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Preface

Our time is characterized by an explosion of information and by an acceler-
ation of knowledge. A book cannot compete with the huge amount of data
available on the Web. However, to assimilate all this information, it is nec-
essary to structure our knowledge in a useful conceptual framework. The
purpose of the present work is to provide such a structure for students and
researchers interested by the current state of the art of non-equilibrium ther-
modynamics. The main features of the book are a concise and critical presen-
tation of the basic ideas, illustrated by a series of examples, selected not only
for their pedagogical value but also for the perspectives offered by recent
technological advances. This book is aimed at students and researchers in
physics, chemistry, engineering, material sciences, and biology.

We have been guided by two apparently antagonistic objectives: general-
ity and simplicity. To make the book accessible to a large audience of non-
specialists, we have decided about a simplified but rigorous presentation.
Emphasis is put on the underlying physical background without sacrificing
mathematical rigour, the several formalisms being illustrated by a list of ex-
amples and problems. All over this work, we have been guided by the formula:
“Get the more from the less”, with the purpose to make a maximum of people
aware of a maximum of knowledge from a minimum of basic tools.

Besides being an introductory text, our objective is to present an overview,
as general as possible, of the more recent developments in non-equilibrium
thermodynamics, especially beyond the local equilibrium description. This
is partially a terra incognita, an unknown land, because basic concepts as
temperature, entropy, and the validity of the second law become problematic
beyond the local equilibrium hypothesis. The answers provided up to now
must be considered as partial and provisional, but are nevertheless worth to
be examined.

Chapters 1 and 2 are introductory chapters in which the main concepts
underlying equilibrium thermodynamics and classical non-equilibrium ther-
modynamics are stated. The basic notions are discussed with special emphasis
on these needed later in this book.

V
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Several applications of classical non-equilibrium thermodynamics are pre-
sented in Chaps. 3 and 4. These illustrations have not been chosen arbitrarily,
but keeping in mind the perspectives opened by recent technological advance-
ments. For instance, advances in material sciences have led to promising
possibilities for thermoelectric devices; localized intense laser heating used to
make easier the separation of molecules has contributed to a revival of inter-
est in thermodiffusion; chemical reactions are of special interest in biology,
in relation with their coupling with active transport across membranes and
recent developments of molecular motors.

The purpose of Chaps. 5 and 6 is to discuss two particular aspects of
classical non-equilibrium thermodynamics which have been the subject of
active research during the last decades. Chapter 5 is devoted to finite-time
thermodynamics whose main concern is the competition between maximum
efficiency and maximum power and its impact on economy and ecology. This
classical subject is treated here in an updated form, taking into account the
last technological possibilities and challenges, as well as some social con-
cerns. Chapter 6 deals with instabilities and pattern formation; organized
structures occur in closed and open systems as a consequence of fluctuations
growing far from equilibrium under the action of external forces. Patterns are
observed in a multitude of our daily life experiences, like in hydrodynamics,
biology, chemistry, electricity, material sciences, or geology. After introducing
the mathematical theory of stability, several examples of ordered structures
are analysed with a special attention to the celebrated Bénard cells.

Chapters 1–6 may provide a self-consistent basis for a graduate introduc-
tory course in non-equilibrium thermodynamics.

In the remainder of the book, we go beyond the framework of the classical
description and spend some time to address and compare the most recent
developments in non-equilibrium thermodynamics. Chapters 7–11 will be of
interest for students and researchers, who feel attracted by new scientific
projects wherein they may be involved. This second part of the book may
provide the basis for an advanced graduate or even postgraduate course on
the several trends in contemporary thermodynamics.

The coexistence of several schools in non-equilibrium thermodynamics is
a reality; it is not a surprise in view of the complexity of most macroscopic
systems and the fact that some basic notions as temperature and entropy are
not univocally defined outside equilibrium. To appreciate this form of multi-
culturalism in a positive sense, it is obviously necessary to know what are the
foundations of these theories and to which extent they are related. A superfi-
cial inspection reveals that some viewpoints are overlapping but none of them
is rigorously equivalent to the other. A detailed and complete understanding
of the relationship among the diverse schools turns out to be not an easy
task. The first difficulty stems from the fact that each approach is associated
with a certain insight, we may even say an intuition or feeling that is some-
times rather difficult to apprehend. Also some unavoidable differences in the
terminology and the notation do not facilitate the communication. Another
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factor that contributes to the difficulty to reaching a mutual comprehension
is that the schools are not frozen in time: they evolve as a consequence of
internal dynamics and by contact with others. Our goal is to contribute to
a better understanding among the different schools by discussing their main
concepts, results, advantages, and limitations. Comparison of different view-
points may be helpful for a deeper comprehension and a possible synthesis of
the many faces of the theory. Such a comparative study is not found in other
textbooks.

One problem was the selection of the main representative ones among the
wealth of thermodynamic formalisms. Here we have focused our attention
on five of them: extended thermodynamics (Chap. 7), theories with internal
variables (Chap. 8), rational thermodynamics (Chap. 9), Hamiltonian formu-
lation (Chap. 10), and mesoscopic approaches (Chap.11). In each of them, we
have tried to save the particular spirit of each theory.

It is clear that our choice is subjective: we have nevertheless been guided
not only by the pedagogical aspect and/or the impact and universality of the
different formalisms, but also by the fact that we had to restrict ourselves.
Moreover, it is our belief that a good comprehension of these different ver-
sions allows for a better and more understandable comprehension of theories
whose opportunity was not offered to be discussed here. The common points
shared by the theories presented in Chaps. 7–11 are not only to get rid of the
local equilibrium hypothesis, which is the pillar of the classical theory, but
also to propose new phenomenological approaches involving non-linearities,
memory and non-local effects, with the purpose to account for the techno-
logical requirements of faster processes and more miniaturized devices.

It could be surprising that the book is completely devoted to macroscopic
and mesoscopic aspects and that microscopic theories have been widely omit-
ted. The reasons are that many excellent treatises have been written on mi-
croscopic theories and that we decided to keep the volume of the book to a
reasonable ratio. Although statistical mechanics appears to be more fashion-
able than thermodynamics in the eyes of some people and the developments
of microscopic methods are challenging, we hope to convince the reader that
macroscopic approaches, like thermodynamics, deserve a careful attention
and are the seeds of the progress of knowledge. Notwithstanding, we remain
convinced that, within the perspectives of improvement and unification, it is
highly desirable to include as many microscopic results as possible into the
macroscopic framework.

Chapters 7–11 are autonomous and self-consistent, they have been struc-
tured in such a way that they can be read independently of each other and
in arbitrary order. However, it is highly recommended to browse through all
the chapters to better apprehend the essence and the complementarity of the
diverse theories.

At the end of each chapter is given a list of problems. The aim is not
only to allow the reader to check his understanding, but also to stimulate
his interest to solve concrete situations. Some of these problems have been
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inspired by recent papers, which are mentioned, and which may be consulted
for further investigation. More technical and advanced parts are confined in
boxes and can be omitted during a first reading.

We acknowledge many colleagues, and in particular M. Grmela (Montreal
University), P.C Dauby and Th. Desaive (Liège University), for the discus-
sions on these and related topics for more than 30 years. We also appreciate
our close collaborators for their help and stimulus in research and teach-
ing. Drs. Vicenç Méndez and Vicente Ortega-Cejas deserve special gratitude
for their help in the technical preparation of this book. We also acknowl-
edge the finantial support of the Dirección General de Investigación of the
Spanish Ministry of Education under grants BFM2003-06003 and FIS2006-
12296-C02-01, and of the Direcció General de Recerca of the Generalitat of
Catalonia, under grants 2001 SGR 00186 and 2005 SGR 00087.

Liège-Bellaterra, March 2007
G. Lebon,

D. Jou,
J. Casas-Vázquez
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Chapter 1

Equilibrium Thermodynamics: A Review

Equilibrium States, Reversible Processes,
Energy Conversion

Equilibrium or classical thermodynamics deals essentially with the study of
macroscopic properties of matter at equilibrium. A comprehensive definition
of equilibrium will be given later; here it is sufficient to characterize it as a
time-independent state, like a column of air at rest in absence of any flux of
matter, energy, charge, or momentum. By extension, equilibrium thermody-
namics has also been applied to the description of reversible processes: they
represent a special class of idealized processes considered as a continuum
sequence of equilibrium states.

Since time does not appear explicitly in the formalism, it would be more
appropriate to call it thermostatics and to reserve the name thermodynamics
to the study of processes taking place in the course of time outside equilib-
rium. However, for historical reasons, the name “thermodynamics” is widely
utilized nowadays, even when referring to equilibrium situations. We shall
here follow the attitude dictated by the majority but, to avoid any confu-
sion, we shall speak about equilibrium thermodynamics and designate beyond-
equilibrium theories under the name of non-equilibrium thermodynamics.

The reader is assumed to be already acquainted with equilibrium thermo-
dynamics but, for the sake of completeness, we briefly recall here the essential
concepts needed along this book. This chapter will run as follows. After a
short historical introduction and a brief recall of basic definitions, we present
the fundamental laws underlying equilibrium thermodynamics. We shall put
emphasis on Gibbs’ equation and its consequences. After having established
the criteria of stability of equilibrium, a last section, will be devoted to an
introduction to chemical thermodynamics.

1.1 The Early History

Equilibrium thermodynamics is the natural extension of the older science,
Mechanics. The latter, which rests on Newton’s law, is essentially concerned
with the study of motions of idealized systems as mass-particles and rigid

1
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solids. Two important notions, heat and temperature, which are absent in
mechanics, constitute the pillars of the establishment of equilibrium ther-
modynamics as a branch of science. The need to develop a science beyond
the abstract approach of Newton’s law to cope with the reality of engi-
neer’s activities was born in the beginning of nineteenth century. The first
steps and concepts of thermodynamics were established by Fourier, Carnot,
Kelvin, Clausius, and Gibbs among others. Thermodynamics began in 1822
with Fourier’s publication of the Théorie analytique de la chaleur wherein
is derived the partial differential equation for the temperature distribution
in a rigid body. Two years later, in 1824, Sadi Carnot (1796–1832) put
down further the foundations of thermodynamics with his renowned mem-
oir Réflexions sur la puissance motrice du feu et sur les machines propres à
développer cette puissance. Carnot perceived that steam power was a motor
of industrial revolution that would prompt economical and social life. Al-
though a cornerstone in the formulation of thermodynamics, Carnot’s work
is based on several misconceptions, as for instance the identification of heat
with a hypothetical indestructible weightless substance, the caloric, a notion
introduced by Lavoisier. Significant progresses towards a better comprehen-
sion of the subject can be attributed to a generation of outstanding scientists
as James P. Joule (1818–1889) who identified heat as a form of energy trans-
fer by showing experimentally that heat and work are mutually convertible.
This was the birth of the concept of energy and the basis of the formulation
of the first law of thermodynamics. At the same period, William Thomson
(1824–1907), who later matured into Lord Kelvin, realized that the work of
Carnot was not contradicting the ideas of Joule. One of his main contributions
remains a particular scale of absolute temperature. In his paper “On the dy-
namical theory of heat” appeared in 1851, Kelvin developed the point of view
that the mechanical action of heat could be interpreted by appealing to two
laws, later known as the first and second laws. In this respect, Rudolf Clausius
(1822–1888), a contemporary of Joule and Kelvin, accomplished substantial
advancements. Clausius was the first to introduce the words “internal energy”
and “entropy”, one of the most subtle notions of thermodynamics. Clausius
got definitively rid of the notion of caloric, reformulated Kelvin’s statement of
the second law, and tried to explain heat in terms of the behaviour of the indi-
vidual particles composing matter. It was the merit of Carnot, Joule, Kelvin,
and Clausius to thrust thermodynamics towards the level of an undisputed
scientific discipline. Another generation of scientists was needed to unify this
new formalism and to link it with other currents of science. One of them
was Ludwig Boltzmann (1844–1906) who put forward a decisive “mechanis-
tic” interpretation of heat transport; his major contribution was to link the
behaviour of the particles at the microscopic level to their consequences on
the macroscopic level. Another prominent scientist, Josiah Williard Gibbs
(1839–1903), deserves the credit to have converted thermodynamics into a
deductive science. In fact he recognized soon that thermodynamics of the
nineteenth century is a pure static science wherein time does not play any
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role. Among his main contributions, let us point out the theory of stability
based on the use of the properties of convex (or concave) functions, the po-
tential bearing his name, and the well-known Gibbs’ ensembles. Gibbs’ paper
“On the equilibrium of the heterogeneous substances” ranks among the most
decisive impacts in the developments of modern chemical thermodynamics.

Other leading scientists have contributed to the development of equilib-
rium thermodynamics as a well structured, universal, and undisputed science
since the pioneers laid down its first steps. Although the list is far from being
exhaustive, let us mention the names of Caratheodory, Cauchy, Clapeyron,
Duhem, Einstein, Helmholtz, Maxwell, Nernst, and Planck.

1.2 Scope and Definitions

Equilibrium thermodynamics is a section of macroscopic physics whose orig-
inal objective is to describe the transformations of energy in all its forms. It
is a generalization of mechanics by introducing three new concepts:

1. The concept of state, i.e. an ensemble of quantities, called state variables,
whose knowledge allows us to identify any property of the system under
study. It is desirable that the state variables are independent and easily ac-
cessible to experiments. For example, a motionless fluid may be described
by its mass m, volume V , and temperature T .

2. The notion of internal energy, complementing the notion of kinetic en-
ergy, which is of pure mechanical origin. Answering the question “what
is internal energy?” is a difficult task. Internal energy is not a directly
measurable quantity: there exist no “energymeters”. For the moment, let
us be rather evasive and say that it is presumed to be some function of
the measurable properties of a system like mass, volume, and temperature.
Considering a macroscopic system as agglomerate of individual particles,
the internal energy can be viewed as the mean value of the sum of the
kinetic and interacting energies of the particles. The notion of internal en-
ergy is also related to these temperature and heat, which are absent from
the vocabulary of mechanics.

3. The notion of entropy. Like internal energy, it is a characteristic of the
system but we cannot measure it directly, we will merely have a way to
measure its changes. From a microscopic point of view, the notion of en-
tropy is related to disorder: the higher the entropy, the larger the disorder
inside the system. There are also connections between entropy and infor-
mation in the sense that entropy can be considered as a measure of our
lack of information on the state of the system. The link between entropy
and information is widely exploited into the so-called information theory.

Energy and entropy are obeying two major laws: the first law stating that
the energy of the universe is a constant, and the second law stating that the
entropy of the universe never decreases.
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At this stage, it is useful to recall some definitions. By system is understood
a portion of matter with a given mass, volume, and surface. An open system is
able to exchange matter and energy through its boundaries, a closed system
exchanges energy but not matter with the outside while an isolated system
does exchange neither energy nor matter with its surroundings. It is admitted
that the universe (the union of system and surroundings) acts as an isolated
system. In this chapter, we will deal essentially with homogeneous systems,
whose properties are independent of the position.

As mentioned earlier, the state of a system is defined by an ensemble of
quantities, called state variables, characterizing the system. Considering a
system evolving between two equilibrium states, A and B, it is important to
realize that, by definition, the state variables will not depend on the partic-
ular way taken to go from A to B. The selection of the state variables is not
a trivial task, and both theoretical and experimental observations constitute
a suitable guide. It is to a certain extent arbitrary and non-unique, depend-
ing on the level of description, either microscopic or macroscopic, and the
degree of accuracy that is required. A delicate notion is that of equilibrium
state which turns out to be a state, which is time independent and generally
spatially homogeneous. It is associated with the absence of fluxes of matter
and energy. On the contrary, a non-equilibrium state needs for its descrip-
tion time- and space-dependent state variables, because of exchanges of mass
and energy between the system and its surroundings. However, the above
definition of equilibrium is not complete; as shown in Sect. 1.3.3, equilibrium
of an isolated system is characterized by a maximum of entropy. Notice that
the concept of equilibrium is to some extent subjective; it is itself an idealiza-
tion and remains a little bit indefinite because of the presence of fluctuations
inherent to each equilibrium state. It depends also widely on the available
data and the degree of accuracy of our observations.

One distinguishes extensive and intensive state variables; extensive vari-
ables like mass, volume, and energy have values in a composite system equal
to the sum of the values in each subsystem; intensive variables as tempera-
ture or chemical potential take the same values everywhere in a system at
equilibrium. As a variable like temperature can only be rigorously defined
at equilibrium, one may expect difficulties when dealing with situations
beyond equilibrium.

Classical thermodynamics is not firmly restricted to equilibrium states
but also includes the study of some classes of processes, namely those that
may be considered as a sequence of neighbouring equilibrium states. Such
processes are called quasi-static and are obtained by modifying the state
variables very slowly and by a small amount. A quasi-static process is either
reversible or irreversible. A reversible process 1 → 2 → 3 may be viewed as a
continuum sequence of equilibrium states and will take place infinitesimally
slowly. When undergoing a reverse transformation 3 → 2 → 1, the state
variables take the same values as in the direct way and the exchanges of
matter and energy with the outside world are of opposite sign; needless to
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say that reversible processes are pure idealizations. An irreversible process
is a non-reversible one. It takes place at finite velocity, may be mimicked
by a discrete series of equilibrium states and in a reverse transformation,
input of external energy from the outside is required to go back to its initial
state. Irreversible processes are generally associated with friction, shocks,
explosions, chemical reactions, viscous fluid flows, etc.

1.3 The Fundamental Laws

The first law, also popularly known as the law of conservation of energy, was
not formulated first but second after the second law, which was recognized
first. Paradoxically, the zeroth law was formulated the latest, by Fowler during
the 1930s and quoted for the first time in Fowler and Guggenheim’s book
published in 1939.

1.3.1 The Zeroth Law

It refers to the introduction of the idea of empirical temperature, which is one
of the most fundamental concepts of thermodynamics. When a system 1 is
put in contact with a system 2 but no net flow of energy occurs, both systems
are said to be in thermal equilibrium. As sketched in Fig. 1.1a, we take two
systems 1 and 2, characterized by appropriate parameters, separated by an
adiabatic wall, but in contact (a thermal contact) with the system 3 through
a diathermal wall, which allows for energy transfer in opposition with an
adiabatic wall. If the systems 1 and 2 are put in contact (see Fig. 1.1b), they
will change the values of their parameters in such a way that they reach a
state of thermal equilibrium, in which there is no net heat transfer between
them.

Fig. 1.1 Steps for introducing the empirical temperature concept
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The zeroth law of thermodynamics states that if the systems 1 and 2 are
separately in thermal equilibrium with 3, then 1 and 2 are in thermal equilib-
rium with one another. The property of transitivity of thermal equilibrium
allows one to classify the space of thermodynamic states in classes of equiv-
alence, each of which constituted by states in mutual thermal equilibrium.
Every class may be assigned a label, called empirical temperature, and the
mathematical relation describing a class in terms of its state variables and
the empirical temperature is known as the thermal equation of state of the
system. For one mole of a simple fluid this equation has the general form
φ(p, V, θ) = 0 where p is the pressure, V the volume, and θ the empirical
temperature.

1.3.2 The First Law or Energy Balance

The first law introduces the notion of energy, which emerges as a unifying
concept, and the notion of heat, related to the transfer of energy. Here, we
examine the formulation of the first law for closed systems.

Consider first a system enclosed by a thermally isolated (adiabatic), imper-
meable wall, so that the sole interaction with the external world will appear
under the form of a mechanical work W , for instance by expansion of its
volume or by stirring. Referring to the famous experience of Joule, the work
can be measured by the decrease in potential energy of a slowly falling weight
and is given by W = mgh, where h is the displacement and g the acceler-
ation of gravity. During the evolution of the system between the two given
equilibrium states A and B, it is checked experimentally that the work W is
determined exclusively by the initial and the final states A and B, indepen-
dently of the transformation paths. This observation allows us to identify W
with the difference ∆U = U(B) − U(A) of a state variable U which will be
given the name of internal energy

W = ∆U. (1.1)

The above result provides a mean to measure the internal energy of a
system, whatever be its nature. Assume now that we remove the adiabatic
wall enclosing the system, which again proceeds from state A to state B.
When this is accomplished, it is observed that in general W �= ∆U , and
calling Q the difference between these two quantities, one obtains

∆U −W = Q, (1.2)

where Q is referred to as the heat exchanged between the system and its sur-
roundings. Expression (1.2) is the first law of thermodynamics and is usually
written under the more familiar form

∆U = Q+W, (1.3a)
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or, in terms of differentials,

dU =d̄Q+d̄W, (1.3b)

where the stroke through the symbol “d” means that d̄Q and d̄W are inexact
differentials, i.e. that they depend on the path and not only on the initial and
final states. From now on, we adopt the sign convention that Q > 0, W > 0
when heat and work are supplied to the system, Q < 0, W < 0 when heat
and work are delivered by the system. Some authors use other conventions
resulting in a minus sign in front of d̄W .

It is important to stress that the domain of applicability of the first law
is not limited to reversible processes between equilibrium states. The first
law remains valid whatever the nature of the process, either reversible or
irreversible and the status of the states A and B, either equilibrium or non-
equilibrium. Designating by E = U+K+Epot the total energy of the system
(i.e. the sum of the internal U , kinetic K, and potential energy Epot), (1.3b)
will be cast in the more general form

dE =d̄Q+d̄W. (1.4)

At this point, it should be observed that with respect to the law of energy
∆K = W as known in mechanics, we have introduced two new notions:
internal energy U and heat Q. The internal energy can be modified either
by heating the body or by acting mechanically, for instance by expansion or
compression, or by coupling both mechanisms. The quantity U consists of
a stored energy in the body while Q and W represent two different means
to transfer energy through its boundaries. The internal energy U is a state
function whose variation is completely determined by the knowledge of the
initial and final states of the process; in contrast, Q and W are not state
functions as they depend on the particular path followed by the process. It
would therefore be incorrect to speak about the heat or the work of a system.
The difference between heat and work is that the second is associated with
a change of the boundaries of the system or of the field acting on it, like a
membrane deformation or a piston displacement. Microscopically, mechanical
work is related to coherent correlated motions of the particles while heat
represents that part of motion, which is uncorrelated, say incoherent.

In equilibrium thermodynamics, the processes are reversible from which
follows that the energy balance equation (1.4) will take the form:

dU =d̄Qrev − pdV, (1.5)

wherein use is made of the classical result that the reversible work per-
formed by a piston that compress a gas of volume V and pressure p trapped
in a cylinder is given by d̄Wrev = −pdV (see Problem 1.1). In engineer-
ing applications, it is customary to work with the enthalpy H defined by
H = U + pV . In terms of H, expression (1.5) of the first law reads as

dH =d̄Qrev + V dp. (1.6)



8 1 Equilibrium Thermodynamics: A Review

For an isolated system, one has simply

dU = 0 (1.7)

expressing that its energy remains constant.
Note that, when applied to open systems with n different constituents,

(1.5) will contain an additional contribution due to the exchange of matter
with the environment and takes the form (Prigogine 1947)

dU = diQ− pdV +
n∑

k=1

hkdemk; (1.8)

note that diQ is not the total amount of heat but only that portion associ-
ated to the variations of the thermomechanical properties, T and p, and the
last term in (1.8), which is the extra contribution caused by the exchange
of matter demk with the surroundings, depends on the specific enthalpy
hk = H/mk of the various constituents.

1.3.3 The Second Law

The first law does not establish any preferred direction for the evolution of
the system. For instance, it does not forbid that heat could pass sponta-
neously from a body of lower temperature to a body of higher temperature,
nor the possibility to convert completely heat into work or that the huge
energy contained in oceans can be transformed in available work to propel
a boat without consuming fuel. More generally, the first law establishes the
equivalence between heat and work but is silent about the restrictions on the
transformation of one into the other. The role of the second law of thermo-
dynamics is to place such limitations and to reflect the property that natural
processes evolve spontaneously in one direction only. The first formulations of
the second law were proposed by Clausius (1850, 1851) and Kelvin (1851) and
were stated in terms of the impossibility of some processes to be performed.
Clausius’ statement of the second law is enunciated as follows: No process is
possible whose sole effect is to transfer heat from a cold body to a hot body.
Kelvin’s statement considers another facet: it is impossible to construct an
engine which can take heat from a single reservoir, and convert it entirely to
work in a cyclic process. In this book we will examine in detail, the formu-
lations of the second law out of equilibrium. Here, we shall concentrate on
some elements that are essential to a good understanding of the forthcoming
chapters. We will split the presentation of the second law in two parts. In
the first one, we are going to build-up a formal definition of a new quantity,
the entropy – so named by Clausius from the Greek words en (in) and trope
(turning) for representing “capacity of change or transformation” – which
is as fundamental and universal (for equilibrium systems) as the notion of
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energy. In the second part, which constitutes truly the essence of the second
law, we shall enounce the principle of entropy increase during an irreversible
process.

1.3.3.1 The Concept of Entropy

Consider a homogeneous system of constant mass undergoing a reversible
transformation between two equilibrium states A and B. The quantity of
heat

∫ B

A
d̄Qrev depends on the path followed between states A and B (in

mathematical terms, it is an imperfect differential) and therefore cannot be
selected as a state variable. However, experimental observations have indi-
cated that by dividing d̄Qrev by a uniform and continuous function T (θ) of
an empirical temperature θ, one obtains an integral which is independent of
the path and may therefore be identified with a state function, called entropy
and denoted S ∫ B

A

d̄Qrev

T (θ)
= ∆S = SB − SA. (1.9)

Since in reversible processes, quantities of heat are additive, entropy is also
additive and is thus an extensive quantity. A function like T (θ) which trans-
forms an imperfect differential into a perfect one is called an integrating
factor. The empirical temperature is that indicated by a mercury or an alco-
hol thermometer or a thermocouple and its value depends of course on the
nature of the thermometer; the same remark is true for the entropy, as it
depends on T (θ). It was the great merit of Kelvin to propose a temperature
scale for T , the absolute temperature, independently of any thermodynamic
system (see Box 1.1). In differential terms, (1.9) takes the form

dS =
d̄Qrev

T
. (1.10)

This is a very important result as it introduces two new concepts, absolute
temperature and entropy. The latter can be viewed as the quantity of heat
exchanged by the system during a reversible process taking place at the
equilibrium temperature T . Note that only differences in entropy can be
measured. Given two equilibrium states A and B, it is always possible to
determine their entropy difference regardless of whether the process between
A and B is reversible or irreversible. Indeed, it suffices to select or imagine
a reversible path joining these initial and final equilibrium states. The ques-
tion is how to realize a reversible heat transfer. Practically, the driving force
for heat transfer is a temperature difference and for reversible transfer, we
need only imagine that this temperature difference is infinitesimally small so
that d̄Qrev = lim

∆T→0
d̄Q. Nevertheless, when the process takes place between

non-equilibrium states, the problem of the definition of entropy is open, and
actually not yet definitively solved.
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Box 1.1 Absolute Temperature
Heat engines take heat from some hot reservoir, deliver heat to some cold
reservoir, and perform an amount of work, i.e. they partially transform heat
into work. Consider a Carnot’s reversible engine (see Fig. 1.2a) operating
between a single hot reservoir at the unknown empirical temperature θ1 and
a single cold reservoir at temperature θ2. The Carnot cycle is accomplished
in four steps consisting in two isothermal and two adiabatic transformations
(Fig. 1.2b).

During the first isothermal process, the Carnot’s engine absorbs an
amount of heat Q1 at temperature θ1. In the second step, the system un-
dergoes an adiabatic expansion decreasing the temperature from θ1 to θ2.
Afterwards, the system goes through an isothermal compression at tem-
perature θ2 (step 3) and finally (step 4), an adiabatic compression which
brings the system back to its initial state. After one cycle, the engine has
performed a quantity of work W but its total variation of entropy is zero

∆Sengine =
|Q1|
T (θ1)

− |Q2|
T (θ2)

= 0. (1.1.1)

Selecting the reference temperature as T (θ2) = 273.16, the triple point
temperature of water, it follows from (1.1.1)

T (θ1) = 273.16
|Q1|
|Q2| . (1.1.2)

The ratio |Q1| / |Q2| is universal in the sense that it is independent of the
working substance. Therefore, Carnot cycles offer the opportunity to re-
duce temperature measurements to measurements of quantities of heat and
to define an absolute scale of positive temperatures, independently of the
measurement of temperature on any empirical temperature scale, which
depends on thermometric substance.

Fig. 1.2 (a) Heat engine and (b) Carnot diagram
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The efficiency of a heat engine, in particular that of Carnot, is defined by
the ratio of the work produced to the heat supplied

η =
W

Q1
(1.11)

for a cycle one has, in virtue of the first law, W = Q1 −Q2, so that

η = 1 − Q2

Q1
. (1.12)

Finally, making use of (1.1.2), it is found that the efficiency of a reversible
cycle is

η = 1 − T2

T1
. (1.13)

As it will be seen, this is the maximum value for the efficiency of any heat en-
gine working between the selected heat reservoirs. More considerations about
the efficiency of reversible and irreversible cycles are developed in Chap. 5.

1.3.3.2 The Principle of Increase of Entropy

The second law was formulated by Clausius (1865) for isolated systems in
terms of the change of the entropy in the form

∆S ≥ 0. (1.14)

To illustrate the principle of entropy increase, imagine an arbitrary number of
subsystems, for instance three different gases A,B, and C at equilibrium, en-
closed in a common isolated container and separated each other by adiabatic
and rigid walls (Fig. 1.3). Let Sini be the entropy in this initial configuration.
Remove then the internal wall separating A and B which are diffusing into
each other until a new state of equilibrium characterized by an entropy Sint,
corresponding to the intermediate configuration, which is larger than Sini is
reached. By eliminating finally the last internal constraint between A∪B and
C, and after the final state of equilibrium, corresponding to complete mixing,
is reached, it is noted that entropy Sfin is still increased: Sfin > Sint > Sini.
Figure 1.3 reflects also that disorder is increased by passing from the initial

Fig. 1.3 Increase of entropy after removal of internal constraints
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to the final configuration, which suggests the use of entropy as a measure of
disorder: larger the disorder larger the entropy (Bridgman 1941).

It is therefore concluded that entropy is increased as internal constraints
are removed and that entropy reaches a maximum in the final state of equi-
librium, i.e. the state of maximum “disorder”. In other terms, in isolated
systems, one has

∆S = Sfin − Sin ≥ 0 (isolated system). (1.15)

Thus, entropy is continuously increasing when irreversible processes take
place until it reaches a state of maximum value, the equilibrium state, which
in mathematical terms is characterized by dS = 0,d2S < 0. This statement
constitutes the celebrated principle of entropy increase and is often referred
to as the Second Law of thermodynamics. It follows that a decrease in entropy
dS < 0 corresponds to an impossible process. Another consequence is that
the entropy of an isolated system remains constant when reversible processes
occur in it.

An illustration of the entropy increase principle is found in Box 1.2. When
the system is not isolated, as in the case of closed and open systems, the
entropy change in the system consists in two parts: deS due to exchanges of
energy and matter with the outside, which may be positive or negative, and
diS due to internal irreversible processes

dS = deS + diS. (1.16)

The second law asserts that the entropy production diS can only be greater
than or equal to zero

diS ≥ 0 (closed and open systems), (1.17)

the equality sign referring to reversible or equilibrium situations. Expres-
sion (1.17) is the statement of the second law in its more general form. In
the particular case of isolated systems, there is no exchange of energy and
matter so that deS = 0 and one recovers (1.15) of the second law, namely
dS = diS ≥ 0. For closed systems, for which deS =d̄Q/T , one has

dS ≥ d̄Q/T (closed system). (1.18)

In the particular case of a cyclic process for which dS=0, one has d̄Q/T≤0,
which is usually identified as the Clausius’ inequality.

Box 1.2 Entropy Increase
Consider two different gases A and B at equilibrium, enclosed in a com-
mon isolated container and separated each other by an adiabatic and fixed
wall (Fig. 1.4). Both gases are characterized by their internal energy U and
volume V .
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In the initial configuration, entropy S(i) is a function of the initial values
of internal energy U

(i)
A and volume V

(i)
A corresponding to subsystem A,

and similarly of U (i)
B and V

(i)
B for subsystem B, in such a way that S(i) =

SA(U (i)
A , V

(i)
A ) + SB(U (i)

B , V
(i)
B ). If the adiabatic and fixed wall separating

both subsystems A and B is replaced by a diathermal and movable wall, a
new configuration is attained whose entropy S(f) may be expressed as S(f) =
SA(U (f)

A , V
(f)
A ) + SB(U (f)

B , V
(f)
B ); superscript (f) denotes the final values of

energy and volume submitted to the closure relations U (i)
A + U

(i)
B = U

(f)
A +

U
(f)
B = Utotal and V

(i)
A + V

(i)
B = V

(f)
A + V

(f)
B = Vtotal reflecting conservation

of these quantities for the composite system A+B. The removal of internal
constraints that prevent the exchange of internal energy and volume leads
to the establishment of a new equilibrium state of entropy S(f) > S(i).
The values taken by the (extensive) variables, in the absence of internal
constraints, in this case U (f)

A , V (f)
A and U

(f)
B , V (f)

B , are those that maximize
the entropy over the manifold of equilibrium states (Callen 1985).

In Fig. 1.4 is represented S(f)/S(i) in terms of x ≡ UA/Utotal and y ≡
VA/Vtotal using an ideal gas model; the final values of x and y are those
corresponding to the maximum of S(f)/S(i). The arbitrary curve drawn on
the surface between the initial “i” and final “f” states stands for an idealized
process defined as a succession of equilibrium states, quite distinct from a
real physical process formed by a temporal succession of equilibrium and
non-equilibrium states.

Fig. 1.4 Illustration of the entropy increase principle in the case of two gases initially

separated by an adiabatic and fixed wall
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1.3.4 The Third Law

The roots of this law appear in the study of thermodynamic quantities as
the absolute temperature tends to zero. In 1909, Nernst formulated his heat
theorem, later known as the third law of thermodynamics, to better under-
stand the nature of chemical equilibrium. Nernst’s formulation was that the
entropy change in any isothermal process approaches zero as the temperature
at which the process occurs approaches zero, i.e.

(∆S)T→0 → 0. (1.19)

This statement is sufficient for any thermodynamic development, but some-
times the stronger Planck’s statement (S → 0 as T → 0) is preferred. Since
the third law is more of quantum statistical essence, it is not of the same
nature as the other laws and no further reference will be made to it in this
book.

1.4 Gibbs’ Equation

Let us now gather the results obtained for the first and second laws. Consider
a reversible transformation, taking place in a closed system, for which the first
law takes the form

dU =d̄Qrev − pdV, (1.20)

and combine it with the definition of entropy d̄Qrev = T dS, resulting in

dU = T dS − pdV. (1.21)

Expression (1.21) is known as Gibbs’ equation; it is, however, not complete
when there are matter exchanges as in open systems, or variations in compo-
sition as in chemical reactions. To calculate the reversible work corresponding
to a chemical reaction involving n species, it is necessary to devise a reversible
process of mixing. This is achieved thanks to van’t Hoff’s box (Kestin 1968),
accordingly the reversible chemical work is given by

d̄W ch
rev =

n∑
k=1

µ̄kdmk, (1.22)

where µ̄k is defined as the chemical potential of substance k. The properties of
the chemical potential will be explicitly examined below. With this additional
term, one is led to the generalized Gibbs’ equations

dU = T dS − pdV +
n∑

k=1

µ̄kdmk, (1.23a)
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or equivalently,

dS = T−1dU + pT−1dV −
n∑

k=1

T−1µ̄kdmk. (1.23b)

As discussed in the forthcoming sections, the Gibbs’ equation plays a fun-
damental role in equilibrium thermodynamics. We should also mention that
Gibbs’ equation is one of the pillars of the Classical Theory of Irreversible
Processes, as shown in Chap. 2. Let us now examine the main consequences
of Gibbs’ equation.

1.4.1 Fundamental Relations and State Equations

It follows directly from Gibbs’ equation (1.23a) that

U = U(S, V,m1,m2, . . . ,mn), (1.24)

or, solving with respect to S,

S = S(U, V,m1,m2, . . . ,mn). (1.25)

Relations like (1.24) or (1.25) expressing that U or S are single-valued func-
tions of extensive state variables are called fundamental relations because
they contain all thermodynamic information about the system. When U (re-
spectively, S) is expressed as a function of the variables, we are speaking of
the “energy representation” (respectively, “entropy representation”).

Another consequence of Gibbs’ equation (1.23a) is that the intensive vari-
ables, represented by temperature, pressure and chemical potentials, can be
defined as partial derivatives of U :

T =

(
∂U

∂S

)
V,{mk}

(a), p = −
(

∂U

∂V

)
S,{mk}

(b), µ̄k =

(
∂U

∂mk

)
V,S,{mi �=k}

(c),

(1.26)

where {mk} stands for all mk constant. Since U is a function of S, V , mk,
the same remains true for T , p, and µk so that

T = T (S, V,m1,m2, . . . ,mn), (1.27a)
p = p(S, V,m1,m2, . . . ,mn), (1.27b)
µ̄k = µ̄k(S, V,m1,m2, . . . ,mn). (1.27c)

Such relationships between intensive and extensive variables are called state
equations. Elimination of S between (1.27a) and (1.27b) leads to the ther-
mal equation of state p = p(T, V,m1,m2, . . . ,mn); similarly by combining
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(1.24) and (1.27a), one obtains the so-called caloric equation U = U(T, V,m1,
m2, . . . ,mn). The knowledge of one single state equation is not sufficient to
describe the state of a system, which requires the knowledge of all the equa-
tions of state. For instance in the case of a monatomic perfect gas, pV = NRT
does not constitute the complete knowledge of the system but must be com-
plemented by U = 3

2NRT , R being the gas constant and N the mole number.

1.4.2 Euler’s Relation

The extensive property of U implies that, from the mathematical point of
view, it is a first-order homogeneous function of the extensive variables:

U(λS, λV, λm1, . . . , λmn) = λU(S, V,m1, . . . ,mn), (1.28)

where λ is an arbitrary scalar. Differentiation of the fundamental relation
(1.28) with respect to λ and setting λ = 1, leads to(

∂U

∂S

)
V,{mk}

S +
(
∂U

∂V

)
S,{mk}

V +
∑

k

(
∂U

∂mk

)
V,S,{mj �=k}

mk = U, (1.29)

and, after making use of (1.26), one obtains Euler’s relation

U = TS − pV +
∑

k

µ̄kmk. (1.30)

1.4.3 Gibbs–Duhem’s Relation

A differential equation among the intensive variables can be derived directly
from Euler’s relation. Indeed, after differentiating (1.30), it is found that

dU = T dS − pdV +
n∑

k=1

µ̄kdmk + S dT − V dp+
n∑

k=1

mkdµ̄k, (1.31)

which, after using Gibbs’ equation (1.23a), yields Gibbs–Duhem’s relation

S dT − V dp+
n∑

k=1

mkdµ̄k = 0. (1.32)

It follows that the n+ 2 intensive variables are not independent but related
through the Gibbs–Duhem’s relation. For a n-component mixture, the num-
ber of independent intensive state variables, called thermodynamic degrees
of freedom, is equal to n + 1: for instance, the n − 1 chemical potentials
plus temperature and pressure. In the case of a one-component fluid, the
thermodynamic description of the system requires the knowledge of two in-
dependent intensive quantities, generally selected as the temperature T and
the pressure p.
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1.4.4 Some Definitions

In view of further developments, it is useful to introduce the following defin-
itions of well-known experimental quantities:

• Coefficient of thermal expansion:

α =
1
V

(
∂V

∂T

)
p,{mk}

. (1.33)

• Isothermal compressibility:

κT = − 1
V

(
∂V

∂p

)
T,{mk}

. (1.34)

• Heat capacity at constant volume:

cV =
(
∂U

∂T

)
V,{mk}

=
(

d̄Qrev

dT

)
V,{mk}

. (1.35)

• Heat capacity at constant pressure:

cp =
(
∂H

∂T

)
p,{mk}

=
(

d̄Qrev

dT

)
p,{mk}

. (1.36)

Other partial derivatives may be introduced but generally, they do not have a
specific practical usefulness. Relations between these partial derivatives may
be derived by equating mixed second-order partial derivatives of U and S.
Such expressions have been identified as Maxwell’s relations.

As a last remark, let us mention that the results established so far in
homogeneous systems of total mass m and volume V are still valid when
referred per unit mass and unit volume. Analogous to (1.24), the fundamental
relation per unit mass is

u = u(s, v, . . . , ck, . . .) (1.37)

with u = U/m, s = S/m, v = V/m, ck = mk/m, and
∑

k ck = 1. After
differentiation, (1.37) reads as

du = T ds− pdv +
n−1∑
k=1

(µ̄k − µ̄n)dck (1.38)

with T = (∂u/∂s)v,{ck}, p = −(∂u/∂v)s,{ck}, µ̄k = (∂u/∂ck)s,v,{cj �=k}. Simi-
larly, the Euler and Gibbs–Duhem’s relations (1.30) and (1.32) take the form

u = Ts− pv +
n∑

k=1

µ̄kck, S dT − v dp+
n∑

k=1

ckdµ̄k = 0. (1.39)
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1.4.5 The Basic Problem of Equilibrium
Thermodynamics

To maintain a system in an equilibrium state, one needs the presence of
constraints; if some of them are removed, the system will move towards a new
equilibrium state. The basic problem is to determine the final equilibrium
state when the initial equilibrium state and the nature of the constraints
are specified. As illustration, we have considered in Box 1.3 the problem
of thermo-diffusion. The system consists of two gases filling two containers
separated by a rigid, impermeable and adiabatic wall: the whole system is
isolated. If we now replace the original wall by a semi-permeable, diathermal
one, there will be heat exchange coupled with a flow of matter between the
two subsystems until a new state of equilibrium is reached; the problem is
the calculation of the state parameters in the final equilibrium state.

Box 1.3 Thermodiffusion
Let us suppose that an isolated system consists of two separated containers
I and II, each of fixed volume, and separated by an impermeable, rigid
and adiabatic wall (see Fig. 1.5). Container I is filled with a gas A and
container II with a mixture of two non-reacting gases A and B. Substitute
now the original wall by a diathermal, non-deformable but semi-permeable
membrane, permeable to substance A. The latter will diffuse through the
membrane until the system comes to a new equilibrium, of which we want
to know the properties. The volumes of each container and the mass of
substance B are fixed:

VI = constant, VII = constant, mB
II = constant, (1.3.1)

but the energies in both containers as well as the mass of substance A are
free to change, subject to the constraints

UI + UII = constant, mA
I +mA

II = constant. (1.3.2)

In virtue of the second law, the values of UI, UII,m
A
I ,m

A
II in the new equi-

librium state are such as to maximize the entropy, i.e. dS = 0 and, from
the additivity of the entropy in the two subsystems

Fig. 1.5 Equilibrium conditions for thermodiffusion


