrals

(1.5) E(u) =
∫
Ω

F (x, u,∇u) dx

involving (vector-valued) functions u : Ω ⊂ IRn → IRN .
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1.6 Theorem. Let Ω be a domain in IRn, and assume that F : Ω × IRN ×
IRnN → IR is a Caratheodory function satisfying the conditions
(1◦) F (x, u, p) ≥ φ(x) for almost every x, u, p, where φ ∈ L1(Ω).
(2◦) F (x, u, ·) is convex in p for almost every x, u.
Then, if um, u ∈ H1,1

loc (Ω) and um → u in L1(Ω′), ∇um ⇁ ∇u weakly in
L1(Ω′) for all bounded Ω′ ⊂⊂ Ω, it follows that

E(u) ≤ lim inf
m→∞ E(um) ,

where E is given by (1.5).

Notes. In the scalar case N = 1, weak lower semi-continuity results like Theo-
rem 1.6 were first stated by Tonelli [1] and Morrey [1]; these results were then
extended and simplified by Serrin [1], [2] who showed that for non-negative,
smooth functions F (x, u, p):Ω × IR × IRn → IR, which are convex in p , the
functional E given by (1.5) is lower semi-continuous with respect to conver-
gence in L1

loc(Ω). A corresponding result in the vector-valued case N > 1
subsequently was derived by Morrey [4; Theorem 4.1.1]; however, Eisen [1] not
only pointed out a gap in Morrey’s proof but also gave an example showing
that for N > 1 in general, Theorem 1.6 ceases to be true without the assump-
tion that the L1-norms of ∇um are uniformly locally bounded. Theorem 1.6 is
due to Berkowitz [1] and Eisen [2]. Related results can be found for instance
in Morrey [4; Theorem 1.8.2], or Giaquinta [1]. Our proof is modeled on Eisen
[2].

Proof. We may assume that
(
E(um)

)
is finite and convergent. Moreover,

replacing F by F − φ we may assume that F ≥ 0. Let Ω′ ⊂⊂ Ω be given. By
weak local L1-convergence ∇um ⇁ ∇u, for any m0 ∈ IN there exists a sequence
(P l)l≥m0 of convex linear combinations

P l =
l∑

m=m0

αlm∇um , 0 ≤ αlm ≤ 1 ,
l∑

m=m0

αlm = 1 , l ≥ m0

such that P l → ∇u strongly in L1(Ω′) and pointwise almost everywhere as
l → ∞; see for instance Rudin [1; Theorem 3.13]. By convexity, for any m0,
any l ≥ m0, and almost every x ∈ Ω′ :

F
(
x, u(x), P l(x)

)
= F

(
x, u(x),

l∑
m=m0

αlm∇um(x)

)

≤
l∑

m=m0

αlmF (x, u(x),∇um(x)) .

Integrating over Ω′ and passing to the limit l → ∞, from Fatou’s lemma we
obtain:
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∫
Ω′
F (x, u(x),∇u(x)) dx ≤ lim inf

l→∞

∫
Ω′
F
(
x, u(x), P l(x)

)
dx

≤ sup
m≥m0

∫
Ω′
F
(
x, u(x),∇um(x)

)
dx .

Since m0 was arbitrary, this implies that

∫
Ω′
F
(
x, u(x),∇u(x)

)
dx ≤ lim sup

m→∞

∫
Ω′
F (x, u(x),∇um(x)) dx ,

for any bounded Ω′ ⊂⊂ Ω.

Now we need the following result (Eisen [2; p. 75]).

1.7 Lemma. Under the hypotheses of Theorem 1.6 on F, um, and u there exists
a subsequence (um) such that:

F (x, um(x),∇um(x))− F (x, u(x),∇um(x))→ 0

in measure, locally in Ω.

Proof of Theorem 1.6 (completed). By Lemma 1.7 for any Ω′ ⊂⊂ Ω, any ε > 0,
and any m0 ∈ IN there exists m ≥ m0 and a set Ω′

ε,m ⊂ Ω′ with Ln (Ω′
ε,m

)
< ε

such that

(1.6) |F (x, um(x),∇um(x)
)− F

(
x, u(x),∇um(x)

)| < ε

for all x ∈ Ω′ \Ω′
ε,m. Replacing ε by εm = 2−m and passing to a subsequence, if

necessary, we may assume that for each m there is a set Ω′
εm,m ⊂ Ω′ of measure

< εm such that (1.6) is satisfied (with εm) for all x ∈ Ω′ \ Ω′
εm,m

. Hence, for
any given ε > 0, if we choose m0 = m0(ε) > | log2 ε|, Ω′

ε =
⋃
m≥m0

Ω′
εm,m,

this set has measure Ln(Ω′
ε) < ε and inequality (1.6) holds uniformly for all

x ∈ Ω′ \Ω′
ε, and all m ≥ m0(ε). Moreover, for ε < δ by construction Ω′

ε ⊂ Ω′
δ.

Cover Ω by disjoint bounded sets Ω(k) ⊂⊂ Ω, k ∈ IN. Let ε > 0 be given
and choose a sequence ε(k) > 0, such that

∑
k∈IN Ln

(
Ω(k)

)
ε(k) ≤ ε. Passing

to a subsequence, if necessary, for each Ω(k) and ε(k) we may choose m(k)
0 and

Ω
(k)
ε ⊂ Ω(k) such that Ln

(
Ω

(k)
ε

)
< ε(k) and

|F (x, um(x),∇um(x))− F (x, u(x),∇um(x)) | < ε(k)

uniformly for x ∈ Ω(k)\Ω(k)
ε , m ≥ m

(k)
0 . Moreover, we may assume that Ω(k)

ε ⊂
Ω

(k)
δ , if ε < δ, for all k. Then for any K ∈ IN, letting ΩK = ∪Kk=1Ω

(k), ΩK
ε =

∪Kk=1Ω
(k)
ε , we have
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∫
ΩK\ΩKε

F (x, u,∇u) dx

≤ lim sup
m→∞

∫
ΩK\ΩKε

F (x, u,∇um) dx

≤ lim sup
m→∞

∫
ΩK\ΩKε

F (x, um,∇um) dx+ ε

≤ lim sup
m→∞

E(um) + ε = lim inf
m→∞ E(um) + ε .

Letting ε→ 0 and then K →∞, the claim follows from Beppo Levi’s theorem,
since F ≥ 0 and since ΩK \ΩK

ε increases when ε ↓ 0, followed by K ↑ ∞.

Proof of Lemma 1.7. We basically follow Eisen [2]. Suppose by contradiction
that there exist Ω′ ⊂⊂ Ω and ε > 0 such that, letting

Ωm = {x ∈ Ω′ ; |F (x, um,∇um)− F (x, u,∇um) | ≥ ε} ,
there holds

lim inf
m→∞ Ln(Ωm) ≥ 2ε .

The sequence (∇um), being weakly convergent, is uniformly bounded in L1(Ω′).
In particular,

Ln{x ∈ Ω′ ; |∇um(x)| ≥ l} ≤ l−1

∫
Ω′
|∇um| dx ≤ C

l
≤ ε ,

if l ≥ l0(ε) is large enough. Setting Ω̃m := {x ∈ Ωm ; |∇um(x)| ≤ l0(ε)}
therefore there holds

lim inf
m→∞ Ln

(
Ω̃m

)
≥ ε.

Hence also for ΩM =
⋃

m≥M
Ω̃m we have

Ln(ΩM ) ≥ ε ,

uniformly in M ∈ IN. Moreover, Ω′ ⊃ ΩM ⊃ ΩM+1 for all M and therefore
Ω∞ :=

⋂
M∈IN

ΩM ⊂ Ω′ has Ln(Ω∞) ≥ ε. Finally, neglecting a set of measure

zero and passing to a subsequence, if necessary, we may assume that F (x, z, p)
is continuous in (z, p), that um(x), u(x), ∇um(x) are unambiguously defined
and finite while um(x) → u(x) as m→∞ at every point x ∈ Ω∞.

Note that every point x ∈ Ω∞ by construction belongs to infinitely many of
the sets Ω̃m. Choose such a point x. Relabeling, we may assume x ∈ ⋂m∈IN Ω̃m.
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By uniform boundedness |∇um(x)| ≤ C there exists a subsequence m→∞ and
a vector p ∈ IRnN such that ∇um(x) → p (m→∞). But then by continuity

F
(
x, um(x),∇um(x)

)→ F
(
x, u(x), p

)

while also
F
(
x, u(x),∇um(x)

)→ F
(
x, u(x), p

)
which contradicts the characterization of Ωm given above.

1.8 Remarks. The following observations may be useful in applications.
(1◦) Theorem 1.6 also applies to functionals involving higher (mth-) order
derivatives of a function u by letting U = (u,∇u, . . . ,∇m−1u) denote the
(m − 1)-jet of u. Note that convexity is only required in the highest-order
derivatives P = ∇mu.
(2◦) If (um) is bounded in H1,1(Ω′) for any Ω′ ⊂⊂ Ω, by Rellich’s theorem
and repeated selection of subsequences there exists a subsequence (um) which
converges strongly in L1(Ω′) for any Ω′ ⊂⊂ Ω.

Local boundedness in H1,1 of a minimizing sequence (um) for E can be
inferred from a coerciveness condition like

(1.7) F (x, z, p) ≥ |p|μ − φ(x), μ ≥ 1, φ ∈ L1 .

The delicate part in the hypotheses concerning (um) is the assumption that
(∇um) converges weakly in L1

loc. In case μ > 1 in (1.7) this is clear, but in case
μ = 1 the local L1-limit of a minimizing sequence may lie in BVloc instead of
H1,1
loc . See Theorem 1.4, for example; see also Section 3.

(3◦) By convexity in p, continuity of F in (u, p) for almost every x is equivalent
to the following condition, which is easier to check in applications:

F (x, ·, ·) is continuous, separately in u ∈ IRN and p ∈ IRnN , for almost
every x ∈ Ω.

Indeed, for any fixed x, u, p and all e ∈ IRnN , |e| = 1, α ∈ [0, 1], letting
q = p+αe, p+ = p+e, p− = p−e and writing F (x, u, p) = F (u, p) for brevity,
by convexity we have

F (u, q) = F (u, αp+ + (1− α)p) ≤ αF (u, p+) + (1− α)F (u, p) ,

F (u, p) = F (u,
1

1 + α
q +

α

1 + α
p−) ≤ 1

1 + α
F (u, q) +

α

1 + α
F (u, p−) .

Hence

α (F (u, p)− F (u, p+)) ≤ F (u, p)− F (u, q) ≤ α (F (u, p−)− F (u, p))

and it follows that

sup
|q−p|≤1

|F (u, q)− F (u, p)|
|q − p| ≤ sup

|q−p|=1

|F (u, q)− F (u, p)| .
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Since the sphere of radius 1 around p lies in the convex hull of finitely many
vectors q0, q1, . . . , qnN , by continuity of F in u and convexity in p the right-
hand side of this inequality remains uniformly bounded in a neighborhood of
(u, p). Hence F (·, ·) is locally Lipschitz continous in p, locally uniformly in
(u, p) ∈ IRN × IRnN . Therefore, if um → u , pm → p we have

|F (um, pm)− F (u, p) | ≤ |F (um, pm)− F (um, p) |+ |F (um, p)− F (u, p) |
≤ c|pm − p|+ o(1)→ 0 as m→∞,

where o(1) → 0 as m→∞, as desired.
(4◦) In the scalar case (N = 1), if F is C2 for example, the existence of a
minimizer u for E implies that the Legendre condition

n∑
α,β=1

Fpαpβ (x, u, p) ξαξβ ≥ 0, for all ξ ∈ IRn

holds at all points (x, u = u(x), p = ∇u(x)), see for instance Giaquinta [1; p. 11
f.]. This condition in turn implies the convexity of F in p.

The situation is quite different in the vector-valued case N > 1. In this
case, in general only the Legendre-Hadamard condition

N∑
i,j=1

∑
α,β=1

Fpiαp
j
β
(x, u, p)ξαξβηiηj ≥ 0 , for all ξ ∈ IRn, η ∈ IRN

will hold at a minimizer, which is much weaker then convexity (Giaquinta [1;
p. 12]).

In fact, in Section 3 below we shall see how, under certain additional
structure conditions on F , the convexity assumption in Theorem 1.6 can be
weakened in the vector-valued case.

2. Constraints

Applying the direct methods often involves a delicate interplay between the
functional E, the space of admissible functions M , and the topology on M . In
this section we will see how, by means of imposing constraints on admissible
functions and/or by a suitable modification of the variational problem, the
direct methods can be successfully employed also in situations where their use
seems highly unlikely at first.

Note that we will not consider constraints that are dictated by the prob-
lems themselves, such as physical restrictions on the response of a mechanical
system. Constraints of this type in general lead to variational inequalities, and
we refer to Kinderlehrer-Stampacchia [1] for a comprehensive introduction to
this field. Instead, we will show how certain variational problems can be solved


