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Preface

The aim of this monograph is to give an overview of various classes of infinite-
dimensional Lie groups and their applications, mostly in Hamiltonian me-
chanics, fluid dynamics, integrable systems, and complex geometry. We have
chosen to present the unifying ideas of the theory by concentrating on specific
types and examples of infinite-dimensional Lie groups. Of course, the selection
of the topics is largely influenced by the taste of the authors, but we hope
that this selection is wide enough to describe various phenomena arising in the
geometry of infinite-dimensional Lie groups and to convince the reader that
they are appealing objects to study from both purely mathematical and more
applied points of view. This book can be thought of as complementary to the
existing more algebraic treatments, in particular, those covering the struc-
ture and representation theory of infinite-dimensional Lie algebras, as well as
to more analytic ones developing calculus on infinite-dimensional manifolds.

This monograph originated from advanced graduate courses and mini-
courses on infinite-dimensional groups and gauge theory given by the first
author at the University of Toronto, at the CIRM in Marseille, and at the
Ecole Polytechnique in Paris in 2001–2004. It is based on various classical and
recent results that have shaped this newly emerged part of infinite-dimensional
geometry and group theory.

Our intention was to make the book concise, relatively self-contained, and
useful in a graduate course. For this reason, throughout the text, we have
included a large number of problems, ranging from simple exercises to open
questions. At the end of each section we provide bibliographical notes, trying
to make the literature guide more comprehensive, in an attempt to bring the
interested reader in contact with some of the most recent developments in
this exciting subject, the geometry of infinite-dimensional groups. We hope
that this book will be useful to both students and researchers in Lie theory,
geometry, and Hamiltonian systems.

It is our pleasure to thank all those who helped us with the preparation of
this manuscript. We are deeply indebted to our teachers, collaborators, and
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friends, who influenced our view of the subject: V. Arnold, Ya. Brenier,
H. Bursztyn, Ya. Eliashberg, P. Etingof, V. Fock, I. Frenkel, D. Fuchs,
A. Kirillov, F.Malikov, G. Misio�lek, R. Moraru, N. Nekrasov, V. Ovsienko,
C. Roger, A. Rosly, V. Rubtsov, A. Schwarz, G. Segal, M. Semenov-
Tian-Shansky, A. Shnirelman, P. Slodowy, S. Tabachnikov, A. Todorov,
A. Veselov, F.Wagemann, J. Weitsman, I. Zakharevich, and many others.
We are particularly grateful to Alexei Rosly, the joint projects with whom
inspired a large part, in particular the “application chapter,” of this book,
and who made numerous invaluable remarks on the manuscript. We thank
the participants of the graduate courses for their stimulating questions and
remarks. Our special thanks go to M.Peters and the Springer team for their
invariable help and to D.Kramer for careful editing of the text.

We also acknowledge the support of the Max-Planck Institute in Bonn, the
Institut des Hautes Etudes Scientifiques in Bures-sur-Yvette, the Clay Math-
ematics Institute, as well as the NSERC research grants. The work on this
book was partially conducted during the period the first author was employed
by the Clay Mathematics Institute as a Clay Book Fellow.

Finally, we thank our families (kids included!) for their tireless moral
support and encouragement throughout the over-stretched work on the
manuscript.



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

I Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1 Lie Groups and Lie Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Lie Groups and an Infinite-Dimensional Setting . . . . . . . 7
1.2 The Lie Algebra of a Lie Group . . . . . . . . . . . . . . . . . . . . . 9
1.3 The Exponential Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Abstract Lie Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Adjoint and Coadjoint Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1 The Adjoint Representation . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 The Coadjoint Representation . . . . . . . . . . . . . . . . . . . . . . 19

3 Central Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1 Lie Algebra Central Extensions . . . . . . . . . . . . . . . . . . . . . 22
3.2 Central Extensions of Lie Groups . . . . . . . . . . . . . . . . . . . . 24

4 The Euler Equations for Lie Groups . . . . . . . . . . . . . . . . . . . . . . . 26
4.1 Poisson Structures on Manifolds . . . . . . . . . . . . . . . . . . . . . 26
4.2 Hamiltonian Equations on the Dual of a Lie Algebra . . . 29
4.3 A Riemannian Approach to the Euler Equations . . . . . . 30
4.4 Poisson Pairs and Bi-Hamiltonian Structures . . . . . . . . . . 35
4.5 Integrable Systems and the Liouville–Arnold Theorem . 38

5 Symplectic Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.1 Hamiltonian Group Actions . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Symplectic Quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

II Infinite-Dimensional Lie Groups: Their Geometry, Orbits,
and Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1 Loop Groups and Affine Lie Algebras . . . . . . . . . . . . . . . . . . . . . . 47

1.1 The Central Extension of the Loop Lie algebra . . . . . . . . 47



X Contents

1.2 Coadjoint Orbits of Affine Lie Groups . . . . . . . . . . . . . . . . 52
1.3 Construction of the Central Extension of the Loop

Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
1.4 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2 Diffeomorphisms of the Circle and the Virasoro–Bott Group . . 67
2.1 Central Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.2 Coadjoint Orbits of the Group of Circle Diffeomorphisms 70
2.3 The Virasoro Coadjoint Action and Hill’s Operators . . . 72
2.4 The Virasoro–Bott Group and the Korteweg–de Vries

Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.5 The Bi-Hamiltonian Structure of the KdV Equation . . . 82
2.6 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3 Groups of Diffeomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.1 The Group of Volume-Preserving Diffeomorphisms

and Its Coadjoint Representation . . . . . . . . . . . . . . . . . . . . 88
3.2 The Euler Equation of an Ideal Incompressible Fluid . . . 90
3.3 The Hamiltonian Structure and First Integrals

of the Euler Equations for an Incompressible Fluid . . . . 91
3.4 Semidirect Products: The Group Setting for an Ideal

Magnetohydrodynamics and Compressible Fluids . . . . . . 95
3.5 Symplectic Structure on the Space of Knots

and the Landau–Lifschitz Equation . . . . . . . . . . . . . . . . . . 99
3.6 Diffeomorphism Groups as Metric Spaces . . . . . . . . . . . . . 105
3.7 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4 The Group of Pseudodifferential Symbols . . . . . . . . . . . . . . . . . . . 111
4.1 The Lie Algebra of Pseudodifferential Symbols . . . . . . . . 111
4.2 Outer Derivations and Central Extensions of ψDS . . . . . 113
4.3 The Manin Triple of Pseudodifferential Symbols . . . . . . . 117
4.4 The Lie Group of α-Pseudodifferential Symbols . . . . . . . 119
4.5 The Exponential Map for Pseudodifferential Symbols . . 122
4.6 Poisson Structures on the Group

of α-Pseudodifferential Symbols . . . . . . . . . . . . . . . . . . . . . 124
4.7 Integrable Hierarchies on the Poisson Lie Group ˜GINT . 129
4.8 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5 Double Loop and Elliptic Lie Groups . . . . . . . . . . . . . . . . . . . . . . 134
5.1 Central Extensions of Double Loop Groups

and Their Lie Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.2 Coadjoint Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.3 Holomorphic Loop Groups and Monodromy . . . . . . . . . . 138
5.4 Digression: Definition of the Calogero–Moser Systems . . 142
5.5 The Trigonometric Calogero–Moser System

and Affine Lie Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.6 The Elliptic Calogero–Moser System and Elliptic Lie

Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.7 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152



Contents XI

III Applications of Groups: Topological
and Holomorphic Gauge Theories . . . . . . . . . . . . . . . . . . . . . . . . . . 155
1 Holomorphic Bundles and Hitchin Systems . . . . . . . . . . . . . . . . . 155

1.1 Basics on Holomorphic Bundles . . . . . . . . . . . . . . . . . . . . . 155
1.2 Hitchin Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
1.3 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

2 Poisson Structures on Moduli Spaces . . . . . . . . . . . . . . . . . . . . . . . 163
2.1 Moduli Spaces of Flat Connections on Riemann

Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
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Introduction

What is a group? Algebraists teach that this is supposedly a set with
two operations that satisfy a load of easily-forgettable axioms. . .

V.I. Arnold “On teaching mathematics” [20]

Today one cannot imagine mathematics and physics without Lie groups, which
lie at the foundation of so many structures and theories. Many of these groups
are of infinite dimension and they arise naturally in problems related to dif-
ferential and algebraic geometry, knot theory, fluid dynamics, cosmology, and
string theory. Such groups often appear as symmetries of various evolution
equations, and their applications range from quantum mechanics to meteo-
rology. Although infinite-dimensional Lie groups have been investigated for
quite some time, the scope of applicability of a general theory of such groups
is still rather limited. The main reason for this is that infinite-dimensional Lie
groups exhibit very peculiar features.

Let us look at the relation between a Lie group and its Lie algebra as an
example. As is well known, in finite dimensions each Lie group is, at least
locally near the identity, completely described by its Lie algebra. This is
achieved with the help of the exponential map, which is a local diffeomor-
phism from the Lie algebra to the Lie group itself. In infinite dimensions, this
correspondence is no longer so straightforward. There may exist Lie groups
that do not admit an exponential map. Furthermore, even if the exponential
map exists for a given group, it may not be a local diffeomorphism. Another
pathology in infinite dimensions is the failure of Lie’s third theorem, stating
that every finite-dimensional Lie algebra is the Lie algebra attached to some
finite-dimensional Lie group. In contrast, there exist infinite-dimensional Lie
algebras that do not correspond to any Lie group at all.

In order to avoid such pathologies, any version of a general theory of
infinite-dimensional Lie groups would have to restrict its attention to certain
classes of such groups and study them separately. For example, one might con-
sider the class of Banach Lie groups, i.e., Lie groups that are locally modeled
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on Banach spaces and behave very much like finite-dimensional Lie groups.
For Banach Lie groups the exponential map always exists and is a local diffeo-
morphism. However, restricting to Banach Lie groups would already exclude
the important case of diffeomorphism groups, and so on. This is why the
attempts to develop a unified theory of infinite-dimensional differential geom-
etry, and hence, of infinite-dimensional Lie groups, are still far from reaching
greater generality.

In the present book, we choose a different approach. Instead of trying to
develop a general theory of such groups, we concentrate on various exam-
ples of infinite-dimensional Lie groups, which lead to a realm of important
applications.

The examples we treat here mainly belong to three general types of infinite-
dimensional Lie groups: groups of diffeomorphisms, gauge transformation
groups, and groups of pseudodifferential operators. There are numerous in-
terrelations between various groups appearing in this book. For example, the
group of diffeomorphisms of a compact manifold acts naturally on the group
of currents over this manifold. When this manifold is a circle, this action gives
rise to a deep connection between the representation theory of the Virasoro al-
gebra and the Kac–Moody algebras. In the geometric setting of this book, this
relation manifests itself in the correspondence between the coadjoint orbits of
these groups.

Another strand connecting various groups considered below is the theme of
the “ladder” of current groups. We regard the passage from finite-dimensional
Lie groups (i.e., “current groups at a point”) to loop groups (i.e., current
groups on the circle), and then to double loop groups (current groups on the
two-dimensional torus) as a “ladder of groups.” On the side of dynamical
systems this is revealed in the passage from rational to trigonometric and
to elliptic Calogero–Moser systems. The passage from ordinary loop groups
to double loop groups also serves as the starting point of a “real–complex
correspondence” discussed in the chapter on applications of groups. There we
study moduli spaces of flat or integrable connections on real and complex
surfaces using the geometry of coadjoint orbits of these two types of groups.

Most of main objects studied in the book can be summarized in the table
below.

In Chapter II, in a sense, we are moving horizontally, along the first row of
this table. We study affine and elliptic groups, their orbits and geometry, as
well as the related Calogero–Moser systems. We also describe in this chapter
many Lie groups and Lie algebras outside the scope of this table: groups of
diffeomorphisms, the Virasoro group, groups of pseudodifferential operators.
In the appendices one can find the Krichever–Novikov algebras, gl∞, and other
related objects.

In Chapter III we move vertically in this table and mostly focus on the
current groups and on their parallel description in topological and holomorphic
contexts. While affine and elliptic Lie groups correspond to the base dimension
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Base Real / topological Complex / holomorphic
dimension theory theory

affine (or, loop) groups elliptic (or, double loop) groups
1 (orbits ∼ monodromies (orbits ∼ holomorphic bundles

over a circle) over an elliptic curve)

flat connections holomorphic bundles
2 over a Riemann surface over a complex surface

(Poisson structures) (holomorphic Poisson structures)

connections over a threefold partial connections over a
3 (Chern–Simons functional, complex threefold (holomorphic

singular homology, Chern–Simons functional, polar
classical linking) homology, holomorphic linking)

1, either real or complex, in dimension 2 we describe the spaces of connections
on real or complex surfaces, as well as the symplectic and Poisson structures
on the corresponding moduli spaces. (In the table the main focus of study is
mentioned in the parentheses of the corresponding block.) In dimension 3 the
study of the Chern–Simons functional and its holomorphic version leads one
to the notions of classical and holomorphic linking, and to the corresponding
homology theories. (Although we confined ourselves to three dimensions, one
can continue this table to dimension 4 and higher, which brings in the Yang–
Mills and many other interesting functionals; see, e.g., [85].)

Note that the objects (groups, connections, etc.) in each row of this table
usually dictate the structure of objects in the row above it, although the
“interaction of the rows” is different in the real and complex cases. Namely,
in the real setting, the lower-dimensional manifolds appear as the boundary
of real manifolds of one dimension higher. For the complex case, the low-
dimensional complex varieties arise as divisors in higher-dimensional ones; see
details in Chapter III.

Overview of the content. Here are several details on the contents of
various chapters and sections.

In Chapter I, we recall some notions and facts from Lie theory and sym-
plectic geometry used throughout the book. Starting with the definition of a
Lie group, we review the main related concepts of its Lie algebra, the adjoint
and coadjoint representations, and introduce central extensions of Lie groups
and algebras. We then recall some notions from symplectic geometry, includ-
ing Arnold’s formulation of the Euler equations on a Lie group, which are the
equations for the geodesic flow with respect to a one-sided invariant metric on
the group. This setting allows one to describe on the same footing many
finite- and infinite-dimensional dynamical systems, including the classical
Euler equations for both a rigid body and an ideal fluid, the Korteweg–de Vries
equation, and the equations of magnetohydrodynamics. Finally, the prelimi-
naries cover the Marsden–Weinstein Hamiltonian reduction, a method often
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used to describe complicated Hamiltonian systems starting with a simple one
on a nonreduced space, by “dividing out” extra symmetries of the system.

Chapter II is the main part of this book, and can be viewed as a walk
through the zoo of the various types of infinite-dimensional Lie groups. We
tried to describe these groups by presenting their definitions, possible explicit
constructions, information on (or, in some cases, even the complete classifi-
cation of) their coadjoint orbits. We also discuss relations of these groups to
various Hamiltonian systems, elaborating, whenever possible, on important
constructions related to integrability of such systems. The table of contents is
rather self-explanatory.

We start this chapter by introducing the loop group of a compact
Lie group, one of the most studied types of infinite-dimensional groups. In
Section 1, we construct its universal central extension, the corresponding Lie
algebra (called the affine Kac–Moody Lie algebra), and classify the corre-
sponding coadjoint orbits. We also return to discuss the relation of this Lie
algebra to the Landau–Lifschitz equation and the Calogero–Moser integrable
system in the later sections.

In Section 2 we turn to the group of diffeomorphisms of the circle and its
Lie algebra of smooth vector fields. Both the group and the Lie algebra admit
universal central extensions, called the Virasoro–Bott group and the Virasoro
algebra respectively. It turns out that the coadjoint orbits of the Virasoro–
Bott group can be classified in a manner similar to that for the orbits of the
loop groups. The Euler equation for a natural right-invariant metric on the
Virasoro–Bott group is the famous Korteweg–de Vries (KdV) equation, which
describes waves in shallow water. Furthermore, the Euler nature of the KdV
helps one to show that this equation is completely integrable.

Section 3 is devoted to various diffeomorphism groups and, in particular,
to the group of volume-preserving diffeomorphisms of a compact Riemannian
manifold M . The Euler equations on this group are the Euler equations for an
ideal incompressible fluid filling M . Enlarging the group of volume-preserving
diffeomorphisms by either smooth functions or vector fields on M gives the
Euler equations of gas dynamics or of magnetohydrodynamics, respectively.
We also mention some results on the Riemannian geometry of diffeomorphism
groups and discuss the relation of the latter to the the Marsden–Weinstein
symplectic structure on the space of immersed curves in R

3.
Section 4 deals with the group of pseudodifferential symbols (or operators)

on the circle. It turns out that this group can be endowed with the structure of
a Poisson Lie group, where the corresponding Poisson structures are given by
the Adler–Gelfand–Dickey brackets. The dynamical systems naturally corre-
sponding to this group are the Kadomtsev–Petviashvili hierarchy, the higher
n-KdV equations, and the nonlinear Schrödinger equation.

Section 5 returns to the loop groups “at the next level”: here we deal with
their generalizations, elliptic Lie groups and the corresponding Lie algebras.
These groups are extensions of the groups of double loops, i.e., the groups of
smooth maps from a two-dimensional torus to a finite-dimensional complex
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Lie group. The central extension of such a group relies on the choice of complex
structure on this torus (i.e., on the choice of the underlying elliptic curve).
The coadjoint orbits of the elliptic Lie groups can be classified in terms of
holomorphic principal bundles over the elliptic curve.

This section also unifies several classes of the groups considered earlier in
the light of an application to the Calogero–Moser systems. It turns out that
the integrable types of potentials in these systems (rational, trigonometric,
and elliptic ones) can be obtained, respectively, from the finite-dimensional
semisimple Lie algebras, the affine algebras, and the elliptic Lie algebras by
Hamiltonian reductions.

Chapter III deals with far-reaching applications of the parallelism between
the affine and elliptic Lie algebras, which resembles the “real–complex” cor-
respondence. The infinite-dimensional Lie groups we are concerned with here
are groups of gauge transformations of principal bundles over real and com-
plex surfaces. We show how the classification of coadjoint orbits of loop groups
(respectively, double loop groups) can be used to study the Poisson structure
on the moduli space of flat connections (respectively, semistable holomorphic
bundles) over a Riemann surface (respectively, a complex surface).

The correspondence between the real and complex cases leads to some-
what surprising analogies between notions in differential topology (such as
orientation, boundary, and the Stokes theorem) and those in complex alge-
braic geometry (a meromorphic differential form, its divisor of poles, and
the Cauchy–Stokes formula). These analogies are formalized in the notion of
polar homology, and their applications include the construction of a holo-
morphic linking number for a pair of complex curves in a complex threefold.
The definition of the latter is closely related to a holomorphic version of the
Chern–Simons functional.

In the appendices we mention several topics serving either as an expla-
nation to some facts used in the main text, or as an indication of further
developments. In particular, we include reminders on root systems and some
important facts from the theory of compact Lie groups. Other appendices
provide brief introductions and guides to the literature on the algebra gl∞,
the Krichever–Novikov algebras (generalizing the Virasoro algebra and loop
algebras to higher-genus Riemann surfaces), integrable systems on the moduli
of flat connections, the Kähler structures on Virasoro orbits, a relation of dif-
feomorphism groups to optimal mass transport, the Hofer metric on the group
of Hamiltonian diffeomorphisms, the Drinfeld–Sokolov reduction, as well as
proofs of several statements from the main text.

Numeration system and shortcuts. We have employed a single numer-
ation of definitions, theorems, etc. The Roman numeral in the cross-references
addresses to the chapter number, while its absence indicates that the cross-
references are within the same chapter.

The different sections in Chapter II can be read to a large degree indepen-
dently. Furthermore, Chapter III is based on just two sections from Chapter
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II: those on the affine groups (Section 1) and on the elliptic Lie groups (Sec-
tions 5). The section on polar homology is also rather independent, although
motivated by the preceding exposition in Chapter III.

For a first reading we recommend the following “shortcut” through the
book: After Chapter I on preliminaries, one can proceed to Sections 1, 2,
and 5 of Chapter II and Sections 2 and 3 of Chapter III. The reader more
interested in applications to Hamiltonian systems will find them mostly in
Sections 2 through 5 of Chapter II, while for applications to moduli spaces of
flat connections one may choose to proceed to Chapter III after reading only
Sections 1 and 5 of Chapter II.



I

Preliminaries

In this chapter, we collect some key notions and facts from the theory of Lie
groups and Hamiltonian systems, as well as set up the notations.

1 Lie Groups and Lie Algebras

This section introduces the notions of a Lie group and the corresponding Lie
algebra. Many of the basic facts known for finite-dimensional Lie groups are
no longer true for infinite-dimensional ones, and below we illustrate some of
the pathologies one can encounter in the infinite-dimensional setting.

1.1 Lie Groups and an Infinite-Dimensional Setting

The most basic definition for us will be that of a (transformation) group.

Definition 1.1 A nonempty collection G of transformations of some set
is called a (transformation) group if along with every two transformations
g, h ∈ G belonging to the collection, the composition g ◦ h and the inverse
transformation g−1 belong to the same collection G.

It follows directly from this definition that every group contains the iden-
tity transformation e. Also, the composition of transformations is an associa-
tive operation. These properties, associativity and the existence of the unit
and an inverse of each element, are often taken as the definition of an abstract
group.1

The groups we are concerned with in this book are so-called Lie groups.
In addition to being a group, they carry the structure of a smooth manifold
such that both the multiplication and inversion respect this structure.
1 Here we employ the point of view of V.I. Arnold, that every group should be

viewed as the group of transformations of some set, and the “usual” axiomatic
definition of a group only obscures its true meaning (cf. [19], p. 58).
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Definition 1.2 A Lie group is a smooth manifold G with a group structure
such that the multiplication G×G → G and the inversion G → G are smooth
maps.

The Lie groups considered throughout this book will usually be infinite-
dimensional. So what do we mean by an infinite-dimensional manifold?
Roughly speaking, an infinite-dimensional manifold is a manifold modeled on
an infinite-dimensional locally convex vector space just as a finite-dimensional
manifold is modeled on R

n.

Definition 1.3 Let V, W be Fréchet spaces, i.e., complete locally convex
Hausdorff metrizable vector spaces, and let U be an open subset of V . A map
f : U ⊂ V → W is said to be differentiable at a point u ∈ U in a direction
v ∈ V if the limit

Df(u; v) = lim
t→0

f(u+ tv) − f(u)
t

(1.1)

exists. The function is said to be continuously differentiable on U if the limit
exists for all u ∈ U and all v ∈ V , and if the function Df : U × V → W is
continuous as a function on U × V . In the same way, we can build the second
derivative D2f , which (if it exists) will be a function D2f : U × V × V → W ,
and so on. A function f : U → W is called smooth or C∞ if all its derivatives
exist and are continuous.

Definition 1.4 A Fréchet manifold is a Hausdorff space with a coordinate
atlas taking values in a Fréchet space such that all transition functions are
smooth maps.

Remark 1.5 Now one can start defining vector fields, tangent spaces, differ-
ential forms, principal bundles, and the like on a Fréchet manifold exactly in
the same way as for finite-dimensional manifolds.

For example, for a manifold M , a tangent vector at some point m ∈ M
is defined as an equivalence class of smooth parametrized curves f : R → M
such that f(0) = m. The set of all such equivalence classes is the tangent
space TmM at m. The union of the tangent spaces TmM for all m ∈ M can
be given the structure of a Fréchet manifold TM , the tangent bundle of M .
Now a smooth vector field on the manifold M is a smooth map v : M → TM ,
and one defines in a similar vein the directional derivative of a function and
the Lie bracket of two vector fields.

Since the dual of a Fréchet space need not be Fréchet, we define differential
1-forms in the Fréchet setting directly, as smooth maps α : TM → R such
that for any m ∈ M , the restriction α|TmM : TmM → R is a linear map.
Differential forms of higher degree are defined analogously: say, a 2-form on
a Fréchet manifold M is a smooth map β : T⊗2M → R whose restriction
β|T⊗2

m M : T⊗2
m M → R for any m ∈ M is bilinear and antisymmetric. The

differential df of a smooth function f : M → R is defined via the directional



1. Lie Groups and Lie Algebras 9

derivative, and this construction generalizes to smooth n-forms on a Fréchet
manifold M to give the exterior derivative operator d, which maps n-forms
to (n+ 1)-forms on M ; see, for example, [231].

Remark 1.6 More facts on infinite-dimensional manifolds can be found in,
e.g., [265, 157]. From now on, whenever we speak of an infinite-dimensional
manifold, we implicitly mean a Fréchet manifold (unless we say explicitly
otherwise). In particular, our infinite-dimensional Lie groups are Fréchet Lie
groups.

Instead of Fréchet manifolds, one could consider manifolds modeled on Ba-
nach spaces. This would lead to the category of Banach manifolds. The main
advantage of Banach manifolds is that strong theorems from finite-dimensional
analysis, such as the inverse function theorem, hold in Banach spaces but not
necessarily in Fréchet spaces. However, some of the Lie groups we will be con-
sidering, such as the diffeomorphism groups, are not Banach manifolds. For
this reason we stay within the more general framework of Fréchet manifolds.
In fact, for most purposes, it is enough to consider groups modeled on locally
convex vector spaces. This is the setting considered by Milnor [265].

1.2 The Lie Algebra of a Lie Group

Definition 1.7 Let G be a Lie group with the identity element e ∈ G. The
tangent space to the group G at its identity element is (the vector space of)
the Lie algebra g of this group G. The group multiplication on a Lie group G
endows its Lie algebra g with the following bilinear operation [ , ] : g×g → g,
called the Lie bracket on g.

First note that the Lie algebra g can be identified with the set of left-
invariant vector fields on the group G. Namely, to a given vector X ∈ g

one can associate a vector field ˜X on G by left translation: ˜X(g) = lg∗X,
where lg : G → G denotes the multiplication by a group element g from the
left, h ∈ G �→ gh. Obviously, such a vector field ˜X is invariant under left
translations by elements of G. That is, lg∗ ˜X = ˜X for all g ∈ G. On the other
hand, any left-invariant vector field ˜X on the group G uniquely defines an
element ˜X(e) ∈ g.

The usual Lie bracket (or commutator) [ ˜X, ˜Y ] of two left-invariant vector
fields ˜X and ˜Y on the group is again a left-invariant vector field on G. Hence
we can write [ ˜X, ˜Y ] = ˜Z for some Z ∈ g. We define the Lie bracket [X,Y ] of
two elements X, Y of the Lie algebra g of the group G via [X,Y ] := Z. The
Lie bracket gives the space g the structure of a Lie algebra.

Examples 1.8 Here are several finite-dimensional Lie groups and their Lie
algebras:

• GL(n,R), the set of nondegenerate n × n matrices, is a Lie group with
respect to the matrix product: multiplication and taking the inverse are
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smooth operations. Its Lie algebra is gl(n,R) = Mat(n,R), the set of all
n× n matrices.

• SL(n,R) = {A ∈ GL(n,R) | detA = 1} is a Lie group and a closed
subgroup of GL(n,R). Its Lie algebra is the space of traceless matrices
sl(n,R) = {A ∈ gl(n,R) | trA = 0}. This follows from the relation

det(I + εA) = 1 + ε trA+ O(ε2) , as ε → 0 ,

where I is the identity matrix.
• SO(n,R) is a Lie group of transformations {A : R

n → R
n} preserving the

Euclidean inner product of vectors (and orientation) in R
n, i.e. (Au, Av) =

(u, v) for all vectors u, v ∈ R
n. Equivalently, one can define

SO(n,R) = {A ∈ GL(n,R) | AAt = I, detA > 0}.

The Lie algebra of SO(n) is the space of skew-symmetric matrices

so(n,R) = {A ∈ gl(n,R) | A+At = 0} ,

as the relation

(I + εA)(I + εAt) = I + ε(A+At) + O(ε2)

shows.
• Sp(2n,R) is the group of transformations of R

2n preserving the nondegen-
erate skew-product of vectors.

Exercise 1.9 Give an alternative definition of Sp(2n,R) with the help of
the equation satisfied by the corresponding matrices for the following skew-
product of vectors 〈u, v〉 :=

∑n
j=1(ujvj+n − vjuj+n). Find the corresponding

Lie algebra.

Exercise 1.10 Show that in all of Examples 1.8, the Lie bracket is given by
the usual commutator of matrices: [A,B] = AB −BA.

The following examples are the first infinite-dimensional Lie groups we
shall encounter.

Example 1.11 Let M be a compact n-dimensional manifold. Consider the
set Diff(M) of diffeomorphisms of M . It is an open subspace of (the Fréchet
manifold of) all smooth maps from M to M . One can check that the com-
position and inversion are smooth maps, so that the set Diff(M) is a Fréchet
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Lie group; see [157].2 Its Lie algebra is given by Vect(M), the Lie algebra of
smooth vector fields on M .

Given a volume form µ on M , one can define the group of volume-
preserving diffeomorphisms

SDiff(M) := {φ ∈ Diff(M) | φ∗µ = µ} .

It is a Lie group, since SDiff(M) is a closed subgroup of Diff(M). Its Lie
algebra SVect(M) := {v ∈ Vect(M) | div(v) = 0} consists of vector fields on
M that are divergence-free with respect to the volume form µ.

Example 1.12 Let M be a finite-dimensional compact manifold and let G
be a finite-dimensional Lie group. Set the group of currents on M to be
GM = C∞(M,G), the group of G-valued functions on M . We can define
a multiplication on GM pointwise, i.e., we set (ϕ · ψ)(g) = ϕ(g)ψ(g) for all
ϕ, ψ ∈ GM . This multiplication gives GM the structure of a (Fréchet) Lie
group, as we discuss below.

Example 1.13 A slight, but important, generalization of the example above
is the following: Let G be a finite-dimensional Lie group, and P a principal
G-bundle over a manifold M . Denote by π : P → M the natural projection to
the base. Define the Lie group Gau(P ) of gauge transformations (or, simply,
the gauge group) of P as the group of bundle (i.e., fiberwise) automorphisms:
Gau(P ) = {ϕ ∈ Aut(P ) | π ◦ϕ = π}. The group multiplication is the natural
composition of the bundle automorphisms. (Automorphisms of each fiber of P
form a copy of the group G, and all together they define the associated bundle
over M with the structure group G. The identity bundle automorphism gives
the trivial section of this associated G-bundle, and the gauge transformation
group consists of all smooth sections of it; see details in [265].) One can show
that this is a Lie group (cf. [157]), and we denote the corresponding Lie algebra
by gau(P ). For a topologically trivial G-bundle P , the group Gau(P ) coincides
with the current group GM .

Exercise 1.14 Describe the Lie brackets for the Lie algebras in the last three
examples.

Remark 1.15 For a Lie group G, the Lie bracket on the corresponding Lie
algebra g, which we defined via the usual Lie bracket of left-invariant vector
fields on the group, satisfies the following properties:
2 In many analysis questions it is convenient to work with the larger space of dif-

feomorphisms Diffs(M) of Sobolev class Hs. For s > n/2 + 1 these spaces are
smooth Hilbert manifolds. On the other hand, the spaces Diffs(M) are only topo-
logical (but not smooth) groups, since the composition of such diffeomorphisms
is not smooth. Indeed, while the right multiplication rφ : ψ �→ ψ ◦ φ is smooth,
the left multiplication lψ : φ �→ ψ ◦ φ is only continuous, but not even Lipschitz
continuous; see [95].
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(i) it is antisymmetric in X and Y , i.e., [X,Y ] = −[Y,X], and
(ii) it satisfies the Jacobi identity:

[[X,Y ], Z] + [[Z,X], Y ] + [[Y,Z],X] = 0 .

The Jacobi identity can be thought of as an infinitesimal analogue of the
associativity of the group multiplication.

1.3 The Exponential Map

Definition 1.16 The exponential map from a Lie algebra to the correspond-
ing Lie group exp : g → G is defined as follows: Let us fix some X ∈ g and let
˜X denote the corresponding left-invariant vector field. The flow of the field
˜X is a map φX : G× R → G such that d

dtφX(g, t) = ˜X(φX(g, t)) for all t and
φX(g, 0) = g. The flow φX is the solution of an ordinary differential equation,
which, if it exists, is unique. In the case that the flow subgroup φX(e, .) exists
for all X ∈ g, we define the exponential map exp : g → G via the time-one
map X �→ φX(e, 1); see Figure 1.1.

G

g

ΦX(e, 1)

e

X

Fig. 1.1. The exponential map on the group G associates to a vector X the time-one
map for the trajectory of a left-invariant vector field defined by X at e ∈ G.

Example 1.17 For each of the finite-dimensional Lie groups considered in
Example 1.8, the exponential map is given by the usual exponential map for
matrices:

exp : A �→ exp(A) =
∞
∑

n=0

1
n!
An .

Remark 1.18 The definition of the exponential map relies on the existence
and uniqueness of solutions of certain first-order differential equations. In
general, solutions of differential equations in Fréchet spaces might not be
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unique.3 However, the differential equation in the definition of the exponential
map is of special type, which secures the solution’s uniqueness upon fixing its
initial condition. Namely, let φ : R → G be a smooth path in the Lie group
G. Its derivative φ′(t) := d

dtφ(t) is a tangent vector to the group G at the
point φ(t). Translate this vector back to the identity via left multiplication
by φ−1(t). The corresponding element of the Lie algebra g is denoted by
φ−1(t)φ′(t) and is called the left logarithmic derivative of the path φ.

Now consider a Lie algebra element X ∈ g. By definition of the exponential
map, the curve φ(t) = exp(tX) satisfies the differential equation φ′(t) = φ(t)X
with the initial condition φ(0) = e. So for all solutions of this differential equa-
tion, the left logarithmic derivative is given by the constant curve X ∈ g. Now
the uniqueness of the exponential map is implied by the following Exercise.

Exercise 1.19 Show that two smooth paths φ, ψ : R → G have the same left
logarithmic derivative for all t ∈ R if and only if they are translations of each
other by some constant element g ∈ G: φ(t) = g ψ(t) for all t ∈ R. (Hint: see,
e.g., [265].)

Remark 1.20 As far as the existence is concerned, the exponential map ex-
ists for all finite-dimensional Lie groups and more generally for Lie groups
modeled on Banach spaces, as follows from the general theory of differential
equations. However, there may exist infinite-dimensional Lie groups that do
not admit an exponential map. Moreover, even in the cases in which the ex-
ponential map of an infinite-dimensional group exists, it can exhibit rather
peculiar properties; see the examples below.

Example 1.21 For the diffeomorphism group Diff(M) the exponential map
exp : Vect(M) → Diff(M) has to assign to each vector field on M the time-one
map for its flow. However, for a noncompact M this map may not exist: the
corresponding vector field may not be complete. Indeed, for example, for the
vector field ξ = x2∂/∂x on the real line M = R, the time-one map of the flow
is not defined on the whole of R: the corresponding flow sends some points to
infinity for the time less than 1! Fortunately, for compact manifolds M and
smooth vector fields, the time-one maps of the corresponding flows, and hence
the exponential maps, are well defined.

Note that the group of diffeomorphisms of a noncompact manifold is not
complete, and hence it is not a Lie group in our sense. It is an important open
problem to find a Lie group that is modeled on a complete space and does
not admit an exponential map.
3 For instance, the initial value problem u(x, 0) = f(x) for the equation ut(x, t) =

ux(x, t) with x ∈ [0, 1] has wave-type solutions u(x, t) = f(x + t). For nonzero
t such a solution u(x, t) for x ∈ [0, 1] depends on the extension of f(x) to the
segment [−t, 1− t]. Due to arbitrariness in the choice of a smooth extension of f
from [0, 1] to R, the solution to this initial value problem is not unique.
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Let us return to the current group GM , where the exponential map exists
and can be used to give this group the structure of a Fréchet Lie group.
Namely, the space gM = C∞(M, g) endowed with the topology of uniform
convergence is a Fréchet space. Moreover, the map exp : g → G can be used to
define a map ẽxp : gM → GM pointwise. In a sufficiently small neighborhood
of 0 ∈ gM , the map ẽxp is bijective. Thus it can be used to define a local system
of open neighborhoods of the identity in GM . We can use left translation to
transfer this system to any point in GM and thus define a topology on the
group GM . Again using the exponential map, we can define coordinate charts
on GM . This definition implies that multiplication and inversion in GM are
smooth maps. So GM is an infinite-dimensional Lie groups (see, e.g., [157] for
more details).

From the construction of the Lie group structure on GM , it is clear that its
Lie algebra is the current algebra gM , and that the exponential map gM → GM

is the map ẽxp described above. Note, however, that ẽxp is not, in general,
surjective, even if exp : g → G is surjective. As an example, take the manifold
M to be the circle S1 and G to be the group SU(2).

Exercise 1.22 Show that the map

θ �→
(

eiθ 0
0 e−iθ

)

for θ ∈ S1 = R/2πZ defines an element in GS1
that does not belong to the

image of the exponential map ẽxp : gS1 → GS1
.

In contrast to the exponential map in the case of the current group GM ,
the exponential map exp : Vect(M) → Diff(M) for the diffeomorphism group
of a compact M is not, in general, even locally surjective already for the case
of a circle.

Proposition 1.23 (see, e.g., [265, 301, 322]) The exponential map exp :
Vect(S1) → Diff(S1) is not locally surjective.

Proof. First observe that any nowhere-vanishing vector field on S1 is conju-
gate under Diff(S1) to a constant vector field. Indeed, if ξ(θ) = v(θ) ∂

∂θ is such a
vector field, we can define a diffeomorphism ψ : S1 → S1 via ψ(θ) = a

∫ θ

0
dt

v(t) .
Here, a ∈ R is chosen such that ψ(2π) = 2π. Then ψ∗(ξ ◦ ψ−1) is a constant
vector field on S1.

From this observation, one can conclude that any diffeomorphism of S1

that lies in the image of the exponential map and that does not have any
fixed points is conjugate to a rigid rotation of S1. Hence in order to see that
the exponential map is not locally surjective, it is enough to construct diffeo-
morphisms arbitrarily close to the identity that do not have any fixed points
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and that are not conjugate to a rigid rotation. For this, one can take dif-
feomorphisms without fixed points, but which have isolated periodic points,
i.e., fixed points for a certain nth iteration of this diffeomorphism. Indeed, if
such a diffeomorphism ψ belonged to the image of the exponential map, so
would its nth power ψn. Then the corresponding vector field defining the ψn

as the time-one map would either have zeros or be nonvanishing everywhere.
In the former case, the n-periodic points of ψ must actually be its fixed points,
while in the latter case, the diffeomorphism ψn, as well as ψ, would be conju-
gate to a rigid rotation and hence all points of ψ would be n-periodic. Both
cases give us a contradiction.

Explicitly, a family of such diffeomorphisms can be constructed as follows:
Let us identify S1 with R/2πZ. Then consider the map ψn,ε : x �→ x +
2π
n + ε sin(nx). For ε small enough, this is indeed a diffeomorphism of S1.
Furthermore, by choosing n large and ε small, the diffeomorphisms ψn,ε can
be made arbitrarily close to the identity while having no fixed points. Finally,
for ε �= 0, ψn,ε cannot be conjugate to a rigid rotation. If it were conjugate
to a rotation, it would have to be the rotation ψn,0, since ψn

n,ε(0) = 0. But in
this case, we would have ψn

n,ε = id, which is not true for ε �= 0. �

1.4 Abstract Lie Algebras

As we have seen in the last section, the Lie bracket of two left-invariant vector
fields ˜X and ˜Y on a Lie group G defines a bilinear map [ . , . ] : g × g → g of
the Lie algebra of G that is antisymmetric in X and Y and satisfies the Jacobi
identity (1.2). These properties can be taken as the definition of an abstract
Lie algebra:

Definition 1.24 An (abstract) Lie algebra is a real or complex vector space
g together with a bilinear map [ . , . ] : g × g → g (the Lie bracket) that is
antisymmetric in X and Y and that satisfies the Jacobi identity

[[X,Y ], Z] + [[Z,X], Y ] + [[Y,Z],X] = 0 . (1.2)

All the Lie algebras we have encountered so far as accompanying the cor-
responding Lie groups can also be regarded by themselves, i.e., as abstract Lie
algebras. A famous theorem of Sophus Lie states that every finite-dimensional
(abstract) Lie algebra g is the Lie algebra of some Lie group G. In infinite
dimensions this is no longer true in general.

Example 1.25 ([205, 207]) To illustrate the failure of Lie’s theorem in an
infinite-dimensional context, consider the Lie algebra of complex vector fields
on the circle VectC(S1) = Vect(S1) ⊗ C. Let us show that this Lie algebra
cannot be the Lie algebra of any Lie group. First note that VectC(S1) contains
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as a subalgebra the Lie algebra Vect(S1) of real vector fields on the circle,
which is the Lie algebra of the group Diff(S1).

Let G1 denote the group PSL(2,R) and let Gk denote the k-fold covering
of G1. The group G2 is isomorphic to SL(2,R), while for k > 2 it is known
that the groups Gk have no matrix realization. The group Diff(S1) contains
each Gk as a subgroup. Namely, Gk is the subgroup corresponding to the Lie
subalgebra gk spanned by the vector fields

∂

∂θ
, sin(kθ)

∂

∂θ
, cos(kθ)

∂

∂θ
.

(Note that each gk is isomorphic to sl(2,R).)
Now suppose that there exists a complexification of the group Diff(S1),

i.e., a Lie group G corresponding to the complex Lie algebra VectC(S1). Such
a group G would have to contain the complexifications of all the groups Gk.
However, for k > 2 the groups Gk do not admit complexifications: the only
complex groups corresponding to the Lie algebra sl(2,C) are SL(2,C) and
PSL(2,C).

More precisely, if the complex Lie group G existed, the real subgroups
Gk would belong to the complex subgroups of G corresponding to complex
subalgebras gC

k 
 sl(2,C). But these complex subgroups have to be isomorphic
either to SL(2,C), which contains only SL(2,R) = G2, or to PSL(2,C), which
contains only PSL(2,R) = G1. Thus the complex group G containing all Gk

cannot exist, and hence there is no Lie group for the Lie algebra VectC(S1).

Lie algebra homomorphisms are defined in the usual way: A map ρ : g → h

between two Lie algebras is a Lie algebra homomorphism if it satisfies
ρ([X,Y ]) = [ρ(X), ρ(Y )] for all X, Y ∈ g. We will also need another im-
portant class of maps between Lie algebras called derivations:

Definition 1.26 A linear map δ : g → g of a Lie algebra g to itself is called
a derivation if it satisfies

δ([X,Y ]) = [δ(X), Y ] + [X, δ(Y )]

for all X, Y ∈ g.

Exercise 1.27 Define the map adX : g → g associated to a fixed vector
X ∈ g via

adX(Y ) = [X,Y ] .

Show that this is a derivation for any choice of X. (Hint: use the Jacobi
identity.)

If a derivation of a Lie algebra g can be expressed in the form adX for some
X ∈ g, it is called an inner derivation; otherwise, it is called an outer deriva-
tion of g.
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Exercise 1.28 Let δ be a derivation of a Lie algebra g, and suppose that
exp(δ) =

∑∞
i=0

1
i!δ

i makes sense (for example, suppose, the map δ is nilpotent).
Show that the map exp(δ) is an automorphism of the Lie algebra g.

Definition 1.29 A subalgebra of a Lie algebra g is a subspace h ⊂ g invariant
under the Lie bracket in g. An ideal of a Lie algebra g is a subalgebra h ⊂ g

such that [X, h] ⊂ h for all X ∈ g.

The importance of ideals comes from the fact that if h ⊂ g is an ideal,
then the quotient space g/h is again a Lie algebra.

Exercise 1.30 (i) Show that for an ideal h ⊂ g the Lie bracket on g descends
to a Lie bracket on the quotient space g/h.

(ii) Show that if ρ : g → g̃ is a homomorphism of two Lie algebras, then
the kernel ker ρ of ρ is an ideal in g.

Definition 1.31 A Lie algebra is simple (respectively, semisimple) if it does
not contain nontrivial ideals (respectively, nontrivial abelian ideals).

Any finite-dimensional semisimple Lie algebra is a direct sum of nonabelian
simple Lie algebras.

A group analogue of an ideal is the notion of a normal subgroup. A sub-
group H ⊂ G of a group G is called normal if gHg−1 ⊂ H for all g ∈ G.
Exercise 1.30 translates directly to normal subgroups.

2 Adjoint and Coadjoint Orbits

Writing out a linear operator in a different basis or a vector field in a different
coordinate system has a far-reaching generalization as the adjoint represen-
tation for any Lie group. In this section we define the adjoint and coadjoint
representations and the corresponding orbits for an arbitrary Lie group.

2.1 The Adjoint Representation

A representation of a Lie group G on a vector space V is a linear action ϕ
of the group G on V that is smooth in the sense that the map G × V →
V , (g, v) �→ gv, is smooth. If V is a real vector space, (V, ϕ) is called a real
representation, and if V is complex, it is a complex representation. (Here V is
assumed to be a Fréchet space, and, often, a Hilbert space. In the latter case,
the representation is said to be unitary if the inner product on V is invariant
under the action of G.)
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Every Lie group has two distinguished representations: the adjoint and the
coadjoint representations. Since they will play a special role in this book, we
describe them in more detail.

Any element g ∈ G defines an automorphism cg of the group G by conju-
gation:

cg : h ∈ G �→ ghg−1.

The differential of cg at the identity e ∈ G maps the Lie algebra of G to itself
and thus defines an element Adg ∈ Aut(g), the group of all automorphisms of
the Lie algebra g.

Definition 2.1 The map Ad : G → Aut(g), g �→ Adg defines a representation
of the group G on the space g and is called the group adjoint representation;
see Figure 2.1. The orbits of the group G in its Lie algebra g are called the
adjoint orbits of G.

G

g

Adg

cg

e

Fig. 2.1. Conjugation cg on the group G generates the adjoint representation Adg

on the Lie algebra g.

The differential of Ad : G → Aut(g) at the group identity g = e defines a
map ad : g → End(g), the adjoint representation of the Lie algebra g.

One can show that the bracket [ , ] on the space g defined via

[X,Y ] := adX(Y )

coincides with the bracket (or commutator) of the corresponding two left-
invariant vector fields on the group G and hence with the Lie bracket on g

defined in Section 1.2.

Example 2.2

• Let g ∈ GL(n,R) and A ∈ gl(n,R). Then Adg A = gAg−1. Hence the ad-
joint orbits are given by sets of similar (i.e., conjugate) matrices in gl(n,R).
The adjoint representation of gl(n,R) is given by adA(B) = [A,B] =
AB −BA.
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• The adjoint orbits of SO(3,R) are spheres centered at the origin of R
3 


so(3,R) and the origin itself.
• The adjoint orbits of SL(2,R) are contained in the sets of similar matrices.

By writing A =
(

a b
c −a

)

∈ sl(2,R), one sees that the adjoint orbits lie in
the level sets of ∆ = −(a2 + bc) = const: matrices that are conjugate
to each other have the same determinant. Note, however, that not all
matrices in sl(2,R) that have the same determinant are conjugate. For
instance, the matrices with determinant ∆ = 0 constitute three different
orbits: the origin and two other orbits, cones, passing through the matrices
(

0 ±1
0 0

)

, respectively. For ∆ �= 0 the SL(2,R)-orbits are either one-sheet
hyperboloids or connected components of the two-sheet hyperboloids a2 +
bc = const, since the group SL(2,R) is connected.

• Let G be the set of orientation-preserving affine transformations of the
real line. That is, G = {(a, b) | a, b ∈ R , a > 0}, and (a, b) ∈ G acts on
x ∈ R via x �→ ax + b. The Lie algebra of G is R

2, and its adjoint orbits
are the affine lines

{(α, β) ∈ R
2 | α = const �= 0, β arbitrary} ,

the two rays

{(α, β) ∈ R
2, α = 0, β < 0} and {(α, β) ∈ R

2, α = 0, β > 0} ,

and the origin {(0, 0)}; see Figure 2.2.
• Let M be a compact manifold. The adjoint orbits of the current group

GL(n,C)M in its Lie algebra gl(n,C)M are given by fixing the (smoothly
dependent) Jordan normal form of the current at each point of the mani-
fold M .

• Let M be a compact manifold. The adjoint representation of Diff(M) on
Vect(M) is given by coordinate changes of the vector field: for a φ ∈
Diff(M) one has Adφ : v �→ φ∗v ◦ φ−1. The adjoint representation of
Vect(M) on itself is given by the negative of the usual Lie bracket of
vector fields: adv w = ∂v

∂xw(x) − ∂w
∂x v(x) in any local coordinate x.

Exercise 2.3 Verify the latter formula for the action of Diff(M) on Vect(M)
from the definition of the group adjoint action. (Hint: express the diffeomor-
phisms corresponding to the vector fields v(x) and w(x) in the form

g(t) : x �→ x+ tv(x) + o(t), h(s) : x �→ x+ sw(x) + o(s), t, s → 0,

and find the first several terms of g(t)h(s)g−1(t).)

2.2 The Coadjoint Representation

The dual object to the adjoint representation of a Lie group G on its
Lie algebra g is called the coadjoint representation of G on g∗, the dual
space to g.
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Fig. 2.2. Adjoint and coadjoint orbits of the group of affine transformations on the
line.

Definition 2.4 The coadjoint representation Ad∗ of the group G on the
space g∗ is the dual of the adjoint representation. Let 〈 , 〉 denote the pairing
between g and its dual g∗. Then the coadjoint action of the group G on the
dual space g∗ is given by the operators Ad∗

g : g∗ → g∗ for any g ∈ G that are
defined by the relation

〈Ad∗
g(ξ),X〉 := 〈ξ,Adg−1(X)〉 (2.3)

for all ξ in g∗ and X ∈ g. The orbits of the group G under this action on g∗

are called the coadjoint orbits of G.
The differential ad∗ : g → End(g∗) of the group representation Ad∗ : G →

Aut(g∗) at the group identity e ∈ G is called the coadjoint representation
of the Lie algebra g. Explicitly, at a given vector Z ∈ g it is defined by the
relation

〈ad∗
Z(ξ),X〉 = −〈ξ, adZ(X)〉.

Remark 2.5 The dual space of a Fréchet space is not necessarily again a
Fréchet space. In this case, instead of considering the full dual space to an
infinite-dimensional Lie algebra g, we will usually confine ourselves to con-
sidering only appropriate “smooth duals,” the functionals from a certain G-
invariant Fréchet subspace g∗s ⊂ g∗. Natural smooth duals will be different
according to the type of the infinite-dimensional groups considered, but they
all have a (weak) nondegenerate pairing with the corresponding Lie algebra g

in the following sense: for every nonzero element X ∈ g, there exists some ele-
ment ξ ∈ g∗s such that 〈ξ,X〉 �= 0, and the other way around. This ensures that
the coadjoint action is uniquely fixed by equation (2.3). The pair (g∗s,Ad∗ |g∗

s
)

is called the regular (or smooth) part of the coadjoint representation of G,
and, abusing notations, we will usually skip the index s.

Example 2.6

• In the first three cases of Example 2.2, there exists a G-invariant inner
product on g that induces an isomorphism between g and g∗ respecting
the group actions. Hence the adjoint and coadjoint representations of the
groups G are isomorphic, and the coadjoint orbits coincide with the adjoint
ones.


