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Dedicated to Bernhard Korte



Preface

The editors and authors dedicate this book to Bernhard Korte on the occasion of his
seventieth birthday. We, the editors, are happy about the overwhelming feedback to
our initiative to honor him with this book and with a workshop in Bonn on November
3–7, 2008. Although this would be a reason to look back, we would rather like to look
forward and see what are the interesting research directions today.

This book is written by leading experts in combinatorial optimization. All pa-
pers were carefully reviewed, and eventually twenty-three of the invited papers were
accepted for this book.

The breadth of topics is typical for the field: combinatorial optimization builds
bridges between areas like combinatorics and graph theory, submodular functions
and matroids, network flows and connectivity, approximation algorithms and mathe-
matical programming, computational geometry and polyhedral combinatorics.

All these topics are related, and they are all addressed in this book. Combina-
torial optimization is also known for its numerous applications. To limit the scope,
however, this book is not primarily about applications, although some are mentioned
at various places.

Most papers in this volume are surveys that provide an excellent overview of an
active research area, but this book also contains many new results. Highlighting many
of the currently most interesting research directions in combinatorial optimization,
we hope that this book constitutes a good basis for future research in these areas.

We owe sincere thanks to all authors for their valuable contributions. We also
thank all referees for carefully reviewing the papers and making many suggestions
for improvements. Special thanks go to Ina Prinz for her portrait and cover design,
and to Klaus Radke for technical help. Moreover, we thank Springer-Verlag for the
efficient cooperation. Last, but not least, our most important thanks go to Bernhard
Korte, without whom the field of combinatorial optimization would not be the same.

Atlanta, Budapest, and Bonn, William Cook
June 2008 László Lovász

Jens Vygen
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Guyslain Naves, András Sebő . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

13 Many Facets of Dualities
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1

On the Location and p-Median Polytopes

Mourad Baïou and Francisco Barahona

Summary. We revisit classical systems of linear inequalities associated with loca-
tion problems and with the p-median problem. We present an overview of the cases
for which these linear systems define integral polytopes. We also give polynomial
time algorithms to recognize these cases.

1.1 Introduction

Facility location and p-median are among the most well-studied problems in com-
binatorial optimization. They are both NP-hard, so there is not much hope of having
a complete polyhedral characterization of them. The linear programming relaxations
that we use have been known since the 60’s and have been the basis for many heuris-
tics, branch and bound algorithms, and approximation algorithms. Despite all this
work, very little is known about special cases where these formulations give integral
polytopes, and also there are not many special cases where the associated polytope
has been completely characterized. We have found a characterization of the graphs
for which these linear relaxations define polytopes with all extreme points being in-
tegral. Here we present an overview of all these cases. We also give polynomial time
algorithms to recognize these classes of graphs. Our characterization shows the basic
structures that a graph contains when the polytope has fractional extreme points.

We first deal with location problems, we show that the linear relaxation gives
an integral polytope if and only the graph does not contain a certain type of “odd”
cycles. Then we deal with the p-median problem. We show that there are five con-
figurations that should be forbidden in order to have an integral polytope. Here the
proof consists of three parts as follows. First we show the result for the so-called
Y -free graphs. We denote by Y some basic configuration in the graph. The result
on Y -free graphs is used to start an induction proof for oriented graphs. These are
directed graphs where between any two nodes u and v, at most one of the arcs (u, v)

and (v, u) exists. Here the induction is done on the number of Y configurations. The
third part consists of extending our result to general directed graphs. Here the induc-
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tion is done on the number of pairs of nodes u and v such that both (u, v) and (v, u)

exist. The initial step of the induction is given by the result on oriented graphs.
This paper is organized as follows. Section 1.2 contains some definitions. Sec-

tion 1.3 deals with location problems. Section 1.4 covers the p-median problem. In
Sect. 1.5 we give an algorithm to recognize the graphs defined in Sect. 1.4. Sec-
tion 1.6 is devoted to some extensions.

1.2 Preliminary Definitions

A directed graph G = (V ,A) is called oriented if (u, v) ∈ A implies (v, u) /∈ A. For
a directed graph G = (V ,A) and a set W ⊂ V , we denote by δ+(W) the set of arcs
(u, v) ∈ A, with u ∈ W and v ∈ V \W . Also we denote by δ−(W) the set of arcs
(u, v), with v ∈ W and u ∈ V \ W . We write δ+(v) and δ−(v) instead of δ+({v})
and δ−({v}), respectively. If there is a risk of confusion we use δ+G and δ−G. A node u

with δ+(u) = ∅ is called a pendent node.
A simple cycle C is an ordered sequence

v0, a0, v1, a1, . . . , ap−1, vp,

where

• vi , 0 ≤ i ≤ p − 1, are distinct nodes,
• ai , 0 ≤ i ≤ p − 1, are distinct arcs,
• either vi is the tail of ai and vi+1 is the head of ai , or vi is the head of ai and vi+1

is the tail of ai , for 0 ≤ i ≤ p − 1, and
• v0 = vp.

By setting ap = a0, we associate with C three more sets as below.

• We denote by Ĉ the set of nodes vi , such that vi is the head of ai−1 and also the
head of ai , 1 ≤ i ≤ p.

• We denote by Ċ the set of nodes vi , such that vi is the tail of ai−1 and also the
tail of ai , 1 ≤ i ≤ p.

• We denote by C̃ the set of nodes vi , such that either vi is the head of ai−1 and
also the tail of ai , or vi is the tail of ai−1 and also the head of ai , 1 ≤ i ≤ p.

Notice that |Ĉ| = |Ċ|. A cycle will be called odd if p+|Ċ| (or |C̃|+ |Ċ|) is odd,
otherwise it will be called even. A cycle C with Ċ = ∅ is a directed cycle. The set of
arcs in C is denoted by A(C).

If we do not require v0 = vp we have a path P . In a similar way we define Ṗ , P̂
and P̃ , excluding v0 and vp. We say that P is odd if p + |Ṗ | is odd, otherwise it is
even. For the path P , the nodes v1, . . . , vp−1 are called internal.

If G is a connected graph and there is a node u such that its removal disconnects
G, we say that u is an articulation point. A graph is said to be two-connected if at
least two nodes should be removed to disconnect it. For simplicity, sometimes we
use z to denote the vector (x, y), i.e., z(u) = y(u) and z(u, v) = x(u, v). Also for
S ⊆ V ∪ A we use z(S) to denote z(S) =∑

a∈S z(a).
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A polyhedron P is a set defined by a system of linear inequalities, i.e., P =
{x |Ax ≤ b}. A face of P is obtained by setting into equation some of these inequal-
ities. An extreme point of P is given by a face that contains a unique element. In
other words, some inequalities are set to equation so that this system has a unique
solution. A polytope is a bounded polyhedron. A polyhedron is called integral if all
its extreme points are integral.

1.3 Location Problems

Let G = (V ,A) be a directed graph, not necessarily connected, where each arc and
each node has weight associated with it. We study a “prize collecting” version of a
location problem (LP) as follows. A set of nodes is selected, usually called centers,
and then each non-selected node can be assigned to a center. The weight of a node is
the revenue obtained by opening a facility at that location, minus the cost of building
the facility. The weight of an arc (i, j) is the revenue obtained by assigning the
location i to the location j , minus the cost originated by this assignment. The goal is
to maximize the sum of the weights of the selected nodes plus the sum of the weights
yielded by the assignment. The linear system below defines a linear programming
relaxation.

max
∑

w(u, v)x(u, v)+
∑

w(v)y(v)
∑

(u,v)∈A
x(u, v)+ y(u) ≤ 1 ∀u ∈ V, (1)

x(u, v) ≤ y(v) ∀(u, v) ∈ A, (2)

0 ≤ y(v) ≤ 1 ∀v ∈ V, (3)

x(u, v) ≥ 0 ∀(u, v) ∈ A. (4)

For each node u, the variable y(u) takes the value 1 if the node u is selected and 0
otherwise. For each arc (u, v) the variable x(u, v) takes the value 1 if u is assigned
to v and 0 otherwise. Inequalities (1) express the fact that either node u can be se-
lected or it can be assigned to another node. Inequalities (2) indicate that if a node
u is assigned to a node v then this last node should be selected. The set of integer
vectors that satisfy (1)–(4) corresponds to a transitive packing as defined in Müller
and Schulz (2002).

Let P(G) be the polytope defined by (1)–(4), and let LP(G) be the convex hull
of P(G) ∩ {0, 1}|V |+|A|. Clearly

LP(G) ⊆ P(G).

Here we characterize the graphs G for which LP(G) = P(G). More precisely, we
show that LP(G) = P(G) if and only if G does not contain an odd cycle. We also
give a polynomial algorithm to recognize the graphs in this class.

The Uncapacitated Facility Location Problem (UFLP) is a variation where V is
partitioned into V1 and V2. The set V1 corresponds to the customers, and the set V2
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corresponds to the potential facilities. Each customer in V1 should be assigned to an
opened facility in V2. This is obtained by considering A ⊆ V1 × V2, fixing to zero
the variables y for the nodes in V1 and setting into equation the inequalities (1) for
the nodes in V1. More precisely, the linear programming relaxation for this case is

min
∑

c(u, v)x(u, v)+
∑

d(v)y(v)
∑

(u,v)∈A
x(u, v) = 1 ∀u ∈ V1, (5)

x(u, v) ≤ y(v) ∀(u, v) ∈ A, (6)

0 ≤ y(v) ≤ 1 ∀v ∈ V2, (7)

x(u, v) ≥ 0 ∀(u, v) ∈ A. (8)

Here we also characterize the cases for which (5)–(8) defines an integral polytope.
We omit the proofs of several technical lemmas, the full details appear in Baïou

and Barahona (2006). The facets of the uncapacitated facility location polytope have
been studied in Guignard (1980), Cornuejols and Thizy (1982), Cho et al. (1983a,
1983b) and Cánovas et al. (2002). In Baïou and Barahona (2005) we gave a de-
scription of LP(G) for Y -free graphs. The UFLP has also been studied from the
point of view of approximation algorithms in Shmoys (1997), Chudak and Shmoys
(2003), Sviridenko (2002), Byrka and Aardal (2007) and others. Other references
on this problem are Cornuejols et al. (1976), Mirchandani and Francis (1990). The
relationship between location polytopes and the stable set polytope has been studied
in Cornuejols and Thizy (1982), Cho et al. (1983a, 1983b), De Simone and Man-
nino (1996), and others. It would be interesting to know if our results also have an
equivalent in terms of stable set polytopes, but so far we have not found the right
transformation.

1.3.1 Decomposition

In this subsection we consider a graph G = (V ,A) that decomposes into two graphs
G1 = (V1, A1) and G2 = (V2, A2), with V = V1∪V2, V1∩V2 = {u}, A = A1∪A2,
A1∩A2 = ∅. We define G′

1 that is obtained from G1 after replacing u by u′. We also
define G′

2, obtained from G2 after replacing u by u′′. The theorem below shows that
we have to concentrate on two-connected graphs.

Theorem 3.1. Suppose that the system

Az′ ≤ b, (9)

z′
(
δ+
G′

1
(u′)

)
+ z′(u′) ≤ 1 (10)

describes LP(G′
1). Suppose that (9) contains the inequalities (1)–(4) except for (10).

Similarly suppose that

Cz′′ ≤ d, (11)

z′′
(
δ+
G′

2
(u′′)

)
+ z′′(u′′) ≤ 1 (12)
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describes LP(G′
2). Also (11) contains the inequalities (1)–(4) except for (12). Then

the system below describes an integer polytope.

Az′ ≤ b, (13)

Cz′′ ≤ d, (14)

z′
(
δ+
G′

1
(u′)

)
+ z′′

(
δ+
G′

2
(u′′)

)
+ z′(u′) ≤ 1, (15)

z′(u′) = z′′(u′′). (16)

We have the following corollary.

Corollary 3.2. The polytope LP(G) is defined by the system (13)–(16) after identify-
ing the variables z′(u′) and z′′(u′′).

This last corollary shows that if LP(G′
1) and LP(G′

2) are defined by (1)–(4), then
LP(G) is also defined by (1)–(4). Thus we have to concentrate on graphs that are
two-connected. A result analogous to Theorem 3.1, for the stable set polytope, has
been given in Chvátal (1975).

1.3.2 Graph Transformations

First we plan to prove that if G has no odd cycle then LP(G) = P(G). The proof
consists of assuming that z̄ is a fractional extreme point of P(G) and arriving at
a contradiction. Below we give several assumptions that can be made about z̄ and
G, they will be used in the next subsection. The proofs of the lemmas below con-
sist of modifying the graph and the vector z̄ so that we obtain a new extreme point
associated with a new graph satisfying the assumptions below.

Lemma 3.3. We can assume that G consists of only one connected component.

Lemma 3.4. If 0 < z̄(u, v) < z̄(v), we can assume that v is a pendent node with
|δ−(v)| = 1 and z̄(v) = 1.

Lemma 3.5. We can assume that 0 < z̄(u, v) < 1 for all (u, v) ∈ A.

Lemma 3.6. We can assume that G is either two-connected or it consists of a single
arc.

If the graph G consists of a single arc it is fairly easy to see that LP(G) = P(G),
so now we have to deal with the two-connected components. This is treated in the
next subsection.

1.3.3 Treating Two-Connected Graphs

In this subsection we assume that the graph G is two-connected and it has no odd
cycle. Let z̄ be a fractional extreme point of P(G), we are going to assign labels l to
the nodes and arcs and define z′(u, v) = z̄(u, v) + l(u, v)ε, z′(u) = z̄(u) + l(u)ε,
ε > 0, for each arc (u, v) and each node u. We shall see that every constraint that is
satisfied with equality by z̄ is also satisfied with equality by z′. This is the required
contradiction.
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Given a path P = v0, a0, . . . , ap−1, vp. Assume that the label of a0, l(a0) has
the value 1 or −1. We define the labeling procedure as follows.

For i = 1 to p − 1 do

• If vi is the head of ai−1 and it is the tail of ai then l(vi) = l(ai−1), l(ai) =
−l(ai−1).

• If vi is the head of ai−1 and it is the head of ai then l(vi) = l(ai−1), l(ai) =
l(ai−1).

• If vi is the tail of ai−1 and it is the head of ai then l(vi) = −l(ai−1), l(ai) =
−l(ai−1).

• If vi is the tail of ai−1 and it is the tail of ai then l(vi) = 0, l(ai) = −l(ai−1).

Notice that the labels of v0 and vp were not defined.
We have to study several cases as follows.

Case 1. G contains a directed cycle C = v0, a0, . . . , ap−1, vp. Assume that the head
of a0 is v1, set l(v0) = −1, l(a0) = 1 and extend the labels as above.

Case 2. G contains a cycle C = v0, a0, . . . , ap−1, vp and Ċ �= ∅. Assume v0 ∈ Ċ.
Set l(v0) = 0, l(a0) = 1 and extend the labels.

The lemma below is needed to show that for v0, the constraints that were satisfied
with equality by z̄ remain satisfied with equality.

Lemma 3.7. After labeling as in Cases 1 and 2 we have l(ap−1) = −l(a0).

Notice that after the first cycle has been labeled as in Cases 1 or 2, the properties
below hold, we shall see that these properties hold throughout the entire labeling
procedure.

Property 1 If a node has a nonzero label, then it is the tail of at most one labeled arc.

Property 2 If a node has a zero label, then it is the tail of exactly two labeled arcs.

Once a cycle C has been labeled as in Cases 1 or 2, we have to extend the labeling
as follows.

Case 3. Suppose that l(v0) �= 0 for v0 ∈ C (v0 is the head of a labeled arc), and there
is a path P = v0, a0, v1, a1, . . . , ap−1, vp in G such that:

– v0 is the head of a0,
– vp ∈ C,
– {v1, . . . , vp−1} is disjoint from C.

We set l(a0) = l(v0) and extend the labels. Case 3 is needed so that any inequality (2)
associated with v0 that is satisfied with equality, remains satisfied with equality.

We have to see that the label l(ap−1) is such that constraints associated with vp
that were satisfied with equality remain satisfied with equality. This is discussed in
the next lemma.

Lemma 3.8. If vp is the head of ap−1 then l(ap−1) = l(vp). If vp is the tail of ap−1
then l(ap−1) = −l(vp).
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Fig. 1.1. Possible paths in C between v0 and vp . It is shown whether v0 and vp are the head
or the tail of the arcs in C incident to them

Proof (cf. Baïou and Barahona 2006). Notice that v0 /∈ Ċ, in Fig. 1.1 we represent
the possible configurations for the paths in C between v0 and vp. In this figure we
show whether v0 and vp are the head or the tail of the arcs in C incident to them.
These two paths are denoted by P1 and P2.

Consider configuration (1), these two paths should have different parity. When
adding the path P , an odd cycle is created with either P1 or P2. So configuration (1)
will not occur. The same happens with configuration (2).

Now we discuss configuration (3). These two paths should have the same parity.
If vp is the tail of ap−1 then P would create an odd cycle with either P1 or P2.
If vp is the head of ap−1 then P should have the same parity as P1 and P2. Then
l(ap−1) = l(vp).

The study of configuration (4) is similar. The two paths should have the same
parity. If vp is the tail of ap−1 then P would create an odd cycle with either P1 or
P2. If vp is the head of ap−1 then P should have the same parity as P1 and P2, and
l(ap−1) = l(vp).

For configuration (5) again the two paths should have the same parity. If vp is the
head of ap−1 then P should have the same parity as P1 and P2, and l(ap−1) = l(vp).
If vp is the tail of ap−1 then P should have the same parity as P1 and P2, and
l(ap−1) = −l(vp).

Also in configuration (6) the paths P1 and P2 should have the same parity. If vp
is the tail of ap−1 then P would form an odd cycle with either P1 or P2. If vp is the
head of ap−1 then P should have the same parity as P1 and P2, and l(ap−1) = l(vp).

In configuration (7) also the two paths should have the same parity. If vp is the
head of ap−1 then P should have the same parity as P1 and P2, and l(ap−1) = l(vp).
If vp is the tail of ap−1 then P should have the same parity as P1 and P2, and
l(ap−1) = −l(vp). �

Based on this the labels are extended successively. Denote by Gl the subgraph
defined by the labeled arcs. This is a two-connected graph, so for any two nodes
v0 and vp it contains a cycle going through these two nodes. Thus we can check if
Case 3 applies and extend the labels adding each time a path to the graph Gl . The
two lemmas below show that Properties 1 and 2 remain satisfied.

Lemma 3.9. Let vp be a node with l(vp) �= 0. If vp is the tail of an arc in Gl , then
in Case 3 it cannot be the tail of ap−1. Thus Property 1 remains satisfied.
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Lemma 3.10. Let vp be a node with l(vp) = 0, thus vp is the tail of exactly two arcs
in Gl . Then in Case 3 it cannot be the tail of ap−1. Therefore Property 2 remains
satisfied.

Once Case 3 has been exhausted we might have some nodes in Gl that are not
pendent in G and that are only the head of labeled arcs. For such nodes we have to
ensure that inequalities (1) that were satisfied as equality remain satisfied as equality.
This is treated in the following.

Case 4. Suppose that v0 is only the head of labeled arcs, (l(v0) �= 0), v0 is not
pendent. We have that δ+(v0) �= ∅ thus there is a cycle C in Gl and there is a path
P = v0, a0, v1, a1, . . . , ap−1, vp in G such that:

– v0 ∈ C is the tail of a0,
– vp ∈ C,
– {v1, . . . , vp−1} is disjoint from Gl .

We set l(a0) = −l(v0) and extend the labels. We have to see that the label l(ap−1)

is such that constraints associated with vp, that were satisfied with equality, remain
satisfied with equality. This is discussed below.

Lemma 3.11. In Case 4 we have that vp is the tail of ap−1 and l(ap−1) = −l(vp).
Also Properties 1 and 2 continue to hold.

To summarize, the labeling algorithm consists of the following steps.

• Step 1. Identify a cycle C in G and treat it as in Cases 1 or 2. Set Gl = C.
• Step 2. For as long as needed label as in Case 3. Each time add to Gl the new set

of labeled nodes and arcs.
• Step 3. If needed, label as in Case 4. Each time add to Gl the new set of labeled

nodes and arcs. If some new labels have been assigned in this step go to Step 2,
otherwise stop.

At this point we can discuss the properties of the labeling procedure. The labels
are such that any inequality (2) that was satisfied with equality by z̄ is also satisfied
with equality by z′. To see that inequalities (1) that were tight remain tight, we need
two observations about Gl :

• Any node that has a nonzero label is the tail of exactly one labeled arc having the
opposite label.

• If u is a node with l(u) = 0, then there are exactly two labeled arcs having
opposite labels and whose tail is u.

Finally we give the label “0” to all nodes and arcs that are unlabeled, this completes
the definition of z′. Lemma 3.5 shows that inequalities (4) will not be violated. The
fact that nodes v with z̄(v) = 0 or z̄(v) = 1 receive a zero label, shows that inequal-
ities (3) will not be violated. Any constraint that is satisfied with equality by z̄ is
also satisfied with equality by z′, this contradicts the assumption that z̄ is an extreme
point. We can state the main result of this subsection.
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Theorem 3.12. If the graph G is two-connected and has no odd cycle then LP(G) =
P(G).

This implies the following.

Theorem 3.13. If G is a graph with no odd cycle, then LP(G) = P(G).

Theorem 3.14. For graphs with no odd cycle, the uncapacitated facility location
problem is polynomially solvable.

1.3.4 Odd Cycles

In this subsection we study the effect of odd cycles in P(G). Let C be an odd cycle.
We can define a fractional vector (x̄, ȳ) ∈ P(G) as follows:

ȳ(u) = 0 for all nodes u ∈ Ċ, (17)

ȳ(u) = 1/2 for all nodes u ∈ C \ Ċ, (18)

x̄(a) = 1/2 for a ∈ A(C), (19)

ȳ(v) = 0 for all other nodes v /∈ C, (20)

x̄(a) = 0 for all other arcs. (21)

Below we show a family of inequalities that separate the vectors defined above
from LP(G). We call them odd cycle inequalities.

Lemma 3.15. The following inequalities are valid for LP(G).

∑

a∈A(C)

x(a)−
∑

v∈Ĉ
y(v) ≤ |C̃| + |Ĉ| − 1

2
(22)

for every odd cycle C.

These inequalities are {0, 1/2}-Chvatal–Gomory cuts, using the terminology of
Caprara and Fischetti (1996). A separation algorithm can be obtained from the results
of Caprara and Fischetti (1996). In Baïou and Barahona (2006) we gave an alternative
separation algorithm.

Now we can present the following result.

Theorem 3.16. Let G be a directed graph, then LP(G) = P(G) if and only if G

does not contain an odd cycle.

Proof (cf. Baïou and Barahona 2006). If G contains and odd cycle C, then we can
define a vector (x̄, ȳ) ∈ P(G) as in (17)–(21). We have

∑

a∈A(C)

x̄(a)−
∑

v∈Ĉ
ȳ(v) = |C̃| + |Ĉ|

2
.

Lemma 3.15 shows that z̄ /∈ LP(G).
Then the theorem follows from Theorem 3.13. �
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Fig. 1.2.

Fig. 1.3. An odd cycle in G and the corresponding cycle in H . The nodes of H close to a node
u ∈ G correspond to u′ or u′′

1.3.5 Detecting Odd Cycles

Now we study how to recognize the graphs G for which LP(G) = P(G). We start
with a graph G and several transformations are needed.

The first transformation consists of building an undirected graph H = (N,E).
For every node u ∈ G we have the nodes u′ and u′′ in N , and the edge u′u′′ ∈ E. For
every arc (u, v) ∈ G we have an edge u′v′′ ∈ E. See Fig. 1.2.

Consider a cycle C in G, we build a cycle CH in H as follows.

• If (u, v) and (u,w) are in C, then the edges u′v′′ and u′w′′ are taken.
• If (u, v) and (w, v) are in C, then the edges u′v′′ and v′′w′ are taken.
• If (u, v) and (v,w) are in C, then the edges u′v′′, v′′v′, and v′w′′ are taken.

On the other hand, a cycle in H corresponds to a cycle in G. Thus there is a one to
one correspondence among cycles of G and cycles of H . Moreover, if the cycle in
H has cardinality 2q, then q = |Ċ| + |C̃|, where C is the corresponding cycle in G.
Therefore an odd cycle in G corresponds to a cycle in H of cardinality 2(2p+ 1) for
some positive integer p. See Fig. 1.3.

In other words, finding an odd cycle in G reduces to finding a cycle of cardinality
2(2p + 1), for some positive integer p, in the bipartite graph H .

For this question, a linear time algorithm was given in Yannakakis (1985), a
simple O(|V ||A|2) has been given in Conforti and Rao (1987).

1.3.6 Uncapacitated Facility Location

Now we assume that V is partitioned into V1 and V2, A ⊆ V1×V2, and we deal with
the system
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∑

(u,v)∈A
x(u, v) = 1 ∀u ∈ V1, (23)

x(u, v) ≤ y(v) ∀(u, v) ∈ A, (24)

0 ≤ y(v) ≤ 1 ∀v ∈ V2, (25)

x(u, v) ≥ 0 ∀(u, v) ∈ A. (26)

If the variables x and y are constrained to be integer, then we have the uncapaci-
tated facility location problem (UFLP). We denote by Π(G) the polytope defined by
(23)–(26). Notice that Π(G) is a face of P(G). Let V̄1 be the set of nodes u ∈ V1
with |δ+(u)| = 1. Let V̄2 be the set of nodes in V2 that are adjacent to a node in V̄1. It
is clear that the variables associated with nodes in V̄2 should be fixed, i.e., y(v) = 1
for all v ∈ V̄2. Let us denote by Ḡ the subgraph induced by V \ V̄2. In this section
we prove that Π(G) is an integer polytope if and only if Ḡ has no odd cycle.

Let us first assume that Ḡ has no odd cycle. As before, we suppose that z̄ is a
fractional extreme point of Π(G). The analogues of Lemmas 3.3, 3.4 and 3.5 apply
here. Thus we can assume that we deal with a connected component G′. Lemma 3.4
implies that any node in V̄2 is not in a cycle of G′. Therefore G′ has no odd cy-
cle and P(G′) is an integer polytope. Since Π(G′) is a face of P(G′), we have a
contradiction.

Now let C be an odd cycle of Ḡ. We can define a fractional vector as follows:

ȳ(v) = 1/2 for all nodes v ∈ V2 ∩ V (C),

x̄(a) = 1/2 for a ∈ A(C),

ȳ(v) = 1 for all nodes v ∈ V2 \ V (C).

For every node u ∈ V1 \ V (C), we look for an arc (u, v) ∈ δ+(u). If ȳ(v) = 1 we
set x̄(u, v) = 1. If ȳ(v) = 1/2, then there is another arc (u,w) ∈ δ+(u) such that
ȳ(w) = 1/2 or ȳ(w) = 1. We set x̄(u, v) = x̄(u,w) = 1/2. Finally we set x̄(a) = 0
for each remaining arc a. This vector satisfies (23)–(26), but it violates the inequality
(22) associated with C. This shows that in this case (23)–(26) does not define an
integer polytope. Thus we can state our main results.

Theorem 3.17. The system (23)–(26) defines an integral polytope if and only if Ḡ

has no odd cycle.

Theorem 3.18. The UFLP is polynomially solvable for graphs G such that Ḡ has no
odd cycle.

This class of graphs can be recognized in polynomial time as described in
Sect. 1.3.5.

1.4 The p-Median Problem

The p-median problem is closely related to the uncapacitated facility location prob-
lem. Here we need to select a specific number of centers. Formally, let G = (V ,A)
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be a directed graph, not necessarily connected. We assume that G is simple, i.e.,
between any two nodes u and v there is at most one arc directed from u to v. Also
for each arc (u, v) ∈ A and node v ∈ V there is an associated cost c(u, v) and
w(v), respectively. The p-median problem (pMP) consists of selecting p nodes, usu-
ally called centers, and then assign each non-selected node to a selected node. The
goal is to select p nodes that minimize the sum of the costs of the selected nodes
plus the sum of the costs yield by the assignment of the non-selected nodes. This
problem has several applications such as location of bank accounts (Cornuejols et
al. 1976), placement of web proxies in a computer network (Vigneron et al. 2000),
semistructured data bases (Toumani 2002; Nestorov et al. 1998).

The following define an integer linear programming formulation for the pMP:

min
∑

(u,v)∈A
c(u, v)x(u, v)+

∑

v∈V
d(v)y(v) (27)

∑

v∈V
y(v) = p, (28)

∑

v:(u,v)∈A
x(u, v)+ y(u) = 1 ∀u ∈ V, (29)

x(u, v) ≤ y(v) ∀(u, v) ∈ A, (30)

0 ≤ y(v) ≤ 1 ∀v ∈ V, (31)

x(u, v) ≥ 0 ∀(u, v) ∈ A. (32)

Denote by Pp(G) the polytope defined by (28)–(32), this gives a linear pro-
gramming relaxation of the pMP. Let pMP(G) be the convex hull of Pp(G) ∩
{0, 1}|A|+|V |.

The facets of pMP(G) have been studied in Avella and Sassano (2001) and de
Farias (2001). In Avella and Sassano (2001), new facets have been presented using
a reduction to the stable set problem in the intersection graph of G. The intersection
graph of G is defined as follows: its nodes are the arcs of G and there is an edge
between two nodes (u, v) and (w, t) if u = w or v = w. If we associate the cost
c(u, v) with each node (u, v) of the intersection graph, then the p-median problem
in G, when the cost associated with the nodes of G is zero, is equivalent to find a
stable set with minimum weight of cardinality |V |−p in the intersection graph of G.
In de Farias (2001), other class of facets have been presented in the class of bipartite
graphs.

In this section we characterize all directed graphs such that Pp(G) = pMP(G).
To state our main result we need some definitions.

In Fig. 1.4, we show four directed graphs and for each of them a fractional ex-
treme point of Pp(G). The numbers near the nodes correspond to the variables y, all
the arcs variables are equal to 1

2 .

Definition 4.1. A simple cycle C is called a Y -cycle if for every v ∈ Ĉ there is an
arc (v, v̄), where v̄ is in V \ Ċ.
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Fig. 1.4. Fractional extreme points of Pp(G)

Fig. 1.5. An odd Y -cycle with an arc outside the cycle

In Fig. 1.5 we show a fractional extreme point of Pp(G) different from those
given in Fig. 1.4. It consists of an odd Y -cycle with an arc having both of its endnodes
outside the cycle. The values reported near each node represent the node variables,
the arc variables are all equal to 1

2 . These values form a fractional extreme point of
Pp(G), with p = 4.

The theorem below is the main result of this section. It shows that the configu-
rations in Figs. 1.4 and 1.5 are the only configurations that should be forbidden in
order to have an integral polytope.

Theorem 4.2. Let G = (V ,A) be a directed graph, then Pp(G) is integral if and
only if

(i) it does not contain as a subgraph any of the graphs H1, H2, H3 or H4 of Fig. 1.4,
and

(ii) it does not contain an odd Y -cycle C and an arc (u, v) with neither u nor v in
V (C).

The proof of this theorem consists of three parts presented in Sects. 1.4.2, 1.4.3
and 1.4.4. The last two parts are the subject of two papers, see Baïou and Barahona
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Fig. 1.6. The graph Y

(2007a, 2007b), each requires more than twenty pages. For these reasons, here we
only present an overview of the proof.

In the first part of the proof, Sect. 1.4.2, we show that Pp(G) is integral in Y -free
graphs with no odd directed cycles. A Y -free graph is an oriented graph that does
not contain as a subgraph the graph Y of Fig. 1.6. This class of graphs has been
introduced in (Baïou and Barahona 2005).

In the second part, Sect. 1.4.3, we prove Theorem 4.2 when restricted to oriented
graphs. This proof uses an induction on the number of subgraphs Y . The last part is
devoted to the proof of Theorem 4.2 in general directed graphs and uses the result
in oriented graphs as starting point. We will only present the sufficiency proof. The
necessity proof is illustrated in Figs. 1.4 and 1.5. The fractional extreme points given
in these figures can be easily extended to any graph that does not satisfy conditions (i)
and (ii) of Theorem 4.2. Thus the graphs we consider do not contain as a subgraph
any of the graphs H1, H2, H3 or H4 of Fig. 1.4.

1.4.1 Preliminaries

Let G = (V ,A) be a directed graph. Let l : V ∪ A → {0,−1, 1} be a labeling
function that associates to each node and arc of G a label 0, −1 or 1.

A vector (x, y) ∈ Pp(G) will be denoted by z, i.e., z(u) = y(u) for all u ∈ V

and z(u, v) = x(u, v) for all (u, v) ∈ A. Given a vector z and a labeling function l,
we define a new vector zl from z as follows: zl(u) = z(u) + l(u)ε, for all u ∈ V,

and zl(u, v) = z(u, v)+ l(u, v)ε, for all (u, v) ∈ A, where ε is a sufficiently small
positive scalar.

The Labeling Procedure for Even Cycles

Let C = v0, a0, v1, a1, . . . , ap−1, vp be an even cycle, not necessarily a Y -cycle.

• If C is a directed cycle, assume that v0 is the tail of a0, then set l(v0) ← 1;
l(a0)←−1. Otherwise, assume v0 ∈ Ċ and set l(v0)← 0; l(a0)← 1.

• Extend the labels as in Sect. 1.3.3.

Remark 4.3. If C is a directed even cycle, then l(ap−1) = l(v0) and
∑

l(vi) = 0.

This remark is easy to see. The second property is given in the following lemma
and it concerns non-directed cycles.



1 On the Location and p-Median Polytopes 15

Lemma 4.4. If C is a non-directed even cycle, then l(ap−1) = −l(a0) and∑
l(vi) = 0.

We are going to deal with a vector z that is a fractional extreme point of Pp(G).
Recall that the graph G we consider in Sect. 1.4.2 is Y -free and with no odd

directed cycles and the graph G in Sects. 1.4.3 and 1.4.4 do not contain as a subgraph
any of the graphs H1, H2, H3 or H4 of Fig. 1.4. In these graphs the following two
lemmas hold:

Lemma 4.5. We may assume that z(u, v) > 0 for all (u, v) ∈ A.

Proof (cf. Baïou and Barahona 2007a). Let G′ be the graph obtained after removing
all arcs (u, v) with z̄(u, v) = 0. The graph G′ has the same properties as G. Let z′
be the restriction of z̄ on G′. Then z′ is a fractional extreme point of Pp(G

′). �
Lemma 4.6. We may assume that |δ−(v)| ≤ 1 for every pendent node v in G.

Proof (cf. Baïou and Barahona 2007a). If v is a pendent node in G and δ−(v) =
{(u1, v), . . . , (uk, v)}, we can split v into k pendent nodes {v1, . . . , vk} and replace
every arc (ui, v) with (ui, vi). Then we define z′ such that z′(ui, vi) = z(ui, v) ,
z′(vi) = 1, for all i, and z′(u) = z(u), z′(u,w) = z(u,w) for every other node and
arc. Let G′ be this new graph. The graph G′ has the same properties as G. Moreover,
it is easy to check that z′ is a fractional extreme point of Pp+k−1(G

′). �

1.4.2 Y -Free Graphs

In Baïou and Barahona (2005), we characterized the fractional extreme points of
Pp(G) for Y -free graphs. Then we showed that by adding the family of odd cycle
inequalities associated with each directed odd cycle in G we obtain an integral poly-
tope. An alternate proof of this result based on matching theory is given in Stauffer
(2007).

To prove our main result we do not need the description of pMP(G) in Y -free
graphs. We need its description in a smaller class described by those Y -free graphs
with no odd directed cycle. In this restricted class of graphs Pp(G) is integral, this
is a directed consequence of Theorem 14 in Baïou and Barahona (2005). Below we
give a proof based on the matching polytope in bipartite graphs, which is along the
same lines of the proof given in Stauffer (2007).

Theorem 4.7. If G = (V ,A) is a Y -free graph with no odd directed cycle, then for
any p the polytope Pp(G) is integral.

Proof. Let G = (V ,A) be a Y -free graph with no odd directed cycle. Assume the
contrary, and let z = (x, y) be an extreme fractional point of Pp(G).

Using Fourier-Motzkin elimination, we obtain the following system of linear in-
equalities, that defines the projection of Pp(G) onto the arc variables space; call it
Qp(G).
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∑

(u,v)∈A
x(u, v) = |V | − p, (33)

x(w, u)+
∑

v:(u,v)∈A
x(u, v) ≤ 1 ∀(w, u) ∈ A, (34)

x(u, v) ≥ 0 ∀(u, v) ∈ A. (35)

Remark that by Lemma 4.6 and the fact that G is a Y -free graph, we have that
|δ−(v)| ≤ 1 for all v ∈ V . Hence if we omit the orientation of the arcs in G we obtain
a undirected graph I (G) = (V ,E), and inequalities (34) and (35) are equivalent to

x(δI (G)(v)) ≤ 1 ∀v ∈ V, (36)

x(e) ≥ 0 ∀e ∈ E. (37)

Combining Lemma 4.6 and the fact that G does not contain an odd directed cycle,
we obtain that I (G) is a bipartite graph and hence the polytope defined by inequal-
ities (36) and (37) is the matching polytope of a bipartite graph, so it is integral.
Now by adding the equality

∑
e∈E x(e) = |V | − p to the linear system defined by

(36) and (37) the resulting polytope still integral, this is a well known property of
the matching polytope, see for instance Lawler (1976). This proves that Qp(G) is
integral.

To finish the proof of our theorem it suffices to see that if z = (x, y) is an extreme
point of Pp(G), then x is an extreme point of Qp(G), which is easy to verify. �

1.4.3 Oriented Graphs

Let G = (V ,A) be an oriented graph that satisfies conditions (i) and (ii) of Theo-
rem 4.2. First we study the case when G has no odd Y -cycle, and in the second case
we assume that G has an odd Y -cycle.

G Does not Contain an Odd Y -Cycle

Let t ∈ V . The node t is called a Y -node in G = (V ,A) if there are three different
nodes u1, u2, w in V such that (u1, t), (u2, t) and (t, w) belong to A. Denote by YG

the set of Y -nodes in G.
The proof is done by induction on the number of Y -nodes. If |YG| = 0 then, the

graph is Y -free with no odd directed cycle, it follows from Theorem 4.7 in Sect. 1.4.2
that Pp(G) is integral. Assume that Pp(G

′) is integral for any positive integer p and
for any oriented graph G′, with |YG′ | < |YG|, that satisfies condition (i) and does
not contain an odd Y -cycle. Now we suppose that z = (x, y) is a fractional extreme
point of Pp(G) and we plan to obtain a contradiction. The next lemma we need is as
follows.

Lemma 4.8. G does not contain a cycle.
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Proof (sketch, cf. Baïou and Barahona 2007a). The proof of this lemma is a direct
application of the labeling procedure of Sect. 1.4.1. We assume that there is a cycle,
using Lemma 4.6, we can derive an even Y -cycle C, and we assign labels to the nodes
and arcs of C following the labeling procedure of Sect. 1.4.1. Extend the labels as
follows: for each node v ∈ Ĉ, choose an arc (v, v̄), v̄ /∈ V (C), and assign the label
−l(v) to it. Assign a zero label to all remaining nodes and arcs. In the last step, using
Lemma 4.5 we show that any constraint that is satisfied with equality by z is also
satisfied with equality by zl . This contradicts the fact that z is an extreme point of
Pp(G). �

The graph G must contain at least one Y -node t with its incident arcs (u1, t),
(u2, t), (t, w). Using Lemma 4.8 we can prove that V can be partitioned into W1 and
W2 so that {u1, t, w} ⊆ W1 and u2 ∈ W2, and that the only arc in G between W1 and
W2 is (u2, t).

Next we show that z(t) = 1
2 . We have that Q(G), the polytope defined by (29)–

(32), is a face of the polytope P(G) defined by (1)–(4)) studied in Sect. 1.3. And by
Theorem 3.13, we know that P(G) is integral when G does not contain an odd cycle,
which is the case here. Thus Q(G) is also integral. The polytope Pp(G) is obtained
from Q(G) by adding exactly one equation. A simple polyhedral fact is that if Q(G)

is integral, then the values of z are in {0, 1, α, 1 − α}, for some number α ∈ [0, 1].
But since z(t) = 1

2 we have that all fractional values of z are equal to 1
2 .

Define p1 =∑
v∈W1

z(v) and p2 =∑
v∈W2

z(v), so p = p1+p2. We distinguish
two cases: p1 and p2 are integer; and they are not.

If the numbers p1 and p2 are integer, we define the graphs G1 and G2 as follows.
Let A(W1) and A(W2) be the set of arcs in G having both endnodes in W1 and
W2, respectively. Let G1 = (W1, A(W1)) and G2 = (W2 ∪ {t ′, v′, w′}, A(W2) ∪
{(u2, t

′), (t ′, v′), (v′, w′)}).
Let z1 be the restriction of z to G1. Clearly z1 ∈ Pp1(G

1). Define z2 as follows,
z2(u2, t

′) = z(u2, t) = 1
2 , z2(t

′) = 1
2 , z2(t

′, v′) = 1
2 , z2(v

′) = 1
2 , z2(v

′, w′) = 1
2 ,

z2(w
′) = 1 and z2(u) = z(u), z2(u, v) = z(u, v) for all other nodes and arcs of G2.

We have that z2 ∈ Pp2+2(G
2).

Both graphs G1 and G2 satisfy condition (i) of Theorem 4.2 and do not contain
an odd Y -cycle. Moreover, |YG1 | < |YG| and |YG2 | < |YG|. Since z1 and z2 are
both fractional, the induction hypothesis implies that they are not extreme points
of Pp1(G

1) and Pp2+2(G
2), respectively. Thus there must exist a 0-1 vector z′1 ∈

Pp1(G
1) with z′1(t) = 0 so that the same constraints that are tight for z1 are also

tight for z′1. Also there must exist a 0-1 vector z′2 ∈ Pp2+2(G
2) with z′2(t ′) = 0

such that the same constraints that are tight for z2 are also tight for z′2. Now by
combining z′1 and z′2 one can define a solution z′ ∈ Pp(G) that satisfies as equality
each constraint that is satisfied as equality by z.

In the case where the numbers p1 and p2 are not integer, we use the same idea
as above but applied for new graphs G1 and G2, where G1 = (W1 ∪ {u′1}, (A(W1) \
{(u1, t)})∪{(u1, u

′
1), (u

′
1, t)}) and G2 = (W2∪{t ′, w′}, A(W2)∪{(u2, t

′), (t ′, w′)}).


