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Preface

Most scientists in the middle of the twentieth century would probably not have 
believed that life was possible at extreme values of environmental factors, such as 
pH values close to 0 (e.g. sulfurous environments) or to 14 (e.g. soda lakes), salini-
ties of 6 M NaCl (e.g. Dead Sea), hydrostatic pressures approaching 0.1 MPa (deep 
sea) and temperatures exceeding 100°C (thermal vents or hot springs) or as low as 
–20°C (e.g. polar regions). Of the current studies on extremophiles, approximately 
30,000 articles by the year 2007, almost two-thirds have been performed on organ-
isms adapted to outstanding temperatures, but much more attention has been paid 
to thermophiles than to psychrophiles. However, over the past 10 years, scientific 
publications on cold-adapted microorganisms have increased by a factor of ten.

If one considers the extent of cold habitats, psychrophiles, i.e. cold-loving 
organisms, should largely lead in this comparison with thermophiles because a 
great proportion of the Earth’s biosphere never reaches temperatures above 5°C. 
Nearly three-quarters of the Earth is covered by oceans whose deep water masses, 
irrespective of latitude, are constantly between 2 and 4°C. The large continent of 
Antarctica also provides a permanently cold terrestrial environment as well as an 
aquatic niche in the surrounding ice that melts during the summer. Other examples 
of cold habitats are permafrost soils, high alpine soils, cold deserts, cold caves, 
marine sediments, snow, glacier and sea ice. Cold ecosystems host a wide diversity 
of psychrophiles, including bacteria, archaea, yeasts, filamentous fungi, and 
algae. These microorganisms have evolved a number of strategies to thrive success-
fully in cold habitats where they play key roles in nutrient cycling, such as nitrogen 
fixation, nitrification and denitrification, photosynthesis, sulfur oxidation and 
reduction, methanogenesis, and transformation of organic compounds. 

This book is focused on psychrophiles and describes, at the edge of knowledge, 
representative groups of cold-adapted microorganisms as well as the habitats in 
which they live and their strategies to cope with the cold. It is subdivided into four 
main sections: 

 (i) boundary conditions for microbial life at low temperatures
(ii) biodiversity



(iii) molecular adaptations 
(iv) biotechnological aspects

thus covering almost all the fields of knowledge in “cold” microbiological 
research.

It is certainly not by chance that this book is published during the International 
Polar Year 2007-2008, which is the fourth polar year following those in 1882-1883, 
1932-1933 and 1957-1958 and involving over 200 projects, with thousands of sci-
entists from over 60 nations examining a wide range of physical, biological and 
social research topics. Therefore, this book perfectly matches the current demands 
and trends and provides an additional source of information to all those scientists 
who are interested in “cold” microbiology.

Last but certainly not least, the editors of this book want to thank all the authors, 
who are the leading scientists in the respective field, for having accepted to write a 
chapter of this book, even though all these persons are also very busy and highly 
solicited scientists. We also thank Springer - Life Sciences, especially Dr. Dieter 
Czeschlik and Dr. Jutta Lindenborn, for their continuous support and trust in our 
capacity to successfully achieve the editing of this book.

Innsbruck, Austria Rosa Margesin, Franz Schinner
Liège, Belgium Jean-Claude Marx, Charles Gerday
July 2007
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Part I
Boundary Conditions for Microbial Life 

at Low Temperatures



Chapter 1
The Climate of Snow and Ice as Boundary 
Condition for Microbial Life

Michael Kuhn

1.1 The source of energy: solar radiation

The Earth’s surface is the place where the biosphere, the atmosphere, the hydrosphere
and the lithosphere interact most extensively. In mountains and polar regions, the 
cryosphere adds more facets to this multiple interaction. The biogeochemical 
cycles at the Earth’s surface are driven by the vertical exchange of energy and water 
locally, and by the horizontal motion of air and water in the global circulation. The 
energy absorbed from the incident solar radiation is used to heat the ground, snow, 
or water, which in turn heat the overlying air by turbulent convection; to evaporate 
water, melt or sublimate ice; and in part is re-emitted as infrared radiation.

Solar radiation, the prime energy source of all climatic and biotic processes, has 
a strong daily and seasonal variation in mid and high latitudes. This is best illus-
trated by its reference value, the extraterrestrial irradiance, the amount of energy 
that would be received if there were no atmospheric extinction. Daily sums of 
extraterrestrial irradiance are displayed in Fig. 1.1 in response to geographical lati-
tude and time of the year. While the tropics have the highest annual sums, the two 
polar regions reach the highest daily totals in their respective summers, with 
Antarctica receiving more than the Arctic since the Earth is closest to the Sun in the 
Austral summer.

R. Margesin et al. (eds.) Psychrophiles: from Biodiversity to Biotechnology. 3
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4 M. Kuhn

Extinction by the air and its trace gases and by clouds and aerosols gives it a 
change with altitude as well. Global irradiance, the sum of direct and diffuse solar 
irradiance, was compiled from records at Austrian stations in Fig. 1.2, as a function 
of cloudiness and altitude. There is an increase of global irradiance of the order of 
1% per 100 m altitude at mean cloudiness, and a decrease by 50% when comparing 
cloudless and cloud covered sky at an altitude of 3,000 m.

The maximum daily average of 400 W m−2 in Fig. 1.2 is associated with an 
instantaneous maximum of ca. 1,000 W m−2 at noon. 400 W m−2 is identical to the 
maximum mean daily irradiance reached in the Dry Valleys of Antarctica, close to 
sea level, although the solar geometry at that high latitude is very different from that 
of the Alps. This daily average amounts to 83% of the extraterrestrial irradiance in 
alpine conditions, a fraction that is nearly identical to the 85% found in the central 
Antarctic at the time of summer solstice. It is obvious from Figs. 1.1 and 1.2 that 
this fraction decreases at lower solar elevations.

A large part of this incident solar radiation is reflected back to the atmosphere. The 
broad band albedo of dry alpine or polar snow exceeds 80%, reaching 90% in the visible 
and UV parts of the spectrum and dropping to less than 20% in the near infrared; in the 
thermal infrared, snow is essentially a black body with an emissivity close to 0.98.

At low angles of solar elevation, as typical for polar regions, forward scat-
tering in the snow increases albedo to values >90%. The albedo of snow and ice 
decreases with increasing grain size and increasing liquid water content so that 
clean alpine snow that survives into summer displays albedo values between 60 
and 70%. The presence of dust or other admixtures reduces the albedo further.

The albedo of ice depends largely on the presence of cracks and air bubbles: typical 
clean ice of alpine glaciers would reflect about 40%, dust and dirt covered ice may reflect 

Fig. 1.1 Daily sums of extraterrestrial solar irradiance, the reference amount of energy that would 
be received without atmospheric extinction. Values are given in MJ m−2 day−1 computed for a solar 
constant of 1,368 W m−2
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as little as the surrounding rocks, i.e. 15–20%. The so-called blue ice of Antarctica has 
emerged to the surface after having been subjected to very high pressure in the deepest 
part of its trajectory: 1,100 m of ice exert a hydrostatic pressure of 100 bars (100 atmos-
pheres), a pressure under which air bubbles become dissolved in the crystal lattice of the 
ice. This bubble free, blue ice has the darkest appearance of any naturally occurring ice.

1.2 Distribution of energy: the energy balance of snow and ice

Solar radiation is the prime source of energy for planet Earth. It supplies a global, 
annual average of 240 W m−2. Geothermal heat supplied by the hot interior of the 
Earth and by radioactive decay amounts to only 60 mW m−2, negligible compared 

Fig. 1.2 Daily averages of global irradiance at eastern alpine stations, according to altitude and 
cloudiness, based on data by Dirmhirn (1964)
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to solar radiation, but of vital importance at the base of ice sheets. When discussing 
the distribution and balance of energy fluxes, we clearly need to distinguish the 
atmosphere, the surface of snow and ice, its interior and its base.

The principle of the energy balance is most clearly and generally demonstrated 
for the case of the snow surface, the cryosphere/atmosphere interface. Here, solar (or 
shortwave) radiation S↓ is supplemented by atmospheric infrared (longwave) radiation 
L↓ emitted by greenhouse gases, clouds and aerosols, while part is reflected S↑, or 
emitted from the surface L↑. The net value of the four fluxes is called the radiation 
balance. The amount delivered, or lost by the surface, is distributed in four ways:

(1)   heat supply C to or from the snow by conduction, penetration of solar radiation, 
or convection in the pore space of the snow, which all may change the snow 
temperature;

(2)   turbulent transfer of sensible heat H to or from the atmospheric boundary layer;
(3)   turbulent transfer of latent heat of evaporation, sublimation or condensation LE;
(4)  the latent heat of melting or refreezing LM.

All fluxes are defined positive if they deliver energy to the surface so that, at the 
surface, their total must be zero.

S↓ + S↑ + L↓ + L↑ + C + H + LE + LM = 0

These quantities are usually expressed as energy flux densities in W m−2. As they 
depend on atmospheric variables that are not locally determined we first need infor-
mation on the local climatic boundary conditions.

1.3 Air temperature: effects of altitude and latitude

The change of temperature and other environmental conditions with altitude in mid 
latitude mountains has often been compared to their change with latitude: a 1,000-m 
higher altitude in the Alps may roughly be equivalent to a 1,000-km move north-
ward. In the case of temperature, however, the reasons for the decrease with altitude 
are basically different from those for the decrease with latitude. If a parcel of dry 
air is moved upward, it loses pressure, expands and thereby cools at a rate of 1° per 
100 m altitude; in the case of moist air, condensation may reduce this figure to 0.6° 
per 100 m. In both cases, the cooling is the consequence of vertical motion. The 
decrease of temperature with increasing latitude, on the other hand, follows from 
the decreasing annual supply of solar radiation (Fig. 1.1).

From five pairs of mountain and valley stations in the Eastern Alps, situated 
respectively above 1,800 m and below 800 m, typical values of altitudinal temperature
gradients are given in Fig. 1.3.

The low negative values that prevail in alpine winter are primarily due to 
temperature inversions above the valley stations. Highest negative values approaching 
saturated adiabatic conditions occur in spring with intense vertical mixing of the 
atmosphere. Values in Fig. 1.3 are valid for near surface air temperatures; they differ 
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from gradients in the free atmosphere. Although based on alpine records, they are 
representative for many mountain areas around the world.

Mountain stations generally have smaller diurnal and annual temperature ranges 
as illustrated by Table 1.1. This is a ventilation effect due to higher wind speeds at 
mountain peaks, i.e. due to relative topography rather than to absolute altitude.

The decrease of temperature with increasing latitude ϕ is very obvious in Fig. 1.4. 
The station Decepción is situated at sea level on an island at 63° S. It displays the low 
annual variation of temperature typical for oceanic situations. The extreme latitude of 
South Pole Station (2,800 m) does not give it extreme temperatures; it is exceeded by 
Vostok Station at 3,400 m. The annual range of temperatures increases with latitude and 
altitude due to both solar geometry and decreasing cloudiness at continental stations.

The daily range of temperature, on the other hand, is determined by the daily 
range of solar elevation which is 2(90 – ϕ), limited by a culmination at 90 – ϕ + δ
where δ is the solar declination. This means that there is no daily range of solar 
elevation and temperature at the poles.

Fig. 1.3 Temperature gradients between five pairs of stations in the Eastern Alps; highest, mean, 
and lowest values in °C per 100 m

Table 1.1 Mean diurnal and annual temperature ranges at an alpine valley station 
(Gastein, 1,100 m above sea level) and a mountain station (Sonnblick, 3,200 m)

Location Parameter January July Annual range

Gastein T
min

 (°C) −7.4 12.5 19.9
 T

max
 (°C) −1.5 21.1 22.6

Daily range (°C) 5.9 8.6 
Sonnblick T

min
 (°C) −14.2 0.5 14.7

 T
max

 (°C) −12.7 2.7 15.4
Daily range (°C) 1.5 2.2
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The change from polar day to polar night at latitudes beyond the polar circles 
(66.5 degrees) causes an asymmetry of solar forcing and an asymmetry in the 
annual march of temperature. Figure 1.4 shows how the annual march of temperature
changes from a nearly sinusoidal T(t) at Decepción to a so-called coreless winter in 
which T reaches low values in April and then slowly decreases to an August mini-
mum at the inland stations South Pole and Vostok.

1.4 Atmospheric humidity and precipitation

Atmospheric humidity is strongly controlled by air temperature, and to a lesser 
degree by the distance to the open sea. Table 1.2 gives figures relevant to humidity 
and phase transitions in the cryosphere.

Values of saturation vapour density (absolute humidity), and saturation pressure 
are given with respect to ice (i) and to supercooled water (w). Cloud droplets may 
stay liquid (supercooled) far below 0°C. Statistically, −15 to −20°C seems to be the 
modal temperature for the transitions from liquid water to ice in clouds, and super-
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Fig. 1.4 Mean monthly temperature at antarctic stations, determined by a mix of latitude and 
altitude of the locations. Note the coreless winters at South Pole and Vostok. From data by 
Schwerdtfeger in Orvig (1970)
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cooled droplets have been postulated for temperatures down to −38°C, a limit 
which is difficult to prove in real conditions.

It is useful to introduce the terms “temperate ice” which is at the melting point, 
and “cold ice” which is below freezing. The melting point is reduced below 0°C by 
ambient pressure, by chemical admixtures, and by the radius of curvature of snow 
grains in the sub-millimeter range.

From Table 1.1, it is obvious that saturations vapour pressure at 0°C is 47 times 
as large as that at −40°C which explains the decrease of atmospheric humidity and 
precipitation with latitude. While mean annual accumulation is between 1 and 2 m 
of water equivalent in the Alps, it is around 500 mm at the Antarctic coast and drops 
below 30 mm on the East Antarctic Plateau. A similar, but less impressive, decrease 
goes from subarctic mountains to the centre of the Arctic Ocean.

The change of precipitation in the Alps and other mountain ranges is controlled 
by altitude and may increase by a factor of three from the dry, screened interior to 
the wet, exposed margins at either side of the Alpine range. Screening effects are 
best developed in mid-latitude mountain ranges of N–S extent: Scandinavia, Pacific 
Coastal Ranges, Chilean Andes, Southern New Zealand.

1.5 The cryosphere: a matrix for life

The total extent, or an inventory of the cryosphere, is of little importance to micro-
biology; rather, it is the availability of solar radiation, liquid water and nutrients 
(Kuhn 2001; Psenner et al. 2003). These conditions in turn depend on altitude, latitude,
and on the cryospheric stratum, as there are: seasonal and perennial snow; glaciers, 
ice caps and ice sheets; lake and river ice, sea ice; and permafrost and various kinds 
of ground ice. These four groups differ primarily in their structure and in their con-
nection to other parts of the biosphere like water and soil, or in their response to 

Table 1.2 The change with temperature T of density ρ, saturation vapour density ρ
v
*, saturation 

vapour pressure e*, specific heat c and latent heat L. Indices i stand for ice, a for air, w for liquid 
water, v for vapour, m for melting (data from Linke and Baur 1970 and Brutsaert 1982)

T
(°C)

Density ρ
(kg m−3)

Saturation
vapour 
density
ρ

v
* (g m−3)

Saturation
vapour 
pressure
e* (hPa) Specific heat c (J kg−1 K−1)

Latent heat 
L (MJ kg−1)

ρ
i

ρ
a

ρ
vi
* ρ

vw
* e

i
* e

w
* c

i
c

w
c

a
c

v
L

v
L

m

+10 1.24 9.39 12.27 4,192 2.477
0 916.4 1.29 4.85 4.85 6.11  6.11 2,105 4,218 1,005 1,846 2.501 0.334
−10 917.4 1.34 2.14 2.36 2.60  2.86 2,030 4,271 2.525 0.312
−20 918.3 1.39 0.88 1.07 1.03  1.25 1,959 4,354 2.549 0.289
−30 921.0 1.45 0.39 0.45 0.38  0.51 1,884 4,520 2.574 0.264
−40 922.0 1.51 0.12 0.18 0.13  0.19 1,812 4,772 2.602 0.236
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climatic changes: while the seasonal snow pack receives an atmospheric forcing 
first, ground ice or the base of ice sheets are last. The structure of the cryospheric 
strata determines the transport of energy, water and nutrients, where both energy 
and nutrient fluxes may be connected to liquid water.

Of the four groups, lake, sea and ground ice are frozen water (congelation ice), 
while snow and glacier ice is of atmospheric origin (meteoric ice). Airborne crystals 
of a large variety of shapes, that are systematically determined by temperature and 
supersaturation of atmospheric water vapour, precipitate to build the snow pack at 
the Earth’s surface. The original, delicate snow crystals immediately start changing 
into rounded grains by what is called destructive metamorphism that transfers 
molecules from tips and convex sites on the crystal surface to the grooves and 
concave sites. The various stages of transformation are very well illustrated in the 
International Classification of Snow on the Ground (Colbeck et al. 1990). The 
granular shape makes for a denser packing of the snow, a density of about 300 kg m−3

being typical for old, dry alpine as well as polar snow.
Early winter snow packs experience heat flow from the ground beneath and heat 

loss to the atmosphere from the top layer, which may result in temperature gradi-
ents of several degrees per meter. Associated with the temperature gradient there is 
a strong gradient of vapour pressure in the pore space, which induces upward dif-
fusion of water vapour and the build-up of facetted crystals of a size of several mm, 
the so-called constructive metamorphism.

In polar snow, in the absence of melting and with weak temperature gradients, the 
further growth of snow grains and the final, gradual conversion to ice proceeds slowly. 
Under alpine conditions with frequent melt-freeze cycles, the grains become repeatedly 
surrounded by liquid water films. In that stage of metamorphism, the melting point 
of small grains is lower than that of the larger ones which will attain a modal size of 
1–2 mm. This is the uniform snow that skiers indulge in, calling it firn in their terminology 
(in glaciological terms, firn is the snow that has survived one hydrological year).

The snow matrix in the most general case consists of ice, liquid water, water 
vapour, air. It has peculiar properties, being permeable to both air and water flows at 
bulk snow densities of up to 830 kg m−3, and permeable to short wave radiation at any 
density. Its pore space, that is the volume not filled by ice, may contain water or gases. 
Convection in the pore space may transport latent heat of evaporation/sublimation, and 
sensible heat. There is a net radiative transfer of long wave (infrared) radiation from 
one pore wall to the opposite wall in a general temperature gradient. There is, of 
course, molecular conduction of heat through the snow matrix.

In summary, there are fluxes of air and liquid water through the snow pack, both 
including soluble and insoluble impurities. Electromagnetic radiation penetrates 
the snow pack, directly in the short wave range and wall-to-wall in the infrared. The 
molecular conduction becomes increasingly important in the deeper layers with 
increasing bulk density. It is usually formulated as

C = λ dT/dz
where the depth z is positive into the ground and C is positive when directed 
towards the surface. The thermal conductivity λ and the thermal diffusivity K effectively
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include all effects mentioned and thus strongly depend on density and associated 
permeability as shown in Table 1.3.

The extinction of solar radiation in snow and ice follows an exponential law 
according to

S↓ (z) = S↓ (0) e−κ z

where the extinction coefficient κ for shallow layers of dry snow has typical values 
of about 10–20 m−1 for spectrally broad bands (Meirold-Mautner 2004), corre-
sponding to a reduction of the radiation below 10 cm of snow to a fraction of 37–14% 
of the value incident at the surface. The value of κ strongly depends on wave length 
so that broad band extinction coefficients are not constant with depth. Extinction is 
least for the blue part of the spectrum, giving a blue shade to light that returns 
upward from deeper layers or crevasses. (Actually, it is the spectrum of the incident 
radiation, the spectral extinctions coefficient and the spectral sensitivity of the 
observer’s eye that together give snow its colour.)

1.6 Liquid water in the cryosphere

As liquid water is an essential asset of the biosphere, it is of particular interest to inves-
tigate the conditions under which it may occur in an environment of 0°C or less.

In the atmosphere, there are the supercooled cloud droplets mentioned in Sect. 1.4 that 
remain liquid in the absence of a freezing nucleus. Once they touch an ice crystal or 
splinter, or any other efficient nucleating agent, they freeze spontaneously. At subfreezing 
temperatures, liquid water in contact with solid surfaces has little chance to remain liquid.

At the surface of an ice crystal there is a layer of several molecules thickness 
in which the ice molecules are much more mobile than in the deeper layers of the 
crystal lattice, the so-called quasi liquid layer. It is best developed at freezing 
temperature and solidifies around −5°C. It is vital for the reduction of total surface 
free energy in the destructive metamorphism, the rounding of snow grains, as it 
allows for a much higher rate of transfer of molecules from the convex to the con-
cave sites on a crystal than would be possible by diffusion in the vapour phase.

Surface melting supplies most of the water found in the snow pack and on the glacier 
surface. At an atmospheric pressure of 1,013 hPa and with an energy supply of 334 kJ 
kg−1, ice melts when it reaches 0°C, independent of ambient air temperature. Ice may in 
fact melt at air temperatures down to at least −5°C and may stay frozen at air tempera-
tures of at least +5°C, depending on micrometeorological conditions (Kuhn 1987).

Table 1.3 Thermal conductivity λ and thermal diffusivity K of snow and ice at various 
bulk densities ρ

Bulk density (ρ; kg m−3)

100 200 300 500 917

Thermal conductivity (λ; W m−1 K−1) 0.0003 0.12 0.27 0.74 2.47
Thermal diffusivity (K; 10−6 m2 s−1) 0.0014 0.28 0.42 0.70 1.28
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Proceeding downwards on a glacier that spans the thermal regime from cold at 
the top to temperate at the terminus, one first walks on the dry facies, where melting 
never occurs. This is followed by a zone where snow melts at the surface but melt 
water does not percolate through the entire annual layer, leaving a dry layer between 
layers of refrozen snow. Farther below, melt water percolates the entire annual layer 
and refreezes as superimposed ice on the impermeable surface of the ice body. This 
form of latent heat transport is the reason why most alpine glaciers below 3,400 m 
are temperate in spite of mean annual ambient air temperatures far below freezing.

Below that zone, melting and net ablation of glacier ice prevails. Melt water 
produced at the glacier surface penetrates the ice in cracks, crevasses and in the 
funnels of moulins and leaves it in a system of braided channels.

Surface melting may produce extended areas of water-soaked firn where algal 
growth is promoted and further enhances melting on account of its low albedo 
(Meirold-Mautner 2004). When the firn pore space is saturated with melt water, the 
surface layer may accelerate downwards as a slush flow or may stagnate and form 
supraglacial lakes. These lakes have a lower albedo than the surrounding ice, 
absorb solar radiation and heat from the surface and throughout. Thereby, they 
attain water temperatures above freezing which are associated with increasing den-
sity up to 4°C. Where in contact with the underlying ice, their water stays at 0°C, 
which induces thermal downward convection of warmer, denser surface water and 
the positive feed back of enhanced melting.

A variation of this thermodynamic situation is displayed in the cryoconite holes, 
a sample of which is shown in Fig. 1.5. The biological importance of these features 
was first described by Steinböck (1936) of my home University of Innsbruck and 

Fig. 1.5 Cryoconite holes in the ablation zone of an alpine glacier. Note the absorbing sediments 
and the circular northern rim caused by the daily march of solar irradiance. The hole on the left 
has a length of about 20 cm
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has recently received revived interest (Margesin et al. 2002). When insoluble 
organic and inorganic particles move in the water film on top of a melting glacier, 
they may happen to concentrate and build a dark sediment that absorbs solar radia-
tion at a high rate, heats up and melts down into the ice. The circular shape of the 
cryoconite hole in Fig. 1.5 reflects the daily circle of solar radiation and its melting 
power. A radially small plaque of cryoconite or a small stone will melt vertically 
downward in the top centimeters of the ice; larger bodies like the one displayed in 
Fig. 1.5 will have an oblique melt channel of decimeter depth. Absorption of solar 
radiation that heats the bottom sediments up to a temperature of 4°C creates stable 
layering in the cryoconite hole and thus promotes downward melting.

Yet another thermodynamic situation is seen in the lakes of the Antarctic Dry 
Valleys which have a permanent ice cover of 3–6 m thickness (McKay et al. 1985). 
Here, water is kept liquid under an ice cover that separates it from air of mean 
annual temperature of −20°C. This is accomplished by a minor contribution of 
geothermal heat and a major energy gain from seasonal, or ephemeral, lateral influx 
of melt water from the ice free surroundings (Lewis et al. 1998), comparable in a 
particular way to the maintenance of temperate conditions in alpine glaciers versus 
an ambient temperature below freezing.

At the base of glaciers or ice sheets, the load of ice exerts an overburden pressure 
of 1 bar (105 Pa) per 11 m of ice thickness. The increased pressure in turn reduces 
the melting point by 0.76 × 10−6 per Pa so that the pressure melting point below 
4,000 m of ice is −2.8°C. These are conditions prevailing at a number of subglacial 
lakes in Antarctica (Siegert et al. 2001). Regardless of the extremely low surface 
temperatures of Antarctic ice, melting at the base of the ice sheet is powered by the 
geothermal heat flux which has a global average of 60 mW m−2, sufficient to melt 
7 mm of ice per year, a value that applies to the base of shallow, temperate glaciers 
as well.

1.7 Hot spots in the ice

The differential absorption of solar radiation by dark rocks may create isolated 
spots of temperatures far above freezing. While cryoconite, sand or small stones 
absorb more solar radiation than ice or snow, heat up and melt down into the ice, 
large rocks absorb similar amounts of energy per unit surface area, but due to their 
thickness have smaller temperature gradients and less heat conduction downward. 
Their energy gain is thus used to raise their temperature and, under alpine summer 
conditions, this may result in rock surface temperatures in excess of +40°C. One 
rock of 2 m diameter, protruding 1 m above the surrounding snow surface at 3,000 m 
above sea level, was measured with an IR thermometer in early summer in the 
Austrian Alps. Its surface temperature rose to 42°C in the early afternoon on its 
southerly aspect, and to a similar temperature on its western side about 1 h later.

A profile of surface temperatures from the glacier tongue of Hintereisferner 
across the moraine was recorded in late May, with peak temperatures again exceeding
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40°C. The values given in Fig. 1.6 show that wet sand is colder than dry sand as is 
to be expected due to the loss of latent heat; rocks in the vicinity of the glacier are 
cooler than those farther up due to the cooling effect of the katabatic glacier wind.

1.8 Conclusions

Contrary to common expectations the cryosphere harbors abundant life. While 
from the side of the biosphere this is the success of adaptive strategies, the geo-
sphere supports these by environmental conditions that supply light and energy, 
provide shelter in and under the snow and ice matrix, and enable the circulation of 
nutrients and liquid water.
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figures.
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Chapter 2
Limits for Microbial Life at Subzero 
Temperatures

Corien Bakermans

2.1 Introduction

The limitations of terrestrial life are not well-defined or understood and have 
primarily been advanced through exploration and discovery of organisms living in 
“extreme” environments where life was not thought possible. Identifying the limits 
of life is hampered by our inability to define the essential nature of life, rather than 
just describing its properties (organization, energy use, growth, adaptation, response 
to stimuli, reproduction). Similarly, until the twentieth century, we could not define 
the essential nature of water (a molecule composed of two atoms of hydrogen and 
one atom of oxygen joined by covalent bonds), only its properties (colorless, solvent,
liquid at specific temperatures and pressures). Additionally, when examining the 
limits of life, defining what is “alive” becomes more difficult. The metabolism of 
life is often separated into three classes: growth, maintenance, and survival (Morita 
1997). Clearly an organism that is metabolizing actively enough to reproduce itself 
exhibits growth and is considered living. But what about organisms that are actively 
metabolizing but not reproducing? In this case, energy is consumed for repair and 
maintenance of cellular structures to preserve the integrity of the organism, but 
cannot sustain reproduction. Maintenance may also allow adaptation and evolution 
to changing conditions over very long time spans (other definitions of maintenance 
do not generally include evolution). Finally, organisms routinely survive conditions 
at which they cannot actively metabolize by forming completely inactive dormant 
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states (such as spores) or with very weak intermittent metabolism for the repair of 
accumulated damage.

This review is primarily interested in microorganisms that are actively metabolizing 
for growth or maintenance, not merely survival, at extreme low-temperature conditions. 
Microorganisms that actively live at subzero temperatures must evolve mechanisms to 
deal with the accompanying thermodynamic constraints. These constraints include the 
reduction of available liquid water accompanied by the formation of ice crystals, lower 
rates of catalysis and transport, decreased membrane fluidity, and stabilization of 
molecular structures (Cavicchioli et al. 2000). Most of these thermodynamic con-
straints apply to all microorganisms at the lower limits of their growth temperature 
ranges; while the most severe constraints affect those microorganisms (psychrophiles) 
that grow at the lowest temperatures. Only recently have microbiologists begun to 
realize the potential for bacteria to actively survive, and even reproduce, at low tem-
peratures (Graumann and Marahiel 1996; Russell and Hamamoto 1998; Deming 2002; 
Bowman 2004). Recent exploration and investigations of low-temperature environments 
are redefining the known limits of microbial activity and are fueled by new techniques 
and capabilities. This chapter reviews the physical chemical effects of low temperatures 
and the activity of microorganisms at subzero temperatures.

2.2 Physical chemical effects of low temperatures

The effects of temperature derive from its essential nature: the energy of motion of 
atoms. Temperature is a measure of the average energy of motion (vibration, rotation,
or translation) of the atoms or molecules of a substance. Hence, cool molecules 
move, vibrate, and rotate less than hot molecules. Thermal energy promotes phase 
changes from solid to liquid to gas, diffusion of molecules within the gas or liquid 
phase, and conformation changes of enzymes and their substrates allowing chemical 
transformations to occur. As temperature decreases the available thermal energy 
(enthalpy) of a system decreases. The effects of temperature on liquid water, reaction 
rates, and molecular stability are discussed in the following sections.

2.2.1 Liquid water

Liquid water is essential to life, yet water freezes at the relatively high temperature 
of 0°C. Without liquid water, there is no solvent system for enzymes, membranes, 
etc., to function in or for substrates to diffuse in. Ice crystals can also pierce cell 
membranes causing extensive damage. Liquid water can be maintained below 0°C 
by a variety of physical chemical processes, such as: freezing point depression, 
ordering effects, supercooling, and pressure (Table 2.1).

In environmental systems, freezing point depression is the dominant process for 
sustaining liquid water at subzero temperatures. Freezing point depression occurs 
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through the addition of solutes and is proportional to molal concentration. Hence, 
seawater (3.5% salinity) freezes at −1.9°C, while a saturated (~30%) NaCl solution 
freezes at −21°C. As water freezes, pure water crystallizes first leaving a more 
concentrated solution that causes the freezing point to drop further. This will con-
tinue until the solution becomes saturated with solute, at which point further 
decreases in temperature result in crystallization of both solute and solvent. 
Freezing point depression allows for the presence of thin films of water in soils, sea 
ice, and glacial ice down to temperatures of −20, −26, and −56°C, respectively 
(Price 2000; Jakosky et al. 2003; Bock and Eicken 2005). Unless significant 
concentrations of solutes are present, the thin films present in soils may only correspond
to water adsorbed to the surface of mineral grains and ice crystals.

Adsorbed water has a lower freezing point than bulk water due to ordering 
effects associated with being in close proximity to an ordered surface, and can 
extend as far as 1 µm from the surface (Drost-Hansen 2001). Layers of adsorbed 
water may be too thin to allow for the movement of bacteria. However, adsorbed 
water may allow the transport of substrates and wastes (Cary and Mayland 1972; 

Table 2.1 Liquid water

T
m

a

(°C)
T

in situ
b

(°C) System

Film or vein 
thickness
(µm) a

w
c Reference

0 - H
2
O n/ad 1.0 -

- −1.5 Permafrost 0.015 0.99 Rivkina et al. (2000)
−1.9 - Seawater (3.5% 

salinity)
n/a 0.98 -

- −3 to −5 Lake Vostok accre-
tion ice

250–1000 0.92–0.96 Price (2000)

- −5 to −15 Ancient glacial ice 6–12 0.85–0.95 Price (2000)
- −10 Permafrost 0.005 0.9–0.99 Rivkina et al. (2000)
- −15 Sea ice 1–5 ~0.87 Bock and Eicken 

(2005)
- −20 Soil 0.005 0.99 Jakosky et al. (2003)
−21 - Saturated NaCl 

soln.
n/a 0.75 -

−22 - H
2
O under 
207.5 MPa pres-
sure

n/a 1.0 -

- −28 Sea ice <1 0.7–0.8 Bock and Eicken 
(2005)

−42 - Supercooled H
2
O n/a 1.0 -

- −52 Don Juan Pond, 
Antarctic; CaCl

2

and NaCl brine

n/a 0.45 Beaty et al. (2006)

- −56 Glacial ice 1–2 <0.67 Price (2000)
aMelting and freezing point temperature; benvironmental temperature; cwater activity; most values 
are estimates based on the solute concentration required to achieve freezing point depression; dnot
applicable


