Therapy of Skin Diseases
Therapy of Skin Diseases

A Worldwide Perspective on Therapeutic Approaches and Their Molecular Basis
Prof. Thomas Krieg
Universitätsklinikum Köln
Klinik und Poliklinik für Dermatologie und Venerologie
Kerpener Str. 62
50924 Köln
Germany
thomas.krieg@uni-koeln.de

Prof. David R. Bickers
Columbia University
Medical Center
Dept. Dermatology
12th Floor, Herbert Irving Pavilion
161 Fort Washington Ave.
New York
NY 10032
USA
drb25@columbia.edu

Prof. Yoshiki Miyachi
Kyoto University
Graduate School of Medicine
Dept. Dermatology & Cutaneous Sciences
54 Kawahara-cho
Shogoin, Sakyo-ku
Kyoto 606-8507
Japan
ymiyachi@kuhp.kyoto-u.ac.jp

DOI: 10.1007/978-3-540-78814-0

Springer Heidelberg Dordrecht London New York
Library of Congress Control Number: 2009933266
© Springer-Verlag Berlin Heidelberg 2010

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Product liability: The publishers cannot guarantee the accuracy of any information about dosage and application contained in this book. In every individual case the user must check such information by consulting the relevant literature.

Cover design: eStudio Calamar, Figueres/Berlin

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)
Treatment of skin diseases has changed remarkably during the last decade. This is largely the result of a better understanding of the molecular and cellular basis of many skin diseases. Thus, novel targets have been identified and specific drugs developed which directly interfere with or alter the disease processes. This change is readily apparent when considering the novel agents available for psoriasis and atopic dermatitis, and also for viral and other infectious skin diseases. Interestingly, many of these new agents are administered systemically either orally or by subcutaneous injection. And yet, as with all forms of drug therapy, these highly efficacious agents can also be associated with severe side effects and drug-induced toxicity. Accordingly, the dermatologist must be aware of the medical status of the patient as well as all other medications that are being prescribed concomitantly. Careful monitoring of the risk:benefit ratio is always critical.

Simultaneously, with the rapid development of novel therapeutics, there has been a major evolution in the clinical practice of dermatology with considerable variations across different areas of the world. In European countries, the discipline is relatively broad, in some countries including allergy and phlebology, as well as dermatologic surgery and dermatologic oncology. In European countries, patients with skin disease are often treated as in-patients by dermatologists, whereas in the United States, this occurs only rarely and the patients are admitted to beds assigned to Internal Medicine and dermatologists consult on their management. Asian dermatology has been profoundly affected by both European and American dermatology and the selection of therapeutic agents often reflects those influences.

The result of these developments is that regional differences are commonplace in the treatment of skin diseases, some correlating with the dermatologic features of patients from diverse ethnic backgrounds, others relating to variations in the different health care systems and/or the medical education and the awareness of dermatologists regarding particular treatment options. In the age of Internet, novel therapies are instantly available and potentially applicable to patients globally.

This book was conceived to address these changes and it has two major aims. First, it summarizes novel therapeutic procedures that are based on understanding the pathophysiology of skin diseases. Second, it aims to bring together in one place the variability of treatment modalities employed in the practice of dermatology around the world in Asia, Europe, and the USA. Every effort has been made to assure that all chapters indicate global variations either in the occurrence or the expression of skin
diseases and their treatment. All manuscripts have been reviewed carefully by experts familiar with the practice of dermatology in Asia, Europe, and the USA. It is our hope that this book will prove to be a valuable reference tool for dermatologists everywhere.

Köln, Germany
New York, USA
Kyoto, Japan

Thomas Krieg
David R. Bickers
Yoshiki Miyachi
We owe special acknowledgement to the cooperation of
Walter Burgdorf, MD
Traubinger Strasse 54A, 82327 Tutzing, wburgdorf@gmx.de
and
Mayumi Fujita, MD, PhD
Associate Professor,
Department of Dermatology, University of Colorado Denver, SOM, Mail Stop 8127,
RC-1 South 4th fl., 12801 E 17th Avenue, Aurora, CO 80045, USA,
mayumi.fujita@ucdenver.edu
<table>
<thead>
<tr>
<th>Section</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part I Introduction</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1.1 Biology of the Skin</td>
<td>Beate Eckes, Thomas Krieg, and Carien M. Niessen</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Immune Mechanisms</td>
<td>Thomas Schwarz and Stefan Beissert</td>
<td>15</td>
</tr>
<tr>
<td>1.3 General Pharmacology</td>
<td>David R. Bickers</td>
<td>21</td>
</tr>
<tr>
<td>1.4 Immunomodulation in Dermatology</td>
<td>Rebecca G. Pomerantz, Thomas S. Kupper, and Abrar A. Qureshi</td>
<td>29</td>
</tr>
<tr>
<td>1.5 Basic Principles of Genetics and Gene Therapy</td>
<td>Liv Kraemer and Angela M. Christiano</td>
<td>39</td>
</tr>
<tr>
<td>1.6 Percutaneous Absorption and Principles of</td>
<td>Hachiro Tagami</td>
<td>57</td>
</tr>
<tr>
<td>Corneotherapy/Skin Care</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7 Principles of Systemic Therapy</td>
<td>Lindy P. Fox</td>
<td>63</td>
</tr>
<tr>
<td>1.8 Retinoid Pharmacology</td>
<td>Jens M. Baron</td>
<td>77</td>
</tr>
<tr>
<td>1.9 Ultraviolet (UV) A and (UV) B Phototherapy</td>
<td>Akimichi Morita</td>
<td>87</td>
</tr>
<tr>
<td>1.10 Laser Therapy</td>
<td>David J. Goldberg</td>
<td>93</td>
</tr>
<tr>
<td>1.11 Photodynamic Therapy</td>
<td>Yoshiki Tokura and Shin-ichi Moriwaki</td>
<td>105</td>
</tr>
<tr>
<td>1.12 Dermatologic Surgery</td>
<td>Murad Alam</td>
<td>113</td>
</tr>
</tbody>
</table>
1.13 Neurophysiology of Itch .. 121
Akihiko Ikoma

Part II Infectious Diseases ... 127

2.1 Bacterial and Mycobacterial Infections 129
Nicole French and Robert L. Modlin

2.2 Fungal Infection ... 149
Takashi Mochizuki

2.3 Viral Infections ... 157
Annabelle Lozano, Anita Arora, Natalia Mendoza, Vandana
Madkan, and Stephen K. Tyring

2.4 Sexually Transmitted Diseases (STDs) 165
Anja Potthoff, Heinrich Rasokat, and Norbert H. Brockmeyer

2.5 Human Immunodeficiency Virus (HIV) 173
Anja Potthoff, Heinrich Rasokat, and Norbert H. Brockmeyer

2.6 Ectoparasitic and Protozoan Diseases 181
Dirk M. Elston

Part III Papulosquamous Dermatoses 191

3.1 Psoriasis ... 193
Hajime Iizuka

3.2 Parapsoriasis and Related Disorders 207
Peter C. M. van de Kerkhof

3.3 Lichen Planus ... 213
Tetsuo Shiohara, Yoshiko Mizukawa, and Yoko Kano

Part IV Atopic Dermatitis and Related Diseases 223

4.1 Atopic Dermatitis .. 225
Andreas Wollenberg and Thomas Bieber

4.2 Pruritus ... 235
Sonja Ständer and Thomas A. Luger

4.3 Urticaria ... 247
Michihiro Hide

4.4 Mastocytosis .. 263
Naotomo Kambe, Akane Tanaka, and Yoshiki Miyachi
Part V Allergic Reactions and Hypersensitive Diseases

5.1 Allergic Contact Dermatitis
Cecilia Svedman and Magnus Bruze

5.2 Photosensitivity Diseases
Taskeshi Horio

5.3 Drug Reactions
Hans F. Merk and Daniela Höller Obrigkeit

5.4 Hypersensitivity Syndrome Reaction
Sandra R. Knowles and Neil H. Shear

5.5 Eosinophilic Dermatoses
Ichiro Katayama and Hiroyuki Murota

5.6 Neutrophilic Dermatoses
Tadashi Terui

5.7 Skin Manifestations in Rheumatologic Disorders
Manabu Fujimoto and Kazuhiko Takehara

Part VI Acne and Rosacea

6.1 Acne and Its Variants
Christos C. Zouboulis and Mohamed Badawy Abdel-Naser

6.2 Rosacea and Related Diseases
Mohamed Badawy Abdel-Naser and Christos C. Zouboulis

Part VII Autoimmune Diseases

7.1 Acquired Bullous Disease
Akiko Tanikawa and Masayuki Amagai

7.2 Connective Tissue Diseases
Minoru Hasegawa and Shinichi Sato

7.3 Cutaneous Vasculitis
Nicolas Hunzelmann

7.4 Graft-Versus-Host Disease
Robert Knobler, Michal Kouba, and David Pohlreich

7.5 Vitiligo
Philippe Bahadoran and Jean-Paul Ortonne
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6 Therapy of Noninfectious Granulomatous Diseases</td>
<td>459</td>
<td>Franco Rongioletti and Alfredo Rebora</td>
</tr>
<tr>
<td>Part VIII Metabolic Diseases</td>
<td>467</td>
<td></td>
</tr>
<tr>
<td>8.1 The Porphyrias</td>
<td>469</td>
<td>Jorge Frank</td>
</tr>
<tr>
<td>8.2 Deposition Diseases</td>
<td>487</td>
<td>Takahiro Hamada</td>
</tr>
<tr>
<td>Part IX Cosmetic Dermatology</td>
<td>497</td>
<td></td>
</tr>
<tr>
<td>9.1 Hair Diseases (Alopecia Areata and Androgenetic Alopecia)</td>
<td>499</td>
<td>Satoshi Itami and Shigeki Inui</td>
</tr>
<tr>
<td>9.2 Nail Diseases</td>
<td>509</td>
<td>Maurice J. Dahdah and Richard K. Scher</td>
</tr>
<tr>
<td>9.3 Hyperhidrosis</td>
<td>517</td>
<td>Robyn D. Siperstein and Robert A. Schwartz</td>
</tr>
<tr>
<td>9.4 Disorders of Pigmentation</td>
<td>525</td>
<td>Yoko Funasaka</td>
</tr>
<tr>
<td>9.5 Cosmetic Surgery</td>
<td>539</td>
<td>Murad Alam</td>
</tr>
<tr>
<td>Part X Inherited Diseases</td>
<td>547</td>
<td></td>
</tr>
<tr>
<td>10.1 Inherited Bullous Diseases</td>
<td>549</td>
<td>Leena Bruckner-Tuderman and Cristina Has</td>
</tr>
<tr>
<td>10.2 Inherited Keratinocyte Diseases</td>
<td>561</td>
<td>Akemi Ishida-Yamamoto</td>
</tr>
<tr>
<td>(Ichthyosis and Related Disorders)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.3 Immunodeficiency Disorders</td>
<td>575</td>
<td>Giuseppe Micali, Dennis P. West, and Amy S. Paller</td>
</tr>
<tr>
<td>10.4 Disorders of DNA Repair</td>
<td>589</td>
<td>Shinichi Moriwaki and Kenneth H. Kraemer</td>
</tr>
<tr>
<td>Part XI Benign and Malignant Tumors</td>
<td>597</td>
<td></td>
</tr>
<tr>
<td>11.1 Nonmelanoma Skin Cancer</td>
<td>599</td>
<td>Alexander G. Marneros and David R. Bickers</td>
</tr>
<tr>
<td>11.2 Malignant Melanoma</td>
<td>621</td>
<td>Toshiaki Saida</td>
</tr>
</tbody>
</table>
11.3 Treatment of Cutaneous Lymphomas 633
Chalid Assaf and Wolfram Sterry

11.4 Vascular Malformations .. 643
Maria C. Garzon and Philip M. Meyers

11.5 Rare Malignancies of the Skin .. 659
Bernhard Zelger and Oliver Bechter

Part XII Miscellaneous Disorders .. 675

12.1 Diseases of Pregnancy and Their Management 677
George Kroumpouzos and Lisa M. Cohen

12.2 Pediatric Dermatology ... 693
Alain Taïeb, Franck Boralevi, and Christine Labrèze

12.3 Aging and Photoaging of the Skin 705
Laure Rittié, Gary J. Fisher, and John J. Voorhees

12.4 Occupational Dermatoses ... 717
S. Mark Wilkinson and Pieter-Jan Coenraads

12.5 Wound Healing ... 735
Sabine A. Eming

Subject Index ... 753
Mohamed Badawy Abdel-Naser, MD Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Auenweg 38, 06847 Dessau, Germany, abdelnasermb@yahoo.com

Murad Alam, MD Northwestern University Dermatology, Clinical Trials Unit, 676 N St Clair, Suite 1600, Chicago, IL 60611, USA m-alam@northwestern.edu

Masayuki Amagai, MD, PhD Department of Dermatology, Keio University, School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan amagai@sc.itc.keio.ac.jp

Anita Arora, MD 6655 Travis, Suite 120, Houston, TX 77030, USA aarora@ccstexas.com

Chalid Assaf, MD Department of Dermatology, Helios Clinics Krefeld, Lutherplatz 40, 47805 Krefeld, Germany chalid.assaf@helios-kliniken.de

Philippe Bahadoran, MD Service de Dermatologie, Hôpital l’Archet 2, CHU de Nice, Route St. Antoine Gnestière, 06202 Nice Cedex 3, France bahadoran@unice.fr

Jens Malte Baron, MD Department of Dermatology and Allergology, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany JensMalte.Baron@post.rwth-aachen.de

Oliver Bechter, MD Department of Internal Medicine, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria Oliver.Bechter@i-med.ac.at

Stefan Beissert, MD, PhD Department of Dermatology, University of Münster, Von Esmarchstrasse 58, 48149 Münster, Germany beisser@uni-muenster.de

David R. Bickers, MD New York Presbyterian Hospital, 161 Fort Washington Avenue, 12th floor, New York, NY 10032, USA drb25@columbia.edu

Thomas Bieber, MD, PhD Department of Dermatology and Allergy, University of Bonn, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany thomas.bieber@ukb.uni-bonn.de
Franck Boralevi, MD Hôpital Pellegrin-Enfants, CHU de Bordeaux,
Place Amélie Raba-Léon, 33076 Bordeaux Cedex, France
franck.boralevi@chu-bordeaux.fr

Norbert H. Brockmeyer, MD Department of Dermatology and Allergology,
Ruhr University Bochum, Gudrunstraße 56, 44791 Bochum, Germany
n.brockmeyer@derma.de

Leena Bruckner-Tuderman, MD Department of Dermatology,
University Medical Center Freiburg, Hauptstraße 7, 79104 Freiburg, Germany
bruckner-tuderman@uniklinik-freiburg.de

Magnus Bruze, MD Department of Occupational and Environmental
Dermatology, Malmö University Hospital, UMAS, Ing 73 (Entrance 45),
S-205 02 Malmö, Sweden
magnus.bruze@med.lu.se

Angela M. Christiano, PhD Department of Dermatology and Genetics
and Development, Columbia University, College of Physicians and Surgeons,
630 West 168th Street VC15 204A, New York, NY 10032, USA
amc65@columbia.edu

Pieter-Jan Coenraads, MD Occupational and Environmental Dermatology Unit,
University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen
The Netherlands
j.coenraads@med.umcg.nl

Lisa M. Cohen, MD Cohen Dermatopathology, 320 Needham Street,
Suite 200, Newton, MA 02464, USA
lcohen@cohenderm.com

Maurice J. Dahdah, MD Department of Dermatology, 161 Fort Washington
Avenue, IP 12th floor, New York, NY 10032, USA
mmd2129@columbia.edu

Beate Eckes, PhD Department of Dermatology, University of Cologne,
Kerpener Straße 62, 50937 Cologne, Germany
beate.eckes@uni-koeln.de

Dirk M. Elston, MD Department of Dermatology, Geisinger Medical Center,
100 North Academy Avenue, Danville, PA 17821, USA
Dmelston@geisinger.edu

Sabine A. Eming, MD Department of Dermatology, University of Cologne,
Kerpener Straße 62, 50937 Cologne, Germany
sabine.eming@uni-koeln.de

Gary J. Fisher, PhD 6447 Med Sci I, 1150 W Medical Center Drive,
Ann Arbor, MI 48109-0609, USA
dianemch@umich.edu

Lindy P. Fox, MD Department of Dermatology, University of California, San
Francisco, 1701 Divisadero, Box 0316, San Francisco, CA 94143, USA
foxli@derm.ucsf.edu
Jorge Frank, MD, PhD Maastricht University, Center for Molecular Dermatology, University Medical Center Maastricht, P. Debyelaan 25, 6202 AZ Maastricht, The Netherlands
jfra@sder.azm.nl

Nicole French, PhD 11963 Walnut Lane, Apt 5, Los Angeles, CA 90025, USA
nfrench@ucla.edu

Manabu Fujimoto, MD Department of Dermatology, Kanazawa University, Graduate School of Medical Science, 13-1 Takaramachi, Kanazawa Ishikawa 920-8641, Japan
mfujimoto@derma.m.kanazawa-u.ac.jp

Yoko Funasaka, MD Department of Clinical Molecular Medicine, Division of Dermatology, Kobe University School of Medicine, 7-5-1 Kusunoki-cho Chuo-ku, Kobe 650-0017, Japan
funasaka@med.kobe-u.ac.jp

Maria C. Garzon, MD Department of Dermatology, Columbia University, College of Physicians and Surgeons, Herbert Irving Pavilion, 12th Floor, 161 Fort Washington Avenue, New York, NY 10032, USA
mcg2@columbia.edu

David J. Goldberg, MD Clinical Professor of Dermatology, The Galleria, 115 E. 57th Street, Suite 10, New York, NY 10022, USA
drdavidgoldberg@drdavidgoldberg.com

Laser Research, Mount Sinai School of Medicine, New York, NY, USA

Takahiro Hamada, MD Department of Dermatology, Kurume University School of Medicine, 67 Asahimachi, Kurume, Fukuoka 830-0011, Japan
hamataka@med.kurume-u.ac.jp

Cristina Has, MD Department of Dermatology, University Medical Center Freiburg, Hauptstraße 7, 79104 Freiburg, Germany
cristina.has@uniklinik-freiburg.de

Minoru Hasegawa, MD, PhD Department of Dermatology, Kanazawa University, Graduate School of Medical Science, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
minoruha@derma.m.kanazawa-u.ac.jp

Michihiro Hide, MD, PhD Department of Dermatology, Division of Molecular Medical Science, Graduate School of Biomedical Sciences Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
mhidde@hiroshima-u.ac.jp

Taskeshi Horio, MD Department of Dermatology, Kansai Medical University, Fumizono 10-15, Moriguchi, Osaka 570-8507, Japan
horio@takii.kmu.ac.jp

Nicolas Hunzelmann, MD Department of Dermatology, University of Cologne, Kerpener Straße 62, 50937 Köln, Germany
Nico.Hunzelmann@uni-koeln.de
Hajime Iizuka, MD Department of Dermatology, Asahikawa Medical College, 2-1-1-1 Higashi Midorigaoka, Asahikawa-Shi, Hokkaido 078-8510, Japan derma@asahikawa-med.ac.jp

Akihiko Ikoma, MD, PhD Department of Dermatology, University of California, San Francisco, 513 Parnassus Avenue, Room S-1268, San Francisco, CA 94143-0660, USA akiikoma@kuhp.kyoto-u.ac.jp

Shigeki Inui, MD Department of Regenerative Dermatology, Graduate School of Medicine, Osaka University, 2-2 (G5), Yamadaoka, Suita-shi, Osaka 565-0871, Japan inui@r-derma.med.osaka-u.ac.jp

Akemi Ishida-Yamamoto, MD Department of Dermatology, Asahikawa Medical College, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan akemi@asahikawa-med.ac.jp

Satoshi Itami, MD, PhD Department of Regenerative Dermatology, Graduate School of Medicine, Osaka University, 2-2 (G5), Yamadaoka, Suita-shi, Osaka 565-0871, Japan itami@r-derma.med.osaka-u.ac.jp

Naotomo Kambe, MD, PhD Department of Dermatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyoku, Kyoto 606-8507, Japan nkambe@kuhp.kyoto-u.ac.jp

Yoko Kano, MD Department of Dermatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan

Ichiro Katayama, MD, PhD Department of Dermatology, Integrated Medicine, Graduate School of Medicine, Osaka University, Suita-shi, Osaka 565-0871, Japan katayama@derma.med.osaka-u.ac.jp

Robert Knobler, MD Department of Dermatology, University of Vienna Medical School, Währinger Gürtel 18-20, 1090 Vienna, Austria robert.knobler@meduniwien.ac.at

Sandra R. Knowles, RPH, BSc Phm Drug Safety Pharmacist, Sunnybrook and Women’s HSC, 2075 Bayview Avenue, Room EG03, Toronto, ON, Canada M4N 3MS sandra.knowles@sunnybrook.ca

Michal Kouba, MD Institute of Hematology and Blood Transfusion, Charles University Prague, U Nemocnice 1, 12820, Prague 2, Czech Republic michal.kouba@uhkt.cz

Liv Kraemer, MD, PhD Department of Dermatology, Columbia University, New York Presbyterian Hospital, 161 Fort Washington Avenue, 12th Floor, New York, NY 10032, USA
Kenneth H. Kraemer, MD DNA Repair Section, Basic Research Laboratory, National Cancer Institute, Building 37, Room 4002, Bethesda, MD 20892, USA kraemerk@mih.gov

Thomas Krieg, MD Department of Dermatology, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany thomas.krieg@uni-koeln.de

George Kroumpouzos, MD, PhD, FAAD 9 Hawthorne Place, Suite 6D, Boston, MA 02114, USA george.kroumpouzos@gkderm.com

Thomas S. Kupper, MD Department of Dermatology, Brigham and Women’s Hospital, 221 Longwood Avenue, Boston, MA 02115, USA strand@partners.org

Christine Labrèze, MD Hôpital Pellegrin-Enfants, CHU de Bordeaux, Place Amélie Raba-Léon, 33076 Bordeaux Cedex, France christine.labrèze@chu-bordeaux.fr

Annabelle Lozano, BS 7675 Phoenix Dr. #509, Houston, TX 77030, USA annabelle.lozano@bcm.edu

Thomas A. Luger, MD Department of Dermatology, Clinical Neurodermatology, Ludwig-Boltzmann Institute for Cell Biology and Immunobiology of the Skin, University of Münster, Von-Esmarch-Straße 58, 48149 Münster, Germany luger@uni-muenster.de

Vandana Madkan, MD 6655 Travis, Suite 120, Houston, TX 77030, USA vmadkan@gmail.com

Alexander G. Marneros, MD Department of Dermatology, The Irving Pavillion, Columbia Presbyterian Medical Center, 161 Fort Washington Avenue, 12th floor, New York, NY 10032, USA alexander_marneros@yahoo.com

Natalia Mendoza, MD, MSc 6655 Travis, Suite 120, Houston, TX 77030, USA nmendoza@ccstexas.com

Hans F. Merk, MD Department of Dermatology, RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany hans.merk@post.rwth-aachen.de

Philip M. Meyers, MD Columbia and Cornell University Medical Centers, Neurological Institute, 710 West 168th Street, New York, NY 10032, USA pmm2002@columbia.edu

Giuseppe Micali, MD Department of Dermatology, University of Catania, Piazza S. Agata La Vetere 6, 95124 Catania, Italy eldermct@nti.it

Yoshiki Miyachi, MD, PhD Department of Dermatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan ymiyachi@kuhp.kyoto-u.ac.jp
Yoshiko Mizukawa, MD Department of Dermatology, Kyorin University
School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan

Robert L. Modlin, MD Department of Dermatology, 52-121,
UCLA School of Medicine, 10833 Le Conte Avenue, Los Angeles, CA 90024, USA
rmodlin@mednet.ucla.edu

Takashi Mochizuki, MD, PhD Department of Dermatology, Kanazawa Medical
University, Daigaku 1-1, Uchinada, Kahoku, Ishikawa 920-0293, Japan
mocizuki@kanazawa-med.ac.jp

Akimichi Morita, MD, PhD Department of Geriatric and Environmental
Dermatology, Nagoya City University Graduate School of Medical Sciences,
1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
amorita@med.nagoya-cu.ac.jp

Shin-ichi Moriwaki, MD Department of Dermatology, Osaka Medical College,
2 – 7 Daigaku-cho, Takatsuki 569-8686, Japan
der002@poh.osaka-med.ac.jp

Carien M. Niessen, PhD Department of Dermatology, University of Cologne,
Kerpener Straße 62, 50937 Cologne, Germany
carien.niessen@uni-koeln.de

Daniela Höller Obrigkeit, MD Department of Dermatology, RWTH Aachen,
Pauwelstraße 30, 52074 Aachen, Germany
daniela.hoeller@gmx.net

Jean-Paul Ortonne, MD Service de Dermatologie, PC-Médicaux-Niveau 0,
Hôpital l’Archet 2, CHU de Nice, Route St., Antoine Gnestière,
06202 Nice Cedex 3, France
ortonne@unice.fr

Amy S. Paller, MD Department of Dermatology, Northwestern University,
Feinberg School of Medicine, 676 N. St. Clair Street, Suite 1600, Chicago,
IL 60611, USA
apaller@northwestern.edu

David Pohlreich, MD 1st Department of Medicine, Charles University Prague,
U Nemocnice 1, 12820, Prague 2, Czech Republic
david.pohlreich@uhkt.cz

Rebecca G. Pomerantz, MD Department of Dermatology,
University of Pittsburgh School of Medicine, BSTWR 1032, 3550 Terrace Street,
Pittsburgh, PA 15261, USA
rgp8@pitt.edu

Anja Potthoff, MD Department of Dermatology and Allergology,
Ruhr University Bochum, Gudrunstraße 56, 44791 Bochum, Germany
a.potthoff@klinikum-bochum.de

Abrar A. Qureshi, MD Department of Dermatology, Brigham and Women’s
Hospital, 221 Longwood Avenue, Boston, MA, USA
Heinrich Rasokat, MD Department of Dermatology, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
h.rasokat@uni-koeln.de

Alfredo Rebora, MD Section of Dermatology, D, SEM, University of Genova, Viale Benedetto XV 7, I-16132 Genova, Italy
rebdermo@unige.it

Laure Rittié, PhD University of Michigan Medical School, 1301 E. Catherine, Ann Arbor, MI 48109-0609, USA
lrittie@umich.edu

Franco Rongioletti, MD Section of Dermatology, D, SEM, University of Genova, Viale Benedetto XV 7, I-16132 Genova, Italy
franco.rongioletti@unige.it

Toshiaki Saida, MD, PhD Department of Dermatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
tosaida@hsp.md.shinshu-u.ac.jp

Shinichi Sato, MD, PhD Department of Dermatology, Nagasaki University, Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
s-sato@net.nagasaki-u.ac.jp

Richard K. Scher, MD, FACP Department of Dermatology, 161 Fort Washington Avenue, IP 12th floor, New York, NY 10032, USA
rs21@columbia.edu

Thomas Schwarz, MD Department of Dermatology, University Kiel, Schittenhelmstraße 7, 24105 Kiel, Germany
ts Schwarz@dermatology.uni-kiel.de

Robert A. Schwartz, MD MPH Dermatology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103-2714, USA
roschwar@umdnj.edu

Neil H. Shear, MD Department of Dermatology, University of Toronto, 2075 Bayview Avenue, Room M1737, Toronto, ON, M4N 3MS, Canada
neil.shear@sunnybrook.ca

Tetsuo Shiohara, MD Department of Dermatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
tpshio@kyorin-u.ac.jp

Robyn D. Siperstein, MD 10151 Enterprise Center Blvd, Suite 108, Boynton Beach, FL 33437, USA
robyndsp@aol.com
347 N New River Dr E, Apt 2811, Fort Lauderdale, FL 33301, USA

Sonja Ständer, MD Department of Dermatology, Clinical Neurodermatology, Ludwig-Boltzmann Institute for Cell Biology and Immunobiology of the Skin, University of Münster, Von-Esmarch-Straße 58, 48149 Münster, Germany
sonja.staender@uni-muenster.de
Wolfram Sterry, MD Department of Dermatology and Allergy, Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany wolfram.sterry@charite.de

Cecilia Svedman, MD Department of Occupational and Environmental Dermatology, Malmö University Hospital, UMAS, Ing 73 (Entrance 45), S-205 02 Malmö, Sweden cecilia.svedman@skane.se

Hachiro Tagami, MD, PhD Tohoku University School of Medicine, 3-27-1 Kaigamori, Aoba-ku, Sendai 981-0942, Japan hachitagami@ybb.ne.jp

Kazuhiko Takehara, MD, PhD Department of Dermatology, Kanazawa University, Graduate School of Medical Science, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8641, Japan takehara@med.kanazawa-u.ac.jp

Alain Taieb, MD Hôpital Pellegrin-Enfants, CHU de Bordeaux, Place Amélie Raba-Léon, 33076 Bordeaux Cedex, France alain.taieb@chu-bordeaux.fr

Akane Tanaka, DVM, PhD Laboratory of Veterinary Molecular Pathology and Therapeutics, Division of Animal Life Science, Graduate School, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan akane@cc.tuat.ac.jp

Akiko Tanikawa, MD, PhD Department of Dermatology, Keio University, School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan tanikawa@sc.itc.keio.ac.jp

Tadashi Terui, MD Department of Dermatology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamimachi, Itabashi-ku, Tokyo 173-8610, Japan terui@med.nihon-u.ac.jp

Yoshiki Tokura, MD Department of Dermatology, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yhatanishi-ku, Kitakyushu 807-8555, Japan tokura@med.uoeh-u.ac.jp

Stephen K. Tyring, MD, PhD, MBA 6655 Travis, Suite 120, Houston, TX 77030, USA stephen.k.tyring@uth.tmc.edu

Peter C.M. van de Kerkhof, MD Department of Dermatology, University Hospital Nijmegen, Postbus 9101, 6500 HB Nijmegen, The Netherlands, p.vandekerkhof@derma.umcn.nl

John J. Voorhees, MD 1910 Taubman Center, 1500 East Medical Center Dr., Ann Arbor, MI 48109-0314, USA voorhees@med.umich.edu
Dennis P. West, PhD Department of Dermatology, Northwestern University, Feinberg School of Medicine, 676 N. St. Clair Street, Suite 1600, Chicago, IL 60611, USA
dwest@northwestern.edu

S. Mark Wilkinson, MD Dermatology Department, Leeds Teaching Hospitals NHS Trust, Great George Street, Leeds, West Yorkshire LS1 3EX, UK
mark.wilkinson@leedsth.nhs.uk

Andreas Wollenberg, MD Department of Dermatology and Allergy, Ludwig-Maximilian University, Frauenlobstraße 9-11, 80337 Munich, Germany
wollenberg@lrz.uni-muenchen.de

Bernhard Zelger, MD, MSc Department of Dermatology and Venereology, Innsbruck Medical University, Anichstraße 35, 6020 Innsbruck, Austria
bernhard.zelger@i-med.ac.at

Christos C. Zouboulis, MD Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Auenweg 38, 06847 Dessau, Germany
christos.zouboulis@klinikum-dessau.de
Part

Introduction
The skin is the largest organ of the body and crucial for terrestrial life by providing a sturdy barrier toward the outside world. This barrier protects the organism from dehydration and prevents microbes and damaging agents from entering. The skin is challenged on a daily basis by a range of external insults, such as changes in temperature, UV light, and bacteria to thermal and mechanical injuries. Since in most cases, the skin is able to handle challenges without the occurrence of overt disease, this organ, by nature, must be an extremely versatile and dynamic tissue.

During evolution, the skin has gained a number of structural and functional features that allow it to react in an adequate manner to those external signals and injuries. Most importantly, the skin has developed ultra-structurally defined subcompartments that topically restrict external and internal damage.

The skin is composed of an epithelial and a mesenchymal compartment, the epidermis and the dermis, which are connected by a highly specialized extracellular matrix structure, and the basement membrane (Fig. 1.1.1). The dermis is resting on the subcutis, a fat layer that connects it to the fascia and the underlying muscles. These two compartments communicate extensively in various ways and at different levels, and this is crucial to establish, maintain, and restore homeostasis. During skin morphogenesis, this reciprocal interaction also determines the formation of the epidermal appendages, such as hair follicles, sweat glands, sebaceous glands, and nails, all structures that are required for normal skin function. Strong regional differences exist in the thickness and differentiation status of dermis and/or epidermis and the distribution of skin appendages. These variations are ontogenetically determined and form the basis for differential skin function required in various anatomical areas.

This chapter provides a general overview of, and introduction to, the cellular composition of the skin, the most important functions of the different cell types, and their particular contribution to the multifunctional skin barrier. Although it emphasizes several aspects more than others, this chapter does not aim at going extensively into details, and for the most part, uses citations of excellent and comprehensive reviews to refer to the reader who is interested to learn more on particular subjects. In addition, many chapters of this book will discuss the different aspects discussed here in light of skin disease.

1.1.1 Cellular Composition of the Epidermis

The epidermis and its appendages, hair follicles, sebaceous, and sweat glands form the physical barrier of the organism of the outside world. As a barrier, it
serves several important functions, both physical and immunological, which are reflected in the cell types and differentiation status that make up the epidermis.

Keratinocytes are the most predominant cell type in the epidermis and form the cornerstone of its overall structure and function. Epidermal keratinocytes balance lifelong self-renewal with a spatiotemporally strictly regulated terminal differentiation program, which ultimately leads to the formation of a dead, cornified, and water impermeable cell layer \[1,2\]. This differentiation program generates four functionally different layers, each of which is characterized by a specific expression repertoire of intracellular and cell surface associated proteins (Fig. 1.1.1): (a) the basal layer or stratum basale consists of undifferentiated, proliferating cells. (b) the spinous layer or stratum spinosum contains the cells that have withdrawn from the cell cycle, migrated up from the basal layer while committing to differentiation. These cells also have switched keratins to synthesize a mechanically more stable keratin network. (c) The granular layer or stratum granulosum, dedicated to producing the majority of proteins, lipids, and enzymes for formation of the stratum corneum and (d) the stratum corneum, which is also known as the cornified layer, consists of corneocytes, composed of an insoluble cross-linked protein structure, the cornified envelope that serves as a scaffold for specialized lipids that form the intercellular lamina, thereby providing the epidermis with a water-impermeable barrier. Ultimately, this cornified layer is sloughed off in an only partially understood process called desquamation. The epidermal terminal differentiation program is a form of a programmed cell death that relates to the process of apoptosis, but is fundamentally different in key elements: e.g., cells are not phagocytosed and no activation of classical caspases occurs \[3,4\].

Different populations of stem and progenitor cells located in the basal layer of interfollicular epidermis (IFE) and in specific areas of hair follicles guarantee constant self-renewal under steady state conditions and sufficient plasticity for the fast replacement of lost tissue in case of injury. Morphogenetic signal pathways, such as Wnts, BMPs/TGF-β, Notch and Hedgehogs, control the determination, renewal and maintenance of these stem cells \[5–10\]. The flexible
balance between self-renewal and terminal differentiation is determined by the variable conditions of the extracellular environment.

Over the last decade, it has become clear that keratinocytes also actively contribute to the immunological barrier of the skin [11]. These cells produce antimicrobial peptides, such as defensins, and express Toll-like receptors on their cell surface, important for the control of innate immunity. In addition, upon disturbance of skin homeostasis, these cells secrete a wide range of cytokines and other growth factors that influence the innate and adaptive immune response.

Although over 90% of the epidermis consists of keratinocytes, other cell types, such as Langerhans cells, T-cells, melanocytes and Merkel cells, are present in the different layers (Fig. 1.1.1). These cells serve crucial specialized functions that contribute to epidermal homeostasis and to its restoration upon challenges of the epidermal barrier.

Merkel cells are postmitotic, neuroendocrine cells that produce a large number of cytokines and neuro peptides, form close connections with sensory nerve endings, and are mainly located in the basal layer of the epidermis. Ultrastructurally, these cells are characterized by dense core granules. Although these cells are the least well characterized cells in the epidermis, they are thought to have mechanosensory functions and contribute to the regulation of inflammatory responses [12, 13].

Langerhans cells are immature dendritic cells that form close contacts with keratinocytes and monitor microbial infection. Upon activation, these cells mature and migrate to draining lymph nodes where they present antigens to T-lymphocytes [14, 15]. Recent studies have revealed a novel functional aspect of Langerhans cells, showing that these cells not only contribute to immunostimulation, but also to immunosuppression [16].

The epidermis also contains a resident population of unique γδT-cells, which are in close contact with Langerhans cells and keratinocytes. These cells regulate skin inflammatory responses and play important roles in graft vs. host reactions in the skin [17]. By secreting different growth factors, they also play important roles in keratinocyte homeostasis and in wound repair [18]. Melanocytes produce melanin in specialized organelles, the melanosomes [19]. These cells are also in close contact with keratinocytes and this interaction determines melanin uptake by keratinocytes and thereby, skin pigmentation patterns [20]. The production and transfer of melanosomes is a complex and incompletely understood process, but plays a crucial role in the defense against the daily assault of UV light.

1.1.2 Cellular and Structural Composition of the Dermis

In contrast to the epidermis, the dermis is rich in extracellular matrix (ECM), and contains relatively fewer cells (Fig. 1.1.1). The upper or papillary dermis is characterized by loose connective tissue and a horizontal plexus of blood vessels, which are connected to a deep plexus located in the subcutis. The lower or reticular dermis makes up the major part of the dermis and mainly contains thick collagen bundles.

Fibroblasts are the predominant resident cells in normal dermis; they are responsible for producing and remodeling ECM. Even though these cells have been studied in depth in vitro with respect to their cellular adhesive, migratory, and differentiation properties, very little is known about their ability to differentiate in vivo. Fibroblasts in the papillary dermis differ from those in the reticular dermis with respect to growth potential and protein production, and both are different from hair follicle-associated fibroblasts [21]. Of interest, the concept of fibroblast heterogeneity applies not only to the skin but also to the entire human body, with fibroblasts in different anatomical sites and microenvironments being distinctly different in their gene expression programs and phenotypes [22]. The origin of dermal fibroblasts is an unresolved issue. They are thought to derive either from resident cells or from circulating mesenchymal progenitor cells that continually replenish the resident population. Modulating the differentiation of circulating or resident precursors is considered a novel approach for interfering with the development of fibrosis [23]. In some organ systems, fibroblasts were shown to originate from epithelial-to-mesenchymal transition (EMT); however, this origin has not yet been proven for the skin. Under the influence of TGF-β and topical mechanical forces, fibroblasts can “differentiate” into contractile myofibroblasts, driving wound contraction and the tissue response to tumors [24]. Fibroblasts as well as myofibroblasts actively participate in dermal homeostasis by contributing a plethora of growth factors.

Mast cells occur in virtually all vascularized tissues and are numerous in anatomical sites that are directly
exposed to the environment and easily identified by the presence of prominent cytoplasmic granules [25]. In the skin, they are frequently associated with blood vessels and appendages. Mast cells constitute an important cell type of the innate immune system and play an important role in inflammation and tissue remodeling. Their activation mainly occurs via the high affinity IgE receptor (FcεRI) or by contact with pathogens. Activated mast cells release an array of mediators e.g., histamine, proteases, and lipid metabolites, thereby causing extensive vasodilation, urticaria, and itching, and are a rich source of growth factors. Although many released substances act as pro-inflammatory mediators, mast cells also seem to have immunosuppressive and anti-inflammatory roles through the release of IL-10 and TGF-β.

Other important constituents of the dermis are blood vessels and a lymphatic system, which are closely interconnected. The cutaneous microcirculation is organized as two horizontal plexuses, the upper one at the level of dermal papillae and the lower one at the dermal-subcutaneous junction. These are joined by paired ascending arterioles and descending venules. Microvascular endothelial cells supply nutrients to the skin and are essential for wound repair and the growth of tumors, and they regulate heat loss and temperature control. Depending on the size of the blood vessel and its location within the dermis, the endothelial tube is surrounded by up to several layers of smooth muscle cells or pericytes and by an outer basement membrane [26]. Endothelial cells and smooth muscle cells/pericytes form tight intercellular junctions with interdigitating processes, which together with the basement membrane control the distribution of biologically active molecules, mediators, or bioactive ECM fragments. Microvascular endothelial cells express a number of adhesion molecules for platelets and leukocytes to safeguard hemostasis and the transmigration of inflammatory and precursor cells from the circulation into the skin.

Much less is known about the lymphatic system, which drains protein-rich fluid from the extracellular space and transports immune cells from the skin to regional lymph nodes [27]. Lymph capillaries are lined by endothelial cells and are highly permeable due to the lack of a continuous basement membrane. The main difference between vascular and lymphatic endothelial cells in normal adult skin is the presence of VEGF receptor-1 or -2 on vascular endothelial cells, responding to the VEGF-A isoform, and VEGF receptor-3 on lymphatic endothelial cells, responding to VEGF-C. During tissue repair and tumor vascularization, this distinction is less clear and novel markers for the lymphatic system will help in the analysis.

The major part of the dermis is the connective tissue, composed of structural proteins and nonstructural elements produced predominantly by fibroblasts. This ECM provides structural support, organization and orientation to tissues. The structural elements are composed of collagens, elastin, fibrillins, fibronectin and other high molecular weight glycoproteins, which are members of smaller or larger protein families. They are large modular molecules assembled from a limited set of modules or domains, which have biological activity on their own. Most ECM genes have arisen by duplication of genes already present in ancestral organisms. The ECM proteins are embedded in a so-called ground substance of proteoglycans, which supply hydration and elasticity. Interaction between the different macromolecules builds a large macromolecular network [28–30].

One of the less appreciated, but not less important, functions of the ECM is the retention of growth factors such as TGF-β [31, 32]. Adequate stimulation or proteolytic activity can liberate the mediators and topically restrict their activity; this quick adaptive response is critical, for example, in inflammation.

Apart from exerting biological functions such as promoting migration or proliferation as entire ECM proteins, fragments cleaved off from them have gained attention for their own and have distinct properties, which may differ from the parental molecule [33]. One classic example is endostatin with antiangiogenic activity, which is cleaved off from the basement membrane collagen XVIII.

Probably, the largest ECM protein family is that of the collagens (Table 1.1.1), which exist in 28 different

<table>
<thead>
<tr>
<th>Table 1.1.1 Collagen types in the skin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dermis</td>
</tr>
<tr>
<td>Fibril-forming collagens</td>
</tr>
<tr>
<td>FACITS (fibril-associated collagen with interrupted triple helix)</td>
</tr>
<tr>
<td>Microfibrillar collagen</td>
</tr>
<tr>
<td>Basement membrane collagens</td>
</tr>
<tr>
<td>Ubiquitous collagens</td>
</tr>
<tr>
<td>Anchoring fibril collagen</td>
</tr>
<tr>
<td>Anchoring filament collagen</td>
</tr>
<tr>
<td>Endothelial basement membranes</td>
</tr>
<tr>
<td>Epidermal/transmembrane collagens</td>
</tr>
</tbody>
</table>
types [34]. All have a similar structure with a characteristic triple helix, which can vary considerably in length. The fibril-forming collagens I, III and V make up most of the net weight of the dermis and represent the principle tensile element. The interstitial connective tissue also harbors the microfibrillar collagen VI and the fibril-associated collagen XIV. Collagen IV is a network forming molecule that is an essential constituent of the dermo-epidermal basement membrane. Collagen VII is the molecular component of the anchoring fibrils, which connect the basement membrane to the dermis.

Next to secreted collagens, there are unusual, transmembrane, collagens [35]. Interestingly, several of these unusual collagens are subject to ectodomain shedding by metalloproteases, resulting in the release of the extracellular domain. These collagens can thus exist in two functionally potentially very different protein forms. Although the functional significance is unclear currently, this mechanism allows cells to switch rapidly from a cell surface (adhesive) receptor to a secreted form that can serve as an ECM component. One of the best studied examples is collagen XVII, which is an important cellular component of hemidesmosomes in epidermal keratinocytes. It was initially discovered as one of auto-immune antigens in bullous pemphigoid, hence its alternative name BP180. Recently, a novel variant of collagen VI [36] was reported as potential molecular target of atopic dermatitis [37].

1.1.3 Basement Membranes

The epidermis and dermis cooperate in the formation of a highly specialized ECM structure, the basement membrane zone (BM), which physically separates these two compartments. The BM zone consists of a highly complex network of interconnecting ECM proteins, the key components being collagen IV, laminin, nidogen and proteolycans [38–40]. The skin basement membrane zone is characterized by auxiliary structures, the anchoring complexes, which consist of adhesion structures called hemidesmosomes (see below), anchoring filaments and anchoring fibrils. The anchoring filaments are mainly made up of Laminin 5, the major laminin isoform present in basement membranes of the skin and a crucial adhesive substrate for basal keratinocytes. Laminin-5 physically links the epidermis to collagen VII, the molecular constituent of the anchoring fibrils, which form the mechanical connection of the basement membrane to the underlying dermis. The importance of the anchoring complex in the maintenance of skin integrity is underscored by skin blistering diseases that are either caused by genetic mutations in one of these protein constituents of the basement membrane or by the production of auto-antibodies against several components [41–43].

1.1.4 Cell–Matrix and Cell–Cell Adhesion in the Skin

Intercellular and cell–matrix adhesion are crucial for cellular communication and play important roles in skin homeostasis and in the response to skin challenges. Cell adhesion is mediated by a large variety of cell adhesion receptors that can be subdivided into several different families. The most prominent of these are the integrin family of cell–matrix and cell–cell receptors, the cadherin superfamily of intercellular adhesion receptors, the IgG family of cell–cell and cell–matrix receptors, the selectins and the proteoglycan receptor family. Upon adhesion, most of these receptors cluster into specialized junctional structures that are associated with the cytoskeleton (Fig. 1.1.2). These structures not only have important adhesive functions but also provide the cell with spatial landmarks important for localized signaling. Indeed, for most adhesion receptors, it is now clear that they not only connect cells to their environment but also, by connecting to signaling molecules, can communicate signals from the cell to its environment (so called inside-out signaling), and from the environment to the cell (outside-in signaling) [44].

Intercellular junctions are most prominent in keratinocytes and endothelial cells (Fig. 1.1.2). However, dermal fibroblasts do form gap junctions and specialized forms of adherens junctions, which can be established over relatively long distances. Intercellular Junction formation is also dynamically regulated upon activation of dermal fibroblasts. In addition, intercellular junctions are crucial for dermal vascular integrity. Dynamic intercellular adhesion also plays a crucial role in the interaction of immune and inflammatory cells with other cell types when skin integrity is perturbed. Four different types of intercellular junctions characterize the epidermis:
1. Desmosomes consist of desmosomal cadherins that are linked to the keratin filament system through specialized cytoskeletal adapter proteins, such as plakoglobin, plakophilins and the plakin desmoplakin. In the skin, desmosomes are not only found in the epidermis but also in vascular endothelia, where they form an intermixed structure with adherens junctions, called syndesmosomes. Although desmosomes show an ultrastructurally similar appearance throughout the epidermis, they have distinct molecular compositions that depend on the differentiation status of the keratinocytes, and most likely contribute specific functions [45]. For example, corneocytes are connected by a specialized variant, the corneodesmosome. Their importance for epidermal integrity is underscored by the existence of genetic and auto-immune skin blistering diseases, which are characterized by mutations in, or antibodies against, desmosomal components [46]. Next to their importance in providing mechanical strength to epidermal intercellular cohesion, novel functions have emerged for desmosomal components in the regulation of differentiation, survival, and growth.

2. Tight junctions form size and ion specific barriers in epithelia and vascular endothelial cells. In the epidermis, functional tight junctions are present in the granular layer. Tight junctions consist of two different four transmembrane spanning protein families, the occludins and claudins that link to actin via several different linker molecules e.g., the scaffolding proteins ZO-1/2. Differential expression of claudins provides tight junctions found at different sites with their size and ion speciﬁcity and, thereby, determine the tightness of the epithelial and vascular barrier [47,48]. For keratinizing epiderelia, it was originally thought that the secretion and deposition of a cross-linked protein–lipid barrier obviated the need for a tight junction barrier in such tissues, even though tight junctional proteins were identified in the epidermis. The first functional evidence that a tight junction component is required for barrier function in epidermis came from claudin-1 knockout mice, which showed severe water
1.1 Biology of the Skin

1.1.1 Epidermal Tight Junctions

Tight junctions are crucial structures for intercellular communication by forming pores that allow the passage and exchange of small molecules between adjacent cells [55]. Connexin proteins constitute the molecular basis of the pores. Their importance for skin function is demonstrated by connexin mutations that underlie a number of inherited skin related diseases, including Vohwinkel syndrome and ichthyosis, and palmoplantar keratoderma related entities [46, 56].

1.1.2 Desmosomes

Desmosomes, or half desmosomes, resemble desmosomes at the ultrastructural and functional level, in that they show a similar organization, and by connecting to keratin filaments, are crucial structures for mechanical stability. Nevertheless, their molecular composition is very different, consisting of the integrin α6β4 and the previously mentioned collagen XVII (formerly known as BPAG1) as adhesion receptors and several cytoskeletal linker molecules of the plakin family, such as plectin and BP230 [57]. The β4 subunit is unique among the integrin β subunits because of its long cytoplasmic domain that, unlike the other actin-linked β subunits, links α6β4 to intermediate filaments. Hemidesmosomes are crucial for the integrity of the skin, since mutations have been found in each of its known components, all of which lead to skin blistering diseases [42, 58].

The β1 and αv integrin subfamilies provide the scaffold of focal adhesions, which recruit a variety of cytoskeletal and signaling proteins, the most prominent ones being talin, vinculin, kindlins, the focal adhesion kinase (FAK), and integrin linked kinase (ILK) [59]. These structures are crucial for skin homeostasis, since they contribute to a wide variety of functions on the different skin cells. Many of these are important for skin homeostasis, as underscored by the loss of β1-integrins in the epidermis of mice, resulting not only in the formation of microblisters, but also in proliferative defects and skin inflammation [60]. Other functions become more important when the skin is challenged. For example, α2 integrins regulate vascularity during wound healing [61]. Although focal contacts as a structure have not been identified in the skin in vivo, related structures are most likely important, as emphasized by the mutations in different focal contact components that underlie skin blistering related diseases [46].

A recently emerging theme is that adhesive junctions may not only be crucial for tissue integrity and serve as clustering sites for signaling molecules, but
may also regulate communication with the nucleus at two different levels. First, it is now clear that many of the cytoskeletal linker proteins associated with adhesive junctions can also translocate to the nucleus where they regulate transcription [44, 62]. In addition, several cytoskeletal linker proteins also interact with components of the nuclear matrix, thereby potentially linking cell adhesion to nuclear positioning and shape changes, which can affect general transcriptional activity [63].

1.1.5 Molecular Basis of the Epidermal Barrier

The physical epidermal barrier is built up by two physically separated compartments: the tight junctions present in the uppermost viable layer, the stratum granulosum and the stratum corneum, which consists of a lipid and protein component, often referred to as “brick and mortar” [64, 65]. Tight junctions and the stratum corneum may cooperate in the formation of a functional barrier in stratifying epithelia. For example, overexpression of claudin-6 in the upper layers of the epidermis or epidermal deletion of the membrane anchored serine protease (CAP)1/Prss8 induced barrier defects that involved alterations in both tight junctions and stratum corneum. Although the underlying mechanisms are unknown, they may involve the coordinated regulation of both barriers by signal molecules such as IKK1 and retinoic acid receptor signaling [66]. In simple epithelia, tight junctions form a fence, thereby separating the apical membrane domain from the basolateral membrane domain. Since formation of the stratum corneum depends on the fusion of lamellar bodies and keratohyalin granules with plasma membranes at the transition between stratum granulosum and stratum corneum layers, it is tempting to speculate that the specific occurrence of tight junctions in the stratum granulosum regulates targeting of protein and lipid vesicles directly towards the “apically localized” stratum corneum (reviewed in [47]).

The importance of site specific expression of keratins is best reflected in the identification of mutations in, until now, 19 keratins in skin related diseases, most of which are associated with skin blistering [69]. These keratin related diseases not only emphasize their crucial importance in providing regional and site specific mechanical strength to epithelia, but also provide intriguing hints for other keratin related functions independent of structure. Keratin mutations identified in both mice and human are associated with pigment defects, albeit the underlying mechanisms by which keratins regulate epithelial pigmentation patterns are mostly unclear. Studies in mice have also uncovered roles of keratins in determining the onset of apoptosis crucial for hair follicle cycling and in the regulation of protein synthesis and cell size. Recently, a fascinating link has been established between focal adhesion formation and keratin filament assembly, suggesting that the different adhesion structures and their associated cytoskeletal networks communicate directly to provide mechanical strength to cells (reviewed in Gu et al., 2007). The plakin
family of cytoskeletal binding proteins may perform key functions in these processes, since they can interact with both actin and intermediate filaments [63].

Keratins form the core components of the corneocytes, the anucleate cells of the stratum corneum [70]. This requires bundling of the keratin filaments, in which the late differentiation protein filaggrin plays an important role in the bundling of keratins and in the formation of the cornified envelope that forms the outer layer of the corneocytes. At the late steps of cornification, filaggrin is processed into free hygroscopic amino acids that act as the natural moisturizing factors of the skin. Indeed, mutations in filaggrin underlie ichthyosis variants and are also associated with atopic dermatitis, indicating its crucial importance not only in stratum corneum formation, but also in skin hydration [71]. Filaggrin is initially produced in the granular layer as a huge precursor, profilaggrin, which aggregate to form the characteristic keratohyalin granules of this layer. The cornified envelope consists of a dense network of proteins, mostly loricrin, involucrin and cornifin, which are tightly cross-linked to each other by enzymes such as transglutaminases [3]. Specialized desmosomes, so-called cornedesmosomes, connect corneocytes. A crucial step of desquamation is the proteolytic cleavage of these cornedesmosomes. The intercellular space between corneocytes is filled by the lipid lamellae, a specialized structure of lipids crucial for epidermal water barrier function [72, 73].

An important aspect of cornification and the subsequent process of desquamation is the spatiotemporal activation and inhibition of proteases, cross linkers and lipid enzymes [74]. Although not well understood, these complex processes are balanced by inhibitors and activators of these enzymes and are at least partially regulated by gradients in pH and Ca²⁺-concentrations. The importance of proper spatiotemporal activation is stressed by diseases caused either by inappropriate activation or inhibition of these different enzymes due to e.g., lack of inhibitors or activators [75, 76].

1.1.6 Cellular Communication Within the Skin

In recent years, it has become increasingly clear that the different skin cell types have a profound functional influence on each other, and that an extensive cellular cross-talk regulates cell proliferation, differentiation, and coordinates the cellular and immunological responses to environmental challenges. Data generated in the recent past have resulted in a change of paradigm in understanding skin homeostasis and substantial number of skin diseases. It is now clear that keratinocytes and fibroblasts not only represent the scaffold of the epidermis and dermis, but are also actively involved in the regulation of e.g., the innate and adaptive immune system [77]. They do so by secreting a large number of different mediators to communicate with endothelial cells and with inflammatory cells during wounding or disease conditions. These include pro-inflammatory cytokines, such as IL-1, IL10, and IL-6, antibacterial peptides, and growth factors such as VEGF or TGF-β. In turn, the activity of these cells and their extracellular mediators profoundly influence the differentiation status of the keratinocytes and fibroblasts, thereby determining their response when the multifunctional skin barrier is challenged [78, 79]. An important modulatory role in skin communication is provided by the ECM that not only serves as an important structural scaffold but also, by interacting with cells and many of the cytokines and growth factors, alters their functional activity. Together, these new findings and insights have led to the realization that the primary cause of skin diseases associated with barrier dysfunction and inflammation can reside in keratinocytes and fibroblasts with a secondary contribution of classical inflammatory cell types, activated through cellular communication. In addition, such primary defects in the skin can affect homeostasis of other organs, resulting in associated diseases in these organs.

1.1.7 Concluding Remarks

The last decade has brought a tremendous progress in the cell biology of the skin and thereby contributed to a better understanding of human skin diseases, as many of the examples mentioned in the following chapters exemplify. What many of these studies clearly revealed, regardless of whether one is looking from a fibroblast, endothelial cell, a keratinocyte, or immune cell point of view, is the extensive communication that occurs between cells and compartments of the skin. These new insights and findings can now be used to identify the primary and secondary events that are still unknown