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Introduction

William Lahoz, Boris Khattatov, and Richard Ménard

This book came from a request from Springer to the editors to update knowledge
on the science of data assimilation and incorporate developments during the last
5 years. It is designed to update the science of data assimilation since the NATO
(North Atlantic Treaty Organization) Science Series Book “Data Assimilation for
the Earth System” (R. Swinbank, V. Shutyaev, W.A. Lahoz, eds.) came out in 2003,
and fill in some of the gaps in that book. The NATO Science Series Book was based
on a set of lectures presented at the NATO Advanced Study Institute (ASI) on Data
Assimilation for the Earth System, which was held at Maratea, Italy during May—
June 2002. That ASI grew out of a concern that there was little teaching available in
data assimilation, even though it had become central to modern weather forecasting,
and was becoming increasingly important in a range of other Earth disciplines such
as the ocean, land and chemistry.

Many changes have happened in the science of data assimilation over the last
5 years. They include the development of chemical data assimilation systems at
several centres world-wide, both research and operational; the increased interaction
between the research and operational communities; the use of data assimilation to
evaluate research satellite data; the use of data assimilation ideas, long applied to
weather forecast models, to evaluate climate models; the combination of theoretical
notions from variational methods and ensemble Kalman filter methods to improve
data assimilation performance; and the increased extension of data assimilation to
areas beyond the atmosphere and dynamics: chemistry, ionosphere, and other plan-
ets, e.g., Mars and Venus. There has also been a consolidation in the use of data
assimilation to evaluate future observations, and in the use of data assimilation in
areas such as the ocean and the land.

Parallel to these changes in the science of data assimilation, another remark-
able change over the last 5 years has been the increased presence of data
assimilation in teaching initiatives such as Summer Schools. These include the
now biennial ESA (European Space Agency) Earth Observation Summer School

W. Lahoz (X)
Norsk Institutt for Luftforskning, Norwegian Institute for Air Research, NILU, Kjeller, Norway
e-mail: wal @nilu.no
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(http://envisat.esa.int/envschool_2008/) and several others. It can now be said
that data assimilation has become a mainstream topic in the teaching of Earth
Observation.

The NATO Science Series book, although useful and a feature in many univer-
sity lecture courses, has some gaps. These include, for example, an overview of
data assimilation and its relationship to information, either in observations or mod-
els; a discussion of ensemble Kalman filter methods; a discussion of Observing
System Simulation Experiments (OSSEs); a discussion of tropospheric chemical
data assimilation; and a discussion of meteorology and dynamics.

This book is intended to build on the material from the NATO Science Series
book, address the above changes, and fill in the above gaps. Although there will
be inevitable gaps in this book, we think it will provide a useful addition to the
literature on data assimilation. To achieve this, we have asked world-leading data
assimilation scientists to contribute to the chapters. We hope we succeed, at least
until the next data assimilation book along these lines comes out in 5 years! Finally,
we dedicate this book to Andrew Crook (1958-2006) who was one of the original
chapter authors.

November 2009
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Data Assimilation and Information

William Lahoz, Boris Khattatov, and Richard Ménard

1 Introduction

In this introductory chapter we provide an overview of the connection between the
data assimilation methodology and the concept of information, whether embodied
in observations or models. In this context, we provide a step by step introduction to
the need for data assimilation, culminating in an easy to understand description of
the data assimilation methodology. Schematic diagrams and simple examples form
a key part of this chapter.

The plan is to first discuss the need for information; then discuss sources of infor-
mation; discuss the characteristics of this information, in particular the presence of
“information gaps”; provide an objective underpinning to methods to fill in these
information gaps; and discuss the benefits of combining different sources of infor-
mation, in this case from observations that sample in space and time the system of
interest (e.g. the atmosphere, the ocean, the land surface, the ionosphere, other plan-
ets), and models that embody our understanding of the system observed. Finally,
we bring together these ideas under the heading of “data assimilation”, provide a
schematic of the methodology, and provide three simple examples highlighting how
data assimilation adds value, the impact of spatial resolution on information, and
the impact of temporal sampling on information.

At the end of this chapter we identify the foci of this book and the order in which
they are presented in the book.

2 Need for Information
The main challenges to society, for example, climate change, impact of extreme

weather, environmental degradation and ozone loss, require information for an
intelligent response, including making choices on future action. Regardless of its

W. Lahoz (X)
Norsk Institutt for Luftforskning, Norwegian Institute for Air Research, NILU, Kjeller, Norway
e-mail: wal @nilu.no

W. Lahoz et al. (eds.), Data Assimilation, DOI 10.1007/978-3-540-74703-1_1, 3
Copyright © 2010 Crown in the right of Canada



4 W. Lahoz et al.

source, we wish to be able to use this information to make predictions for the
future, test hypotheses, and attribute cause and effect. In this way, we are able to
take action according to information provided on the future behaviour of the system
of interest, and in particular future events (prediction); test our understanding of the
system, and adjust this understanding according to new information (hypothesis test-
ing); and understand the cause of events, and obtain information on possible ways
of changing, mitigating or adjusting to the course of events (attribute cause and
effect).

We can identify a generic chain of information processing:

Gather information;

Test hypotheses based on this information;

Build methods to use this information to attribute cause and effect;
Use these methods to make predictions.

However, we still need two ingredients: a means of gathering information, and
methods to build on this information gathered. Roughly speaking, observations
(measurements) provide the first ingredient, and models (conceptual, numerical or
otherwise) provide the second ingredient. Note, however, that from the point of
view of information, observations and models are not distinct; it is the mechanism
of obtaining this information that is distinct: observations have a roughly direct link
with the system of interest via the measurement process; models have a roughly indi-
rect link with the system of interest, being an embodiment of information received
from measurements, experience and theory.

3 Sources of Information

We have two broad sources of information: measurements of the system of inter-
est (“observations”); and understanding of the temporal and spatial evolution of
the system of interest (“models”). Further details about observations and models
can be found in Part II, Observations, and Part 11, Meteorology and Atmospheric
Dynamics, respectively.

Observations (or measurements) sample the system of interest in space and time,
with spatial and temporal scales dependent on the technique used to make the mea-
surements. These measurements provide information on the system of interest and
contribute to building an understanding of how the system evolves in space and
time.

Understanding can be qualitative, e.g., how variables roughly “connect” or are
related, or quantitative, commonly expressed in equations. A rough, qualitative con-
nection can indicate that if the velocity of a particle increases, its kinetic energy also
increases. A quantitative connection based on equations assigns a numerical rela-
tionship between the velocity and the kinetic energy, so that we can make precise
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(subject to the accuracy of the calculation) the increase in kinetic energy given an
increase in velocity of the particle. Equations can come from general laws (e.g.
Newton’s laws of motion), or relations between parameters (e.g. empirical or statis-
tical). In general, quantification on the basis of laws tends to be more rigorous than
quantification on the basis of empirical or statistical relations, mainly because laws
have broad (if not universal) application, whereas empirical or statistical relations
tend to apply only to specific cases.

4 Characteristics of Information

To make use of the information embodied in observations and models it is nec-
essary to understand the characteristics of this information. In particular, we must
recognize that both observations and models have errors. We now discuss briefly
the nature of these errors.

Observations have errors which are characterized as random (also known as
precision), systematic (also known as bias) and of representativeness (or represen-
tativity). The sum of these errors is sometimes known as the accuracy. Random
errors have the property that they are reduced by averaging. Systematic errors, by
contrast, are not reduced by averaging; if known, they can be subtracted from an
observation. The representativeness error is associated with differences in the reso-
lution of observational information and the resolution of the model interpreting this
information.

Models also have errors. These errors arise through the construction of models, as
models can be incomplete due to a lack of understanding or due to processes being
omitted to make the problem tractable; and through their imperfect simulation of the
“real world”, itself sampled by observations or measurements. Thus, information,
whether in the form of observations or models has errors, and these have to be taken
into account. Further details about the nature of observational and model errors can
be found in the following chapters in Part I, Theory.

Another key feature of observations (or measurements) is that they are discrete
in space and time, with the result that the information provided by observations has
gaps (Fig. 1).

It is desirable to fill gaps in the information provided by observations: first, to
make this information more complete, and hence more useful; second, to provide
information at a regular scale to quantify the characteristics of this information.
Information at an irregular scale can be quantified, but this procedure is more
tractable when done with a regular scale.

Assuming a need to fill in the gaps in the observational information, the question
is how to do so. Conceptually, it is desirable to use information on the behaviour
of the system to extend the observations and fill in the gaps. This information is
provided by a model of how the system behaves; this model then allows one to
organize, summarize and propagate the information from observations. Note that
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Fig. 1 Plot representing ozone data at 10 hPa (approximately 30 km in altitude) for 1 February
1997 based on the observational geometry of ozone measurements from the MLS (Microwave
Limb Sounder) instrument onboard the National Aeronautics and Space Administration (NASA)
UARS (Upper Atmosphere Research Satellite) satellite. For information on UARS, see
http://mls.jpl.nasa.gov/uars/science.php. Blue denotes relatively low ozone values; red denotes
relatively high ozone values. Note the gaps between the satellite orbits. Thanks to Finn Bjgrklid
(NILU) for improving this figure

there can be differences in the resolution of the observations, and the resolution of
the models used to propagate the information in observations. This will introduce
errors when filling in the information gaps.

We now discuss algorithms to fill in the information gaps. The idea is that
the algorithm, embedded in a model, provides a set of consistent (i.e., mathe-
matically, physically or otherwise) and objective (i.e., based on impartial prin-
ciples) rules which when followed fill in the information gaps associated with
observations.

5 Objective Ways of Filling in Information Gaps

What algorithm should one use to fill in the information gaps associated with obser-
vations? There are a number of features that such an algorithm should have. The
most important ones are that it be feasible and that it be objective (and consistent).
From the point of view of feasibility, one could build a hierarchy of algorithms
of increasing complexity, starting, for example, with linear interpolation between
observations. A simple approach such as linear interpolation is feasible (because
simple) and, in cases where observations are dense enough, could be expected to be
reasonably accurate. However, although in principle consistent, it is not objective
(because not general) and, for example, in general it will not reflect how it is under-
stood systems such as the atmosphere behave. A more realistic approach would be
to fill in the gap using a model of how the system behaved. For example, for the
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atmosphere, we could use a model that embodies the equations of motion; radiative
transfer; physical processes such as convection; and chemistry. Such a model would
be more expensive to apply than a simple linear interpolation, but in principle would
provide a more accurate (and more objective) approach to filling in the information
gaps in the observations. In practice, one strikes a balance between using a model
that is feasible and using a model that is objective and consistent. Practically, one
seeks a model that is tractable and realistic.

We would like to find methods that allow the interpolation, i.e., filling in
of the observational information gaps using a model, to be done in an “intel-
ligent” way. By intelligent, we mean an “objective” way which makes use of
concepts for combining information that can be quantified. For example, by find-
ing the minimum or maximum value of a quantity that can be calculated from
the information available. In this way, we can think of the model as an intelli-
gent interpolator of the observation information: intelligent because it embodies
our understanding of the system; intelligent because the combination of the obser-
vational and model information is done in an objective way. Note that in practice,
the model (like the observations) provides information that is discrete in space and
time.

Mathematics provides rules for combining information objectively, based on
principles which aim to maximize (or minimize) a quantity (e.g. a “penalty
function”), or on established statistical concepts which relate prior information
(understanding, which comes from prior combination of observations and models)
with posterior information (which comes from making an extra observation).

In particular, mathematics provides a foundation to address questions such as:
“What combination of the observation and model information is optimal?”, and pro-
vides an estimate of the errors of the “optimum” or “best” estimate. This is known
as “data assimilation” (also as Earth Observation data/model fusion), and has strong
links to several mathematical disciplines, including control theory and Bayesian
statistics. The data assimilation methodology adds value to the observations by fill-
ing in the observational gaps and to the model by constraining it with observations
(Fig. 2 below). In this way, the data assimilation allows one to “make sense” of the
observations. Further details about the theory of data assimilation can be found in
the following chapters in Part I, Theory.

Mathematics also provides an algorithmic basis for applying data assimilation
to real problems, including, for example, weather forecasting, where data assim-
ilation has been very successful. In particular, over the last 25 years, the skill of
weather forecasts has increased — the skill of today’s 5-day forecast is comparable
to the skill of the 3-day forecast 25 years ago. Furthermore, the skill of forecasts
for the Southern Hemisphere is now comparable to that of the Northern Hemisphere
(Simmons and Hollingsworth 2002).

Mathematics also provides a theoretical and algorithmic basis for studying
the problem of data assimilation, notably by using simpler models to test ideas.
The results using these simpler models can then be used to inform data assim-
ilation developments with complex systems, such as those used for weather
forecasting.
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Fig. 2 Schematic of how data assimilation (DA) works and adds value to observational and
model information. The data shown are various representations of ozone data at 10 hPa
(about 30 km in height) on 23 September 2002. Lower left panel, “observations”: plot rep-
resenting the day’s ozone data based on the observational geometry of ozone measurements
from the MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) instrument
onboard the European Space Agency (ESA) Envisat satellite; for information on MIPAS, see
http://envisat.esa.int/instruments/mipas/. Lower right panel, “forecast”: plot representing a 6-day
ozone forecast (1200 UTC) based on output from a DA system. Top panel, “analyses”: plot rep-
resenting an ozone analysis (1200 UTC) based on output from a DA system. The DA system
associated with the lower right plot and the top plot is based on that at the Met Office, and is
described in Geer et al. (2006). Blue denotes relatively low ozone values; red denotes relatively
high ozone values. The DA method combines the observations with a model forecast (commonly
short-term, e.g., 6 or 12 h), including their errors to produce an ozone analysis. Note how the anal-
ysis (top panel) fill in the gaps in the observations (lower left panel), and the analysis captures the
Antarctic ozone hole split (verified using independent data not used in the assimilation) whereas
the 6-day forecast (lower right panel) does not. In this sense, the DA method adds value to both
the observations and the model. Thanks to Alan Geer for providing the basis of this figure and for
Finn Bjgrklid for improving the figure

6 Simple Examples of Data Assimilation

We now provide three simple examples highlighting how data assimilation adds
value (Example 1); the impact of spatial resolution on information (Example 2);
and the impact of remporal sampling on information (Example 3).

Example 1 Combining observations with understanding of a system, where both
pieces of information have finite errors, should, intuitively, increase the information
about the system. There are several ways of quantifying this increase in infor-
mation, one of them being the error embodied in the information, quantified by
the standard deviation. We discuss this using a simple example where informa-
tion from two scalar quantities with Gaussian (i.e., normally distributed) errors is
combined.
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Consider two observations (x;, x») of variable x, with associated variances (o';2,
022). Now assume that the observation errors are random, unbiased and normally
distributed. It can be shown that the optimum estimate (‘“‘most probable” value) is
given by:

with variance:

We can also see from this example that:

o] —> OO, X — X2,
o < min{olz,azz}.

We can see from this simple example that the error (variance) associated with
the combined information is generally lower than the error associated with any of
the two pieces of information being combined and that, at worse, it is equal to the
minimum of the errors of the individual pieces of information, but never larger. We
can also see obvious limiting cases, when the error of one of the pieces of informa-
tion being combined becomes infinitely large, i.e., the information from this piece
becomes vanishingly small. The result in this example can be generalized to two
observations (X1, Xp) of a vector variable x, with associated matrix error covariances
(S1, S2).

Although this simple example encapsulates how information is increased, this
result concerning variances only holds for Gaussian errors. For errors that are not
Gaussian, the variance of the combined information can be larger than that of one of
the pieces of information being combined. This apparently counter-intuitive result
indicates that variance is not the best way of measuring increases in information. In
fact, one must use the concept of entropy to consider errors with general probability
distributions.

Example 2 Consider a large square room, where temperature measurements are
made at each corner. What is the temperature at the centre of the room? What is
the temperature representative for the room? These questions concern the spatial
resolution of information, and how the latter changes as the former changes.

To estimate the temperature at the centre of the room we could average the four
corner temperatures, giving each measurement equal weight. This gives the same
result assuming the temperature varies linearly between opposite corners and taking
an average of the two resulting measurements. Regardless of how the final value is
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computed, a model of how the temperature varies in the room is needed to compute
the temperature at the centre of the room.

To estimate the temperature representative for the room we could proceed as
above. In this case we would be averaging the “point” temperature information from
each corner to provide “area” temperature information for the whole room. When
we use this estimate of the “area” temperature (or any other estimate) as represen-
tative of the room temperature, we incur an error of representativeness. This was
introduced in Sect. 4 above.

The impact of spatial resolution on the estimate for the temperature at the centre
of the room can be seen as follows. If we increase the number of measurements in
the room, for example along the walls or toward the centre, we tend to get a better
estimate of the temperature at the centre of the room, either because we are sam-
pling closer to the room centre, and/or we are obtaining more information of how
the temperature varies in the room. Higher spatial observational sampling gener-
ally provides (at least initially) better information on the system by reducing the
observational gaps. However, there comes a point where we do not get further infor-
mation, e.g., sampling the temperature at close enough locations in the room gives
essentially an unchanged temperature within the error of the measuring device. This
illustrates the concept of observational information saturation with respect to other
observations, where the measurement is no longer independent and provides no new
information.

The impact of spatial resolution on the estimate for the “area” temperature of
the room can be seen as follows. Assume the spatial resolution of the algorithm
(i.e., model) used to estimate the “area” temperature remains fixed. As we reduce
the spatial dimensions of the room the observational gaps become smaller, and the
estimate of the “area” temperature as calculated above (or generally using any algo-
rithm or model) initially tends to become more accurate. However, there comes a
point where, within the error of the algorithm, we do not get further information
if we continue reducing the spatial dimension of the observational gaps. We have
observational information saturation with respect to the model.

Through representation of errors, data assimilation takes account of the spa-
tial resolutions in the model and the observations, and the information saturation
between observations, and between the observations and the model.

Example 3 Consider a person walking along a path in the forest, gathering informa-
tion about their surroundings through their eyes, and keeping their eyes closed for
regular intervals. How does this person keep on the path when their eyes are closed?
How does the time the person keeps their eyes closed affect their progress along the
path? These questions concern the rate at which information is sampled in time, i.e.,
temporal sampling.

The person gathers observational information about their surroundings through
their eyes: “the path is straight”; “the path curves to the left”. This provides infor-
mation of the path to the person, who then incorporates it into a model of their
surroundings. This allows the person to keep along the path when their eyes are

closed: “keep straight ahead”; “turn left”. When the person next opens their eyes
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they can adjust (correct) their model of their surroundings depending on the new
observational information: “turn right”; “bend down to avoid a low tree branch”.
The combination of observational and model information allows the person to walk
along the path.

However, the amount of time the person keeps their eyes closed affects the qual-
ity of observational information they get about their surroundings. If the amount of
time is relatively short, say 1 s, the quality of observational information will be rela-
tively high and the person should be able to walk along the path without mishap. By
contrast, if the amount of time is relatively long, say 1 min, the quality of observa-
tional information will be relatively low and the person would be expected to have
problems walking along the path (note, however, that this depends on the nature
of the path, see later). This shows how temporal sampling can affect the quality of
observational information received, which in turn allows the correction of model
information.

If the path is straight, the amount of time the person keeps their eyes closed can
be relatively long and still allow them to be able to keep along the path without
mishap. This is because the model of the path (built from observational informa-
tion) is relatively simple: “keep on a straight line”, and does not need relatively
high temporal sampling to adjust it. Conversely, if the path has many bends without
pattern in their handedness, the model of the path (again, built from observational
information) is relatively complex: “keep turning in the direction of the path”, and
needs relatively high temporal sampling to adjust it. This shows how the complex-
ity of the system affects the temporal sampling of observational information needed
to adjust (i.e., keep “on track™) a model describing the system. The appropriate
complexity of a model describing the system depends on the character of the obser-
vational information gathered (observation types, errors, spatial resolution, temporal
sampling).

Data assimilation, by confronting the model with observations in time and space,
keeps the model on track.

7 Benefits of Combining Information

As seen in Fig. 2 above, and the examples in Sect. 6, combining information from
observations and a model adds value to both the observations and the model: the
information gaps in the observations are filled in; the model is constrained by the
observations. Other benefits accrue from “confronting” observations and models,
as is done in the data assimilation method. These benefits include the evaluation
of both the observations and the model. This evaluation of information is crucial
in Earth Observation (observational information); Earth System Modelling (model
information, i.e., information which embodies our understanding); and in meld-
ing observations with a model, which we call “data assimilation” (merging of
information). By evaluating information, shortcomings can be identified and
remedied, with a consequent improvement in the collection, propagation and use
of information.
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8 What This Book Is About

This book develops the theme introduced in this chapter, namely, the use of data
assimilation to make sense of observations. It has six foci:

Theory (the eight chapters in Part I following this chapter);
Observations (the three chapters in Part II);

Meteorology and Atmospheric Dynamics (the three chapters in Part I1I);
Atmospheric Chemistry (the four chapters in Part IV);

Wider Applications (the three chapters in Part V);

The Longer View (the three chapters in Part VI).

These foci span several cross-cutting axes: (i) the mathematics of data assimi-
lation; (ii) observations and models; (iii) the activities of the weather centres and
the activities of the research community; (iv) the different elements of the Earth
System: atmosphere, ocean, land and chemistry; (v) evaluation and production of
added-value analyses; and (vi) the success of the data assimilation method and
future developments. These are exciting times for data assimilation and we hope
this book conveys this excitement.
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Mathematical Concepts of Data Assimilation

N.K. Nichols

1 Introduction

Environmental systems can be realistically described by mathematical and numeri-
cal models of the system dynamics. These models can be used to predict the future
behaviour of the system, provided that the initial states of the system are known.
Complete data defining all of the states of a system at a specific time are, however,
rarely available. Moreover, both the models and the available initial data contain
inaccuracies and random noise that can lead to significant differences between the
predicted states and the actual states of the system. In this case, observations of the
system over time can be incorporated into the model equations to derive “improved”
estimates of the states and also to provide information about the “uncertainty” in the
estimates.

The problem of state-estimation is an inverse problem and can be treated using
observers and/or filters derived by feedback design techniques (see, for example,
Barnett and Cameron 1985). For the very large non-linear systems arising in the
environmental sciences, however, many traditional state-estimation techniques are
not practicable and new “data assimilation” schemes have been developed to gener-
ate accurate state-estimates (see, for example, Daley 1993; Bennett 1992). The aim
of such schemes can be stated as follows.

The aim of a data assimilation scheme is to use measured observations in combination with
a dynamical system model in order to derive accurate estimates of the current and future
states of the system, together with estimates of the uncertainty in the estimated states.

The most significant properties of the data assimilation problem are that the
models are very large and non-linear, with order O(10’-10%) state variables. The
dynamics are multi-scale and often unstable and/or chaotic. The number of obser-
vations is also large, of order 0(105—106) for a period of 6 h, but the data are not
evenly distributed in time or space and generally have “holes” where there are no
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observations (see chapter Data Assimilation and Information, Lahoz et al.). In prac-
tice the assimilation problem is generally ill-posed and the state estimates may be
sensitive to errors.

There are two basic approaches to this problem. The first uses a “dynamic
observer,” which gives a sequential data assimilation scheme, and the second uses
a “direct observer,” which gives a four-dimensional data assimilation scheme. In
the first case, the observations are “fed-back” into the model at each time these
are available and a best estimate is produced and used to predict future states. In
the second case a feasible state trajectory is found that best fits the observed data
over a time window, and the estimated states at the end of the window are used to
produce the next forecast. Under certain mathematical assumptions these processes
solve the same “optimal” state-estimation problem. In operational systems, solv-
ing the “optimal” problem in “real-time” is not always possible, and many different
approximations to the basic assimilation schemes are employed.

In the next section the data assimilation problem is formulated mathematically.
In subsequent sections various techniques for solving the assimilation problem are
discussed.

2 Data Assimilation for Non-linear Dynamical Systems

A variety of models is used to describe systems arising in environmental appli-
cations, as well as in other physical, biological and economic fields. These range
from simple linear, deterministic, continuous ordinary differential equation mod-
els to sophisticated non-linear stochastic partial-differential continuous or discrete
models. The data assimilation schemes, with minor modifications, can be applied to
any general model.

We begin by assuming that for any given initial states and given inputs, the equa-
tions modelling the dynamical system uniquely determine the states of the system
at all future times. This is known as the “perfect” model assumption. In the follow-
ing subsections we define the data assimilation problem for this case and examine
its properties. Next we determine a best linear estimate of the solution to the non-
linear assimilation problem. The data assimilation scheme is then interpreted in a
stochastic framework and the “optimal” state-estimate is derived using statistical
arguments. We consider the case where the model includes errors in the system
equations in a later section of this chapter.

2.1 Basic Least-Squares Formulation for Perfect Models

Data assimilation schemes are described here for a system modelled by the discrete
non-linear equations

Xpt1 = Mpgs1(xp), k=0,...,N—1, (D
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where x; € R” denotes the vector of n model states at time 7 and My 41 : R* —
R" is a non-linear operator describing the evolution of the states from time #; to time
tt+1. The operator contains known inputs to the system including known external
forcing functions that drive the system and known parameters describing the system.
Prior estimates, or “background estimates,” xg, of the initial states xq at time 7
are assumed to be known, usually provided by a previous forecast.
The observations are assumed to be related to the system states by the equations

Vi = Hi(x) + &, k=0,....N, 2)

where y, € Rk is a vector of py observations at time #; and Hy : R" — RPkisa
non-linear operator that includes transformations and grid interpolations. The obser-
vational errors €] € RP consist of instrumentation errors and representativity (or
representativeness) errors (see chapter Data Assimilation and Information, Lahoz
et al.).

For the “optimal” analysis, we aim to find the best estimates x} for the system
states Xi, k = 0, ..., N, to fit the observations y, k = 0, ..., N, and the background
state Xg, subject to the model equations (1). We write the problem as a weighted
non-linear least-squares problem constrained by the model equations.

Problem 1 Minimize, with respect to Xq, the objective function

1 T
]25 (xo —XS) Bgl (xo —XS)—}—

1 _ 3)
+ 5 20 = Yo R (Hexe) = ),
k=0
subjectto x¢, k = 1,..., N, satisfying the system equations (1) with initial states x.

The model is assumed here to be “perfect” and the system equations are treated as
strong constraints on the minimization problem. The states Xy that satisfy the model
equations (1) are uniquely determined by the initial states and therefore can be writ-
ten explicitly in terms of X¢. Substituting into the objective function (3) then allows
the optimization problem to be expressed in terms of the initial states alone. The
assimilation problem, Problem 1, thus becomes an unconstrained weighted least-
squares problem where the initial states are the required control variables in the
optimization.

The weighting matrices By € R"*" and Ry € RP*Pk k= 0,1...,N, are taken
to be symmetric and positive definite and are chosen to give the problem a “smooth”
solution. They represent, respectively, the uncertainty in the background states (prior
estimates) and the observations. The objective function (3) can then be written in the
compact form:

1 , 1
J(x0) = Ellf(xo)llz = Ef(xo) f(x0), “)
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where
—1/2 b
B, " (x0 — xp)
R, ' (Ho(x0) — yo)
fixo)= | o VHONOITYol )
Ry, (Hy(xw) — yy)
and x; = Mox(xo), k = 1,...,N, satisfy the system equations (1) with initial states

X at time f( (see Lawless et al. 2005). The matrices B(; 12 and Rk_l/ 2 denote the
inverses of the symmetric square roots of By and Ry, respectively.

In this approach the initial states are treated as parameters that must be selected
to minimize the weighted mean square errors between the observations predicted
by the model and the measured observations over the time window and between the
initial and background states. The initial state is adjusted to different positions in
order to achieve the best fit, using an efficient iterative minimization algorithm.

2.2 Properties of the Basic Least-Squares Formulation

The solution xg to the least-squares problem (4) is known as the analysis. The anal-
ysis may not be well-defined if B, U'= 0, that is, if no background state is specified.
In that case the number and locations of the observations may not be sufficient to
determine all the degrees of freedom in the optimization problem; in other words,
the system may not be “observable.” If the weighting matrix By is non-singular,
however, then, provided the operators M i and Hy, are continuously differentiable,
the stationary points of the least-squares problem are well-defined. The weighted
background term acts as a “regularization” term, ensuring the existence of a solution
and also damping the sensitivity of the solution to the observational errors (Johnson
et al. 2005a, b).

Under these conditions, the stationary points of the objective function (4) satisfy
the gradient equation, given by

Vxod = Jf(x0) = 0, (6)

where J is the Jacobian of the vector function f defined in (5). The Jacobian can be
written in the compact form

Hy

-1/2 H M

B A 1Mo, 1

J= <ﬁ‘ll/zﬁ>,H= : , ©)
HyMo
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where R = diag{Ry} is a block diagonal matrix containing the weighting matrices
R; on the diagonal. The matrices Mo and Hy denote the Jacobians of the model
and observation operators My and Hy, respectively; that is,

Moy
X

OHy
X0 > k = K

Mo «

Mo k(x0)

If By is non-singular, then the Jacobian J, given by (7), is of full rank and the
stationary points satisfying the gradient equation (6) are well-defined. Stationary
points are not unique, however, and may not yield a minimum of the non-linear
assimilation problem. If a stationary point is such that the Hessian V,%OJ , of the
objective function (3) (or equivalently (4)) is positive-definite at that point, then the
stationary point is a local minimum of the assimilation problem (see Gratton et al.
2007). It should be noted that multiple local minima of the assimilation problem
may exist.

We remark that the sensitivity of the analysis to small perturbations in the data
depends on the “conditioning” of the Hessian, V,%OJ , that is, on the sensitivity of the
inverse of the Hessian to small perturbations. If small errors in the Hessian lead to
large errors in its inverse, then the computed solution to the data assimilation prob-
lem may be very inaccurate. In designing data assimilation schemes, it is important,
therefore, to ensure that the conditioning of the Hessian is as small as feasible, or to
use “preconditioning” techniques to improve the conditioning.

2.3 Best Linear Least-Squares Estimate

In general, explicit solutions to the non-linear data assimilation problem, Problem 1,
cannot be found. A “best” linear estimate of the solution to the non-linear problem
can, however, be derived explicitly. We assume that the departure of the estimated
analysis x;j from the background xg is a linear combination of the innovations dy =
Yi — Hk (xz) k = 0,1,...,N, and find the estimate for xg that solves the least-
squares data assimilation problem as accurately as possible.

To determine the estimate, we linearize the assimilation problem about the non-
linear background trajectory x! = Moy (Xg), k = 1,...,N. We denote by the
matrices Hy and My the linearizations of the observation and model operators Hy
and M, respectively, about the background trajectory; that is,

0 Hy
ox

The linearized least-squares objective function is then given by

_ aMok

by =
X 0.k

H; =

ox b
X0

N

-1 _ 1 _

J= Eango '8x0 + 3 E (HiMox8x0 — d) R, (HiMo k%0 — di),  (8)
k=0
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where §xg = (xo — xg). Using the compact form of the Jacobian (7), the gradient
equation of the linearized problem may be written

Vxod =By (xo — x5) +
N
+ 3 (HMop R, (HeMog (%o — x§) — (Ve — He (x7)))

k=0 Ta—1 Ta—1 ©)
= (B' + AR ) (xo - %) + AR 4
=0,
where d = (dg , dIT, e, d](,)T is the vector of innovations.

The optimal linear state-estimate for x{j is then the solution to the gradient
equation (9) and is given by

x¢ = x5 4 Kd, (10)
where

k= (B + AR 'R) AR =B’ (BB R) . ()
The matrix K is known as the gain matrix.

For systems where the model and observation operators are linear, the analysis
(10) and (11) is an exact, unique, stationary point of the data assimilation problem,
Problem 1. For non-linear systems multiple stationary points of the objective func-
tion (3) may exist and the analysis (10) and (11) is only a first order approximation to
an optimal solution, due to the linearization of the non-linear model and observation
operators.

The Hessian of the linearized objective function (8) at the analysis (10) and (11)
is given by

V2= (Bg1 + ﬁTﬁ_lﬁ) . (12)

If By is non-singular, then the matrix (12) is symmetric and positive-definite and (10)
and (11) provides the “best” linear estimate of the minimum of the data assimilation
problem, Problem 1, in a region of the state space near to the background.

2.4 Statistical Interpretation

The data assimilation problem, as formulated in Problem 1, determines a least-
squares fit of the model predictions to the observations, subject to constraints.
An estimate of the “uncertainty” in this analysis would be valuable. If additional
assumptions about the stochastic nature of the errors in the initial state estimates and
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the observations are made, then the solution to the data assimilation problem can be
interpreted in statistical terms and the uncertainty in the analysis can be derived.

To obtain a statistical formulation of the data assimilation problem, we assume
that the errors (Xo—Xg) between the true initial states Xo and the prior background
estimates xg are randomly distributed with mean zero and covariance matrix By €
R The observational errors 312 e RPk k =0,...,N, defined in (2), are assumed
to be unbiased, serially uncorrelated, randomly distributed vectors with zero means
and covariance matrices Ry € RP*Pk The observational errors and the errors in the
prior estimates are assumed to be uncorrelated.

Under these basic statistical assumptions, given the prior estimates xg, and the
observations yx, k = 0,...,N, the “best linear unbiased estimate,” or BLUE, of
the true state Xq at time 7y equals the best least-squares estimate (10) and (11) for
the analysis x{. The uncertainty in this estimate is described by the analysis error
covariance, which is given by

A = (I, — KH)B,. (13)

Over all linear combinations of the innovations of form (10), the BLUE minimizes
the analysis error covariance and is thus the solution to the assimilation prob-
lem with minimum variance. The analysis given by (10) and (11) is therefore the
“optimal” linear estimate in this sense.

In addition to the basic statistical assumptions, the errors in the prior estimates
and in the observations are commonly assumed to have Gaussian probability distri-
butions, which are fully defined by the means and covariances specified. In this case,
the solution to the data assimilation problem, Problem 1, is equal to the maximum
a posteriori Bayesian estimate of the system states at the initial time. From Bayes
Theorem we have that the posterior probability of (xg — xg), given the departures
from the observations (y, — Hx(Xx)), k =0, ..., N, satisfies

p(x0 = xbly = Hax), k=0,....N) =

= ap(xo — xg) ,o(yk — Hi(Xx), k=0,...,N[xo — xg) , (o

where ,o(xo —xg) is the prior probability of (xo —xg) and p(y, — Hi(Xk),

k=0,...,N|xg — XS) is the conditional joint probability of (y, — Hi(Xk)), k =
0,...,N, given (xo — xg). The scalar « is a normalizing constant that ensures that
the value of the posterior probability is not greater than unity. The “optimal” analysis
is then the initial state that maximizes the posterior probability.

From the assumption that the probability distributions are Gaussian, we have that

P (xo - xg) o exp |:—% (xo — XS)TB_I (Xo — XS)]
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and
1
(¥ — Hi(xx)) o< exp [_i(yk — Hex)) R (v — Hk(xk))i| )

fork =0,1,...,N. Taking the log of the posterior probability and using the assump-
tions that the observational errors are uncorrelated in time and uncorrelated with the
background errors, we find that

J(x0) = —In[p(x0 — X5lyx — Hk(xx),k =0,...,N)]

- —In[p(xo—x2)] - é In [p(ve — Hets)]. 1s)

(See Lorenc 1986, 1988.) The solution xy to the data assimilation problem,
Problem 1, that minimizes J(Xo) is therefore equivalent to the maximum Bayesian a
posteriori likelihood estimate.

If the model and observation operators are linear and the errors are normally
distributed (i.e., Gaussian), then the maximum a posteriori Bayesian estimate and
the minimum variance estimate are equivalent. The BLUE, given explicitly by (10)
and (11), with zero mean and covariance (13), is thus the unique optimal in both
senses.

In practice the error distributions may not be Gaussian and the assumptions
underlying the estimates derived here may not hold. Ideally, we would like to be
able to determine the full probability distributions for the true states of the system
given the prior estimates and the observations. This is a major topic of research and
new approaches based on sampling methods and particle filters are currently being
developed.

Techniques used in practice to solve the data assimilation problem, Problem 1,
include sequential assimilation schemes and variational assimilation schemes.
These methods are described in the next two sections.

3 Sequential Data Assimilation Schemes

We describe sequential assimilation schemes for discrete models of the form (1),
where the observations are related to the states by the Eq. (2). We make the perfect
model assumption here. We assume that at some time #;, prior background esti-
mates xf for the states are known. The differences between the observations of the
true states and the observations predicted by the background states at this time,
(yk —H (XZ)) known as the innovations, are then used to make a correction to the
background state vector in order to obtain improved estimates xj, known as the anal-
ysis states. The model is then evolved forward from the analysis states to the next
time #4+1 where observations are available. The evolved states of the system at the
time ;41 become the background (or forecast) states and are denoted by xf 1 The
background is then corrected to obtain an analysis at this time and the process is
repeated.



