
International Association 
of Geodesy Symposia 

 
Fernando Sansò, Series Editor 



International Association 
of Geodesy Symposia 

 

Fernando Sansò, Series Editor 
 
 

Symposium 101: Global and Regional Geodynamics 
Symposium 102: Global Positioning System: An Overview 
Symposium 103: Gravity, Gradiometry, and Gravimetry 
Symposium 104: Sea SurfaceTopography and the Geoid 

Symposium 105: Earth Rotation and Coordinate Reference Frames 
Symposium 106: Determination of the Geoid: Present and Future 

Symposium 107: Kinematic Systems in Geodesy, Surveying, and Remote Sensing 
Symposium 108: Application of Geodesy to Engineering 

Symposium 109: Permanent Satellite Tracking Networks for Geodesy and Geodynamics 
Symposium 110: From Mars to Greenland: Charting Gravity with Space and Airborne Instruments 

Symposium 111: Recent Geodetic and Gravimetric Research in Latin America 
Symposium 112: Geodesy and Physics of the Earth: Geodetic Contributions to Geodynamics 

Symposium 113: Gravity and Geoid 
Symposium 114: Geodetic Theory Today 

Symposium 115: GPS Trends in Precise Terrestrial, Airborne, and Spaceborne Applications 
Symposium 116: Global Gravity Field and Its Temporal Variations 

Symposium 117: Gravity, Geoid and Marine Geodesy 
Symposium 118: Advances in Positioning and Reference Frames 

Symposium 119: Geodesy on the Move 
Symposium 120: Towards an Integrated Global Geodetic Observation System (IGGOS) 

Symposium 121: Geodesy Beyond 2000: The Challenges of the First Decade 
Symposium 122: IV Hotine-Marussi Symposium on Mathematical Geodesy 

Symposium 123: Gravity, Geoid and Geodynamics 2000 
Symposium 124: Vertical Reference Systems 

Symposium 125: Vistas for Geodesy in the New Millennium 
Symposium 126: Satellite Altimetry for Geodesy, Geophysics and Oceanography 

Symposium 127: V Hotine Marussi Symposium on Mathematical Geodesy 
Symposium 128: A Window on the Future of Geodesy 
Symposium 129: Gravity, Geoid and Space Missions 

Symposium 130: Dynamic Planet - Monitoring and Understanding … 
Symposium 131: Geodetic Deformation Monitoring: From Geophysical to Engineering Roles 
Symposium 132: VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy  



VI Hotine-Marussi Symposium  
on Theoretical and Computational  

Geodesy 
 
 

IAG Symposium 
Wuhan, China 

29 May - 2 June, 2006 
 
 
 

 
Edited by  

Peiliang Xu 
Jingnan Liu 

Athanasios Dermanis 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Volume Editors
Dr. Peiliang Xu
Kyoto University
Disaster Prevention
Research Institute
Uji, Kyoto
611-0011
Japan

Professor Jingnan Liu
Wuhan University
GNSS Engineering Res. Center
430079 Wuhan
China

Professor Athanasios Dermanis
Aristotle University of Thessaloniki
Department of Geodesy & Surveying
University Box 503
54124 Thessaloniki
Greece

Series Editor
Professor Fernando Sansó
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Preface

The famous Hotine-Marussi Symposium series is
held once every four years and has been traditionally
focused on mathematical geodesy. The VI Hotine-
Marussi Symposium was organized by the Intercom-
mission Committee on Theory (ICCT) and success-
fully held from 29 May to 2 June, 2006, at Wuhan
University, PR China, with 162 registered scientists
and students from 20 countries and regions, in addi-
tion to many more unregistered attendees. It was
kindly sponsored by the International Association of
Geodesy and Wuhan University.

The VI Hotine-Marussi Symposium was unique in
the senses that: (i) this is the first Hotine-Marussi
symposium to go beyond mathematical geodesy; (ii)
this is the first time for a Hotine-Marussi symposium
to be held outside Europe; and (iii) this is the first
time that a Hotine-Marussi symposium was orga-
nized by an IAG entity instead of by Prof. F. Sanso
and his group, as was traditionally the case. An atten-
tive reader might soon notice the change of the title
for the VI Hotine-Marussi Symposium. Indeed, this
should be one of the most important aspects of the
Symposium and was carefully designed as a result of
many hours of discussion among Prof. A. Dermanis
(ICCT Vice President), Prof. F. Sanso (IAG Past
President and past organizer of the Hotine-Marussi
symposia), Prof. J.N. Liu (President of Wuhan Uni-
versity) and P.L. Xu (ICCT President), in particular,
also among the Scientific Committee members Prof.
J.Y. Chen, Prof. B. Chao, Prof. H. Drewes, Prof. H.Z.
Hsu, Prof. C. Jekeli, Dr. N.E. Neilan, Prof. C. Rizos
and Prof. S.H. Ye.

In fact, as part of the IAG restructuring, the
ICCT was formally approved and established after
the IUGG XXIII Assembly in Sapporo, to suc-
ceed the former IAG Section IV on General The-
ory and Methodology, and more importantly, to
actively and directly interact with other IAG Enti-
ties. The most important goals and/or targets of the
ICCT are: (1) to strongly encourage frontier math-
ematical and physical research, directly motivated

by geodetic need/practice, as a contribution to sci-
ence/engineering in general and the foundations for
Geodesy in particular; (2) to provide the channel of
communication amongst the different IAG entities
of commissions/services/projects, on the ground of
theory and methodology, and directly cooperate with
and support these entities in the topics-oriented work;
(3) to help the IAG in articulating mathematical and
physical challenges of geodesy as a subject of sci-
ence and in attracting young talents to geodesy; and
(4) to encourage closer research ties with and directly
gets involved with relevant areas of the Earth Sci-
ences, bearing in mind that geodesy has been playing
an important role in understanding the physics of the
Earth. In order to partly materialize the ICCT mis-
sions, we decided to use the VI Hotine-Marussi Sym-
posium as a platform for promoting what we believe
would be of most importance in the near future and
for strengthening the interaction with commissions.
This should clearly explain why we further decided
to modify the traditional title of Hotine-Marussi sym-
posia from “Mathematical Geodesy” to “Theoreti-
cal and Computational Geodesy”, with a subtitle to
emphasize challenge, opportunity and role of modern
geodesy, and why you could see from our symposium
programs that the IAG President Prof. G. Beutler,
the IAG Secrectary General Prof. C.C. Tscherning
and IAG commission Presidents Prof. H. Drewes,
Prof. C. Rizos were invited to deliver invited talks at
the Symposium, with our great honour, pleasure and
gratitude.

Scientifically, recognizing that geodetic observing
systems have advanced to such an extent that geode-
tic measurements:

(i) are now of unprecedented high accuracy and
quality, can readily cover a region of any scale
up to tens of thousands of kilometers, consist
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of non-conventional data types, and can be pro-
vided continuously;

(ii) consequently, demand new mathematical mod-
eling in order to obtain best possible benefit of
such technological advance; and

(iii) are finding applications that were either not pos-
sible due to accuracy limit or were not thought
of as part of geodesy such as space weather
and/or earth-environmental monitoring,

we designed and selected for the symposium the fol-
lowing five topics:

(i) Satellite gravity missions: open theoretical
problems and their future application;

(ii) Earth-environmental, disaster monitoring and
prevention by Geodetic methods;

(iii) GNSS: Mathematical theory, engineering appli-
cations, reference system definition and moni-
toring;

(iv) Deterministic and random fields analysis with
application to Boundary Value Problems,
approximation theory and inverse problems;
and

(v) Statistical estimation and prediction theory,
quality improvement and data fusion.

Some of these are either of urgent importance to
geodesy or are of potentially fundamental impor-
tance to geodesy, but not necessarily limited to
geodesy, at the very least, from our point of view.
To name a few examples, let us say that: (i) satel-
lite gravity missions are of current importance in and
far beyond geodesy, environmental monitoring, for
example; (ii) seafloor geodesy will become essen-
tial in the next one or two decades in Earth Sci-
ences, even though the invited speakers could not
find time to contribute their papers on the topic; and
(iii) mixed integer linear models should be a subject
that geodesists can make greatest possible contribu-
tions to mathematics and statistics.

Finally, we thank the International Association of
Geodesy and Wuhan University for financial support.
We thank all the conveners: B. Chao, D. Wolf, N.
Sneeuw, J.T. Freymueller, K. Heki, C.K. Shum, Y.
Fukuda, D.-N. Yuan, P. Teunissen, A. Dermanis, H.
Drewes, Z. Altamimi, B. Heck, Karlsruhe, P. Holota,
J. Kusche, B. Schaffrin, Y.Q. Chen, H. Kutterer and
Y. Yang, for their hard work to convene and to take
care of the review process of the Proceedings papers,
which are essential to guarantee the success of the
Symposium and the quality of the Proceedings. We
also thank the LOC team, in particular, Dr. X. Zhang
and Ms Y. Hu, for all their hard work.

Peiliang Xu
Jingnan Liu

Athanasios Dermanis
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K.H. Ilk, A. Löcher, T. Mayer-Gürr
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Conseil Général des Ponts et Chaussées, tour Pascal
B, 92055 La Défense, France
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UFR Sciences et Techniques, Bât. Géologie,
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Do We Need New Gravity Field Recovery Techniques
for the New Gravity Field Satellites?

K.H. Ilk, A. Löcher, T. Mayer-Gürr
Institute of Theoretical Geodesy, University of Bonn, Nussallee 17, D-53115 Bonn, Germany

Abstract. Theclassical approach of satellitegeodesy
consists in deriving the spherical harmonic coeffi-
cients representing the gravitational potential from an
analysis of accumulated orbit perturbations of artifi-
cial satellites with different altitudes and orbit incli-
nations. This so-called differential orbit improvement
technique required the analysis of rather long arcs of
days to weeks; it was the adequate technique for satel-
lite arcs poorly covered with observations, mainly pre-
cise laser ranging to satellites. The situation changed
dramatically with the new generation of dedicated
gravity satellites such as CHAMP, GRACE and –
in a couple of months – GOCE. These satellites are
equipped with very precise sensors to measure the
gravity field and the orbits. The sensors provide a very
dense coverage with observations independent from
Earth based observation stations. The measurement
concepts can be characterized by an in-situ measure-
ment principle of the gravitational field of the Earth. In
the last years various recovery techniques have been
developed which exploit these specific characteristics
of the in-situ observation strategy. This paper gives
an overview of the various gravity field recovery prin-
ciples and tries to systemize these new techniques.
Alternative in-situ modelling strategies are presented
based on the translational and rotational integrals of
motion. These alternative techniques are tailored to
the in-situ measurement characteristics of the innova-
tive type of satellite missions. They complement the
scheme of in-situ gravity field analysis techniques.

Keywords. CHAMP, GRACE, GOCE, differential
orbit improvement, in-situ measurement principle,
integrals of motion, energy integral, balance equa-
tions, gravity field recovery

1 Introduction

The success of the Global Navigation Satellite Sys-
tems (GNSS), the development of microcomputer

technology and the availability of highly sophisticated
sensors enabled space borne concepts of gravity field
missions such as CHAMP and GRACE and – to be
realized in acoupleofmonths–GOCE.Theinnovative
character of these missions is based on the continuous
and precise observations of the orbits of the low flying
satellites and the extremely precise range and range-
rate K-band measurements between the satellites in
case of GRACE. In addition, the surface forces acting
on these satellites are measured and can be consid-
ered properly during the recovery procedure. In case
of GOCE components of the gravity gradient are mea-
sured by a gravity gradiometer. The orbit decay of
GOCE is compensated by a feedback system coupled
with the measurement of the surface forces acting on
the satellite so that the kinematically computed orbit
is purely gravity field determined.

For the analysis of the observations frequently
the classical approach of satellite geodesy has been
applied. It consists basically in deriving the spher-
ical harmonic coefficients representing the gravita-
tional potential from an analysis of accumulated orbit
perturbations of artificial satellites with different alti-
tudes and orbit inclinations and of sufficient arc
lengths. This was an indispensable requirement in
case of the satellites available during the last three
decades with its poor coverage with observations.
On the other hand, the results based on the data
from satellite missions such as CHAMP and GRACE
demonstrated that a variety of satellites with vary-
ing inclinations and altitudes is not necessary for
the new generation of dedicated gravity satellites.
The measurement concept of these missions can be
characterized by an in-situ principle and the analy-
sis of accumulated orbit perturbations caused by the
inhomogeneous structure of the gravity field seems
to be not necessary. The question arises whether
the gravity field recovery techniques which were
tailored to the classical observation configurations
are still the proper tools for these new observation
scenarios?

3
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In the following section we will shortly character-
ize the classical techniques of satellite geodesy and
point out the characteristical features of these tech-
niques. Then a scheme of alternative techniques is
sketched, which tries to take into account the char-
acteristical features of the innovative type of satellite
missions. Gravity field recovery results have demon-
strated that very precise competitive models can be
achieved with these new in-situ techniques.

2 The Classical Techniques of Satellite
Geodesy

The classical techniques of satellite geodesy are
based on the use of satellites as high targets, as test
bodies following the force function acting on the
satellites and as platforms carrying sensors to detect
various features of the Earth system by remote sens-
ing principles.

The determination of the gravitational field and
selected position coordinates of terrestrial observa-
tion stations by using the satellites as test masses can
be performed by a differential orbit determination
procedure which is based on the classical (in most
cases non-relativistic) Newton–Euler formalism

d

dt
p(t) = 1

M
K(r, ṙ; t)→ r̈ = a, (1)

with the force function K(r, ṙ; t) or the specific force
function a, the position, velocity and the acceleration
vectors r, ṙ and r̈, as well as the linear momentum
p. A numerical as well as an analytical perturbation
strategy has been applied, frequently in a comple-
mentary way.

The numerical perturbation concept can be char-
acterized by the definitive orbit determination pro-
cess where differential corrections to the various
observed or unknown parameters are determined
numerically. It is based on the basic geometric
relation

ri (t) = Rli (t)+ Rl(t), (2)

with the geocentric position vector ri (t) to the
satellite i , the respective topocentric position vec-
tor Rli (t), referred to the observation station l and
the station vector Rl(t). This equation constitutes
the observation model which reads for a specific
observation time tk after inserting the observations
b̄i (ranges, direction elements, etc.) and the approx-
imate values for the (unknown) station coordinates
x0

S and the respective residuals dbi and corrections to
the station coordinates dxS

ri (tk) = Rli
(
tk; b̄i + dbi

)+ Rl

(
tk; x0

S + dxS

)
.

(3)
The orbit model is based on Newton–Euler’s equa-
tion of motion

r̈i (t) = aF (t; xF )+ aD(t; xi ), (4)

where the specific force function is composed of
the Earth-related specific force function aF (t; xF )

with the parameters xF and the orbit-related specific
disturbance forces aD(t; xi ) with the corresponding
model parameters xi . This equation has to be inte-
grated twice based on the initial values �0

i for the
orbit i , so that the non-linear model results in

ri (tk;�0
i + d�i , x0

i + dxi , x0
F + dxF ) =

= ri (tk, b̄i + dbi , x0
S + dxS).

(5)

A linearization leads to the so-called mixed adjust-
ment model. The partial differentials are determined
numerically by integrating the variational equations
or by approximating the partial differentials by par-
tial differences. Obviously, this model requires satel-
lite arcs of sufficient lengths because of two reasons.
On the one hand, the coverage of the satellite arcs
with observations was very poor in the past compared
to the situation nowadays. Therefore, to achieve a
sufficient redundancy it was necessary to use medium
or long arcs. On the other hand, to cover the charac-
teristic periodic and secular disturbances caused by
the small corrections to the approximate force func-
tion parameters it was necessary – at least useful – to
use medium or long satellite arcs as well.

This fact becomes even more visible by hav-
ing a closer look at the analytical perturbation
strategy. The explicit Lagrange’s perturbation equa-
tions expressed by classical Keplerian elements
a, i, e,Ω,ω, σ and the disturbing potential R read,
e.g. for the orbit inclination i and the right ascension
of the ascending nodeΩ

di

dt
= 1

na2
√

1− e2 sin i

(
cos i

�R

�ω
− �R

�Ω

)
,

dΩ

dt
= 1

na2
√

1− e2 sin i

�R

�i
.

(6)

Inserting Kaula’s expansions of the disturbing func-
tion in terms of the Keplerian elements leads to
the famous Kaula’s perturbation equations, with the
inclination function Fnmp , the excentricity function
Gnpq , etc. (refer to Kaula, 2000, for the explanation
of additional quantities):
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di

dt
=

∑

n,m,p,q

GM⊗an
⊗

Fnmp Gnpq S′nmpq√
GM⊗a

(
1− e2

)
an+1 sin i

·

· ((n − 2 p) cos i − m) ,
dΩ

dt
=

∑

n,m,p,q

GM⊗an
⊗

�Fnmp/�i Gnpq Snmpq√
GM⊗a

(
1− e2

)
an+1 sin i

.

(7)

Theseequationsdemonstrateafteracarefulanalysis
that thesecular effectsand thevariousperiodicitiescan
be detected only with arcs of sufficient length which
are able to cover these typical disturbance patterns
of the Keplerian elements. As typical effects we only
want to mention the dependency of the rotation of the
nodal line of the orbit plane and the line of apsides by
the zonal spherical harmonics. The situation is similar
also in case of the numerical perturbation techniques.
The practical experiences underline these numerical
characteristics of the perturbation strategies.

3 What Is New with the New Gravity
Field Satellite Missions?

A common feature of the new gravity field measure-
ment techniques is the fact that the differences of the
free-fall motion of test masses is used to derive more
or less in-situ the field strength of the gravity field.
This is obvious in case of Satellite Gravity Gradiom-
etry (SGG); here the relative acceleration of two test
masses M1 and M2 in the sensitivity axis r12 is mea-
sured. The main part of the acceleration is represented
by the tidal force field G(21)⊗ of the Earth which can
be approximated by the gravitational tensor∇g⊗:

r̈12 = r12 · ∇g⊗. (8)

There is no basic difference to the measurement prin-
ciple in case of Satellite-to-Satellite Tracking (SST)
in the low–low mode where the Earth’s gravity field
is measured also in form of the tidal field acting on
the relative motion of two satellites. It reads with the
line-of-sight unit vector e12, the reduced mass μ12
and the mutual gravitational attraction of both satel-
lites K21:

e12 · r̈12 = 1

μ12

(
K21 +G(21)⊗

) · e12. (9)

In this case the tidal force G(21)⊗ cannot be approx-
imated with sufficient accuracy by the gravitational
tensor. The same principle holds also in case of the
free-fall absolute gravimetry or by the use of precisely
determined kinematical orbits for gravity field recov-
ery; here the free fall of a test mass with respect to

the gravity field of the Earth is observed. The only
difference to low-low-SST is the fact that the specific
force function is dominated mainly by the gravita-
tional acceleration of the Earth, g⊗, and not by the tidal
force field G(21)⊗ as in case of low-low-SST or SGG:

r̈ = g⊗. (10)

Obviously, the in-situ character of these measure-
ment principles does not require the analysis of long
arcs with respect to accumulated gravity field effects,
because the gravity field is detected more or less
directly. It should be pointed out that in all these
different measurement scenarios the in-situ obser-
vations contain the complete spectral band of the
gravity field. Therefore, the frequently expressed
argument that long wavelength features of the grav-
ity field cannot be detected in such an in-situ way is
certainly not true. The restrictions with respect to the
signal content in certain observables are caused by
the spectral limitations of the measurement appara-
tus, such as in case of a satellite gravity gradiometer,
as envisaged for the GOCE mission.

4 A Systematic of In-Situ Gravity Field
Recovery Techniques

We define in-situ gravity field recovery concepts as
those which are based in principle on the precisely
observed free-fall motion of a test mass within the
Earth’s gravity field. This group of gravity measure-
ment techniques covers not only the absolute gravity
measurement concepts based on the free-fall prin-
ciple, but also SGG and SST in the high–low or
low–low mode or by analyzing short precisely deter-
mined kinematic arcs (POD) with respect to the Earth
(Figure 1). In the following, we will refer without
loss of generality on the motion of a single satellite
or test mass with respect to the Earth, but formulated
in an Inertial Reference System.

The gravity field recovery techniques can be
divided in three analysis levels (Figure 2). The analy-
sis level 1 is based directly on the observed precisely
determined kinematic positions, derived from GNSS
observations. It is related directly to the specific force
function via an integral equation of Fredholm type
(with the integral kernel K

(
t, t ′

)
):

r(t) = r̄(t)−
t∫

t0

K
(
t, t ′

)
g(r; t ′)dt ′. (11)

This equation has been applied by Mayer-Gürr
et al. (2005) for the determination of the precise
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test masses of a satellite
gravity gradiometry

ex-periment 

absolute
gravimetry:

free fall

POD satellite-to-satellite
tracking

point wise positions:
single or twofold
differentiation  

Fig. 1. In-situ free fall gravity field measurement techniques.

CHAMP gravity field models CHAMP-ITG 01E,
01K and 01S. The solution of this equation can be
formulated as well in the spectral domain:

r(t) = r̄(t)+
∞∑

ν=1

rν sin (νπτ) , (12)

with the normalized time τ (t). The sinus coeffi-
cients are related to the specific force function by the
relation (see, e.g., Ilk et al., 2003)

rν = − 2T 2

π2ν2

1∫

τ ′=0

sin
(
νπτ ′

)
g(r; τ ′)dτ ′. (13)

The analysis level 2 requires the numerical differ-
entiation of the time series of precise kinematically
determined positions at the (left) observation model
side and an integration of the force function at the
(right) orbit model side. Up to now this possibil-
ity has been applied frequently in the last years by

simple
differentiation 

twofold
differentiation 

simple
integration 

twofold
integration 

integral equation of
Fredholm type 

integrals of
motion 

equation of
motion 

analysis level
1

analysis level
2

analysis level
3 r��

r�

r

Fig. 2. The three analysis levels of the in-situ gravity field
recovery techniques.

various authors to determine the gravity field with a
sort of generalized Jacobi or energy integral (see e.g.
Jekeli (1999) or Gerlach et al. (2003) for the deriva-
tion of the CHAMP gravity field model TUM-1s).
The use of energy balance relations for the valida-
tion of gravity field models and orbit determination
results has been treated by Ilk and Löcher (2003) and
Löcher and Ilk (2005). In Löcher and Ilk (2006) new
balance equations have been formulated for valida-
tion and gravity field recovery.

These various integrals of motion can be derived
from Newton’s equation of motion starting with an
operation which transforms the acceleration term
into a function f and the force into a function h. If f
has the primitive F , the transformed equation

f
(
M,R, Ṙ, R̈

)− h
(
M,R, Ṙ,K

) = 0 (14)

results by integration over the time interval [t0, t] in

F
(
M,R, Ṙ

)−
t∫

t0

h
(
M,R, Ṙ,K

)
dt = C. (15)

The first term represents the “kinetic” term of the
observation model, the second term the force func-
tion integral of the orbit model. Figure 3 gives an
overview of all possible integrals of translational
motion and its functional dependencies and Figure 4
shows a similar flow chart for the integrals of rota-
tional motion (Löcher, 2006).

Despite their dependencies the various balance
equations show specific characteristics if they are
applied for validation and gravity field determination
tasks. Investigations demonstrated that these alterna-
tive balance equations show partly much better prop-
erties for validation and gravity field improvements
than the frequently used Jacobi integral.

The analysis level 3 requires a twofold numerical
differentiation at the observation model side and the
direct use of the orbit model. This approach is based
directly on Newton’s equation of motion, which bal-
ances the acceleration vector and the gradient of the
gravitational potential. By a twofold numerical dif-
ferentiation of a moving interpolation polynomial
in powers of the (normed) time τ , with a proper
degree N ,

r(τ ) =
N∑

n=0

τ n
N∑

j=0

wnj r(tk + τ j ), (16)

the parameters of the orbit model can be determined
directly based on the discretized Newton–Euler
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Fig. 3. Integrals of translational motion and its functional dependencies.

equation of motion. This technique has been success-
fully applied for the gravity field recovery based on
kinematical orbits of CHAMP (Reubelt et al., 2003).
A similar technique based on weighted averages of
three successive positions in the form of

r̈(t) = 1

M
K(r, ṙ; t)

= r(t − �t)− 2r(t)+ r(t − �t)

(�t)2
(17)

has been applied successfully by Ditmar et al. (2006).
Obviously the latter analysis level requires in princi-
ple only a subsequent set of precise positions which
represents again a short arc and the procedure can
again be characterized by the in-situ measurement
principle as defined before.

5 Conclusions

In this paper alternative in-situ gravity field recov-
ery procedures, applied in the last couple of years,

have been reviewed and additional ones have been
proposed. These recent techniques are tailored to the
specific characteristics of the new gravity field mis-
sions. In the past, only few observations, mostly laser
ranging data to the satellites were available. This
fact required the use of long arcs and the analysis
of accumulated gravity field effects in the observa-
tions to cover the periodicities of specific gravity
field disturbances. Numerical or analytical differen-
tial orbit improvement techniques have been applied
to solve for the unknown parameters. Especially the
analytical techniques required the modelling of the
gravity field by series of spherical harmonics. A dis-
advantage of these techniques is the accumulation of
improperly modelled disturbing forces. The require-
ment of comparably long arcs causes problems also
in case of gaps in the series of observations.

The recent gravity field missions such as CHAMP,
GRACE and – in a couple of months – GOCE
are characterized by the fact that the orbits show a
very dense coverage of precise GNSS observations
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and – as a result – very precise kinematical orbits. In
addition,highly precise rangeand range-ratemeasure-
ments between the GRACE satellites are available and
very precise gravity gradient components in case of
GOCE will be available soon. Instead of analyzing
accumulated orbit disturbances, the gravity field can
be determined in a more direct way by in-situ measure-
ment and analysis techniques by using short arcs. This
has some advantages: the accumulation of improperly
modelled disturbing forces can be avoided. Observa-
tion gaps are not critical and it is possible to perform
regional gravity field refinements by space localizing
base functions. Various investigations have shown that
there are additional gravity field signals in the obser-
vations over rough gravity field regions.

In a forthcoming paper under preparation gravity
field recovery tests will be performed based on these
different in-situ analysis techniques.
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A Localizing Basis Functions Representation
for Low–Low Mode SST and Gravity Gradients
Observations

W. Keller
Institute of Geodesy, Universität Stuttgart, Geschwister-Scholl-Str. 24D, D-70174 Stuttgart, Germany

Abstract. For geophysical/ oceanographic/ hydro-
logical applications of dedicated gravity field mis-
sions regional gravity field solutions are of higher
interest than the usual global solutions. In order to
derive regional solutions, so-called in-situ observa-
tions like line-of-sight accelerations or satellite gra-
diometry data are optimal, since they do not change,
if the potential outside a infinitesimal neighborhood
of the observation point changes. Therefore, in-situ
observations do not introduce influences from out-
side the region under consideration. The localization
on the observation-side has to be balaced by a local-
ization on the model-side.

The usual spherical harmonics representation is
not appropriate for the desired regional solution,
because spherical harmonics have a global support.
In order to model local phenomena by base functions
with a global support, the superposition of a large
number of those global base functions is necessary.

For this reason the paper aims at an establish-
ment of a direct relationship between several types
of in-situ observations and the unknown coefficients
of a localizing basis functions representation of the
regional gravity field.

Keywords. Satellite-to-satellite tracking, localizing
base functions, representation of rotation group,
Wigner functions

1 Introduction

The temporal data-sampling of the Earth’s gravity
field by an orbiting satellite is transformed via the
orbital movement of the satellite and the rotation of
the Earth into a spatial sampling on the surface of a
sphere. In general the resulting data-spacing on the
Earth is non-uniform and coarser than the theoreti-
cal resolution limit, stemming from the temporal data
sampling. The usual technique for the analysis of ded-
icated gravity field satellite missions is the the rep-
resentation of the resulting gravity field solution as a

series expansion in spherical harmonics. Due to the
fact that the related surface spherical harmonics have
a global support on the unit sphere and the data sam-
pling is non-uniform, the theoretical resolution limit,
deduced from the temporal data sampling rate, can-
not be reached and the spherical harmonics solution
includes a certain smoothing of details in the grav-
ity field. This becomes obvious when the original
observationsarecomparedwith syntheticobservation,
computed from an existing gravity field solution. In
Figure 1 the difference between the original GRACE
range-rates and the synthetic range-rates computed
from the GRACE gravity field solution GGSM02 is
plotted. It is clearly visible that the difference is not
whitenoisebutcontainsa residual signal.This residual
signal is caused by the fact that, due to their global sup-
port and due to the given data-distribution, spherical
harmonics are not able to capture all signal details. In
order to capture also the residual signal components,
two measures have to be taken

1. Representation of the residual (so far not captured
gravity field) by localizing basis functions in the
region under consideration.

2. Usage of so-called in-situ observation, as e.g.
line-of-sight accelerations or satellite gradiometry
data, for sensing of the residual field, to make sure
that no influences from outside the region under
consideration enter the observations.

In Keller and Sharifi (2005) it was shown that
with proper reductions low–low mode SST observa-
tions can be treated as along-track gravity gradients.
Therefore, the results to be presented here for gravity
gradients do implicitly also hold for low–low mode
SST observations.

So far the only in-situ observation with a clear
relationship to the unknown parameters of a local-
izing basis function representation are the radial
gravity tensor components observations (cf. Freeden
et al. (1999)). To the author’s knowledge no

10
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Fig. 1. Difference between original range-rates and synthetic
range-rates of GRACE along a 10 min arc.

other gravity-field related observations have been
expressed in a simple analytic form as functionals
on localizing base functions in geodetic literature so
far. The paper aims at an establishment of simple
relationships also for the along-track and the out-of-
plane gravity tensor components.

2 State-of-the-Art

Gravity field modeling by localizing base functions
means to approximate the unknown potential V by a
linear combination of special base functions:

V (x) =
∑

i

ciψi (x). (1)

Here the base functions ψi are localizing base func-
tions having the following structure

ψi (x) := ψ(g−1
i x), gi ∈ SO(3) (2)

and

ψ(x) =
∑

n∈N
σ 2

n Pn(e3 · x
‖x‖ ) (3)

where Pn are the Legendre-polynomials and e3 is
a unit-vector pointing in the direction of 3rd axis
of the underlying cartesian coordinate system. The
sequence {σn} controls the decay of the base func-
tion ψ . The generic base function ψ is located at the
north-pole of the sphere and the actual base functions
are the rotated copies of this generic function.

So far the only well-established method to relate
in-situ observations to a localizing base function rep-
resentation of the field is an approach which could be
called spectral modeling.

Spectral Modeling

Spectral modeling can be applied in those cases,
where the gravity field-related observation can
be represented by a so called invariant pseudo-
differential operator (PDO) p on C∞(σr ), the space
of all infinite often differentiable functions on a
sphere of radius r . A PDO is called invariant, if it is
invariant against rotations g out of SO(3)

[pu](g−1x) = p[u(g−1x)].

This leads to the consequence, that all surface spher-
ical harmonics Yn,m of the same degree n are eigen-
functions belonging to the same eigenvalue p ∧ (n)

pYn,m(
ω

r
) = p ∧ (n) · Yn,m(

ω

r
). (4)

The eigenvalues p∧(n) are called the spherical sym-
bols of the PDO p.

Examples for invariant PDOs are the radial deriva-
tives and the Poisson operator Pr

R for harmonic
upward continuation:

p p ∧ (n)

Pr
R

( R
r

)n+1

�u/�r − n+1
r

�2u/�r2 (n+1)(n+2)
r2

From the addition theorem

2n + 1

2
Pn(ζ ·η) =

n∑

m=−n

Yn,m(ζ )Y
∗
n,m(η), ζ, η ∈ σ1

(5)
for each invariant PDO p immediately follows

pψi (x) = ψ p
i (x) (6)

ψ p(x) :=
∑

n∈N

(
σ 2

n · p ∧ (n)
)

Pn(e3 · x
‖x‖ ) (7)

Hence the application of an invariant PDO on a base
function results in a change of its decay. The spec-
tral modeling assumes that a certain quantity � ∈
C∞(σr ) is given on the sphere σr , which is the image
of a unknown function u ∈ C∞(σR) under the invari-
ant PDO p

� = pu. (8)
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Both the given data � and the unknown function u
can be represented as linear combinations of systems
of localizing base functions ψ p

i and ψi , respectively.

� =
∑

i

ciψ
p
i , u =

∑

i

diψi , (9)

with the known coefficients di and the unknown coef-
ficients ci . Which leads via

∑

i

ciψ
p
1 = � = pu

=
∑

i

di pψi (10)

=
∑

i

diψ
p
i .

to a comparison of coefficients di = ci and from
there to the desired solution u. The spectral com-
bination is an inversion-free and stable method, but
restricted to first and second order radial deriva-
tives as observations. There is an extended literature
about spectral modeling. Without attempting to be
close to completeness the following newer references
are to be mentioned: Freeden et al. (1999), Freeden
and Hesse (2002), Freeden and Maier (2003), and
Schmidt et al. (2005, 2006). Unfortunately, the spec-
tral modeling is not directly applicable for along-
track and out-of-plane gravity gradients. The idea to
relate those observations to a localizing base function
representation of the unknown potential is similar to
the classical Lagrangian disturbing theory. There the
observed orbital disturbances are expressed as linear
combination of multi-periodic functions, weighted
by the unknown coefficients of the spherical harmon-
ics expansion of the potential. There are two dif-
ferences between the classical Lagrangian disturbing
theory and the development the paper is aiming at:

1. Instead of spherical harmonics here localizing
base functions are to be used.

2. Instead of orbital disturbances gravity gradients
in three orthogonal directions are used as obser-
vations.

The way this goal is to be achieved is similar to the
classical Lagrangian disturbing theory: Transforma-
tion of the potential representation to a coordinate
system, which follows the movement of the satellite
cf. Sneeuw (1992).

3 Representation Theory of SO(3)

Both the definition of a system of localizing radial
basis functions and the establishment of a relation-
ship between such a representation and in-situ obser-
vations make use of the representation theory of
SO(3). For this purpose the necessary results from
representation theory are to be compiled here.

The group of rotations of R
3 around the origin is

denoted by SO(3). It consists of real 3-by-3 orthog-
onal matrices of determinant +1. To each g =
u(γ )a(β)u(α) ∈ SO(3) an operator �(g) acting on
L2(σ ) can be associated

(�(g) f )(ω) := f (g−1ω), (11)

with the matrices a, u given by

a(α) :=
⎡

⎣
cosα 0 − sin α

0 1 0
sin α 0 cosα

⎤

⎦ (12)

and

u(β) :=
⎡

⎣
cosβ sin β 0
− sinβ cosβ 0

0 0 1

⎤

⎦ . (13)

Every rotated version �(g)Ȳnm of a surface spherical
harmonic is the following linear combination of the
non-rotated surface spherical harmonics of the same
degree:

�(g)Ȳnm(ϑ, λ) =
n∑

k=−n

D(g)nkmȲnk(ϑ̄, λ̄), (14)

with

Dl
km(g) = eıkαdl

km(β)e
ımγ , (15)

where ϑ̄, ϑ and λ̄, λ are co-latitude and longitude in
the non-rotated and the rotated system, respectively.

The functions dl
km(β) are called Wigner-d func-

tions and are defined as follows

dl
km(β) = (−1)m−k

√
(l + m)!(l − m)!

(l + k)!(l − k)!

×(sin
β

2
)m−k(cos

β

2
)k+m (16)

×P(m−k,m+k)
l−m (cosβ),

with P(m,n)l being the Jacobi Polynomials (Vilenkin
1968).
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4 Transformation to Orbital System

Local gravity field representation means an approxi-
mation of the residual field by rotated versions of the
radial base functions

δV (ω) =
N∑

i=1

ciψi (ω). (17)

In order to determine the unknown coefficients ci

and the unknown placements g−1
1 e3 in the radial

base function representation of the residual field, the
residual field has to be related to residual SST or gra-
diometry observations.

If a body-fixed coordinate system x, y, z is
attached to the satellite in such a way that x points
in radial, y points in along track and z points in
out-of-plane direction (see Figure 2), only for the
radial tensor component δVx x a simple relationship

Ω
ω

y

M

x3

x

x2

x1

z

i

Fig. 2. Body-fixed coordinate system (bottom) and its rela-
tionship to the space-fixed system (top).

to the free parameters ci of the field representation is
known. In what follows SO(3) representation theory
will be used to establish a similar relationship for the
remaining two tensor components δVyy, δVzz . The
relationship between the body-fixed and the space
fixed system is approximatively given by the follow-
ing rotation

g = u(�−�− π
2
)a(i)u(

π

2
+ ω + M) (18)

where ω,�, i,M are the mean elements of the
orbital arc under consideration.

The representation of a radial base function in the
rotating system is given by

(�(g)ψi )(x) = �(g)
∑

n∈N
σn

2

2n + 1

(
R

‖x‖
)n+1

n∑

m=−n

Yn,m(gi e3)Y
∗
n,m(

x
‖x‖ )

=
∑

n∈N
σn

2

2n + 1

(
R

‖x‖
)n+1

n∑

m=−n

Yn,m(gi e3) ·�(g)Y ∗n,m(
x
‖x‖ )

=
∑

n∈N
σn

2

2n + 1

(
R

‖x‖
)n+1

n∑

m=−n

Yn,m(gi e3) · Y ∗n,m(g−1ω̄).

Here, ω̄ is the position of the satellite in the rotating
system.

Since for an exact circular orbit ω̄ = e1 holds also
for weakly eccentric orbits approximatively holds:

(�(g)ψi )(x) =
∑

n∈N
σn

2

2n + 1

(
R

‖x‖
)n+1

n∑

m=−n

Yn,m(gi e3) · Y ∗n,m(g−1e1)

=
∑

n∈N
σn

(
R

‖x‖
)n+1

Pn((gi e3 · (g−1e1)).

Besides this an equivalent representation of
(�(g)ψi )(x) is useful:

(�(g)ψi )(x) =
∑

n∈N
σn

2

2n + 1

(
R

‖x‖
)n+1
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n∑

m=−n

Yn,m(gi e3) ·�(g)Y ∗n,m(
x
‖x‖ )

=
∑

n∈N
σn

2

2n + 1

(
R

‖x‖
)n+1

n∑

m=−n

Yn,m(gi e3) ·�(g)Y ∗n,m(
x
‖x‖ )

=
∑

n∈N
σn

2

2n + 1

(
R

‖x‖
)n+1

n∑

m=−n

Yn,m(gi e3)e
ım( π2 +ω+M) ·

n∑

k=−n

eık(�−�− π2 )dn
m,k(i)Yn,k(ω̄).

With the introduction of the abbreviations

Fn,m(i,�,�) :=
n∑

k=−n

eı[k(�−�− π2 )]dn
k,m(i)Yn,k(ω̄)

(19)
and

Gn,m(gi , ω,M) := Yn,m(gi e3)e
ım( π2 +ω+M) (20)

this leads to the final result

(�(g)ψi )(x) =
∑

n∈N
σn

2

2n + 1

(
R

‖x‖
)n+1

(21)

n∑

m=−n

Gn,m(gi , ω,M) ×

×Fn,m (i,�,�)

5 Observation Equations

The second order derivatives in

– x -radial direction
– y -along-track direction
– z -across-track direction

are given by (see Koop 1993):

�2�(g)ψi

�x2
= �2�(g)δV (ω)

�r2

=
∑

n∈N
σn

(
R

‖x‖
)n+3

× (n + 1)(n + 2)

R2

×Pn(gi e3 · (g−1e1))

�2�(g)ψi

�y2
= 1

a2

�2�(g)δV (ω)

�(M + ω)2 (22)

+1

a

��(g)δV (ω)

�r

=
∑

n∈N
σn
(n + 1)

Ra

(
R

‖x‖
)n+2

×Pn(gi e3)

−
∑

n∈N
σn

2

(2n + 1)a2

(
R

‖x‖
)n+1

n∑

m=−n

m2Yn,m(gi e3)Yn,m(ge1)

�2�(g)ψi

�z2
= �2�(g)δV (ω)

a2 sin2(M + ω)�i2

+1

a

��(g)δV (ω)

�r

=
∑

n∈N
σn
(n + 1)

Ra

(
R

‖x‖
)n+2

×Pn(gi e3)

+ 1

a2 sin2(M + ω)
∑

n∈N
σn

2

2n + 1

(
R

‖x‖
)n+1

n∑

m=−n

×

Gn,m(gi , ω,M) · �2 Fn,m (i,�,�)

�i2

Relations (22) establish the analytic relationships
between the localizing base functions representation
and gravity gradient observations in three orthogonal
directions.

6 Numerical Example

In order to verify the derivations above, a simple
forward computation was carried out. For a sin-
gle GOCE arc the along track gravity-gradient ten-
sor component δVyy was computed twice: Once by
numerical orbit computation and once using the rela-
tions (22). As gravity field a three-basis functions
regional model δV on top of GGSM02 was used.

In order to relate the arc to the residual poten-
tial, a projection of the satellite ground track onto
the residual potential is displayed in Figure 3. Along
this track the quantities δVyy were computed both
numerically and analytically. In Figure 4 the differ-
ence between the true gradiometry signal (i.e. the


