
Probability and Its Applications

Published in association with the Applied Probability Trust

Editors: J. Gani, C.C. Heyde, P. Jagers, T.G. Kurtz



Probability and Its Applications

Azencott et al.: Series of Irregular Observations. Forecasting and Model
Building. 1986

Bass: Diffusions and Elliptic Operators. 1997
Bass: Probabilistic Techniques in Analysis. 1995
Berglund/Gentz: Noise-Induced Phenomena in Slow-Fast Dynamical Systems:
A Sample-Paths Approach. 2006

Biagini/Hu/Øksendal/Zhang: Stochastic Calculus for Fractional Brownian Motion
and Applications. 2008

Chen: Eigenvalues, Inequalities and Ergodic Theory. 2005
Costa/Fragoso/Marques: Discrete-Time Markov Jump Linear Systems. 2005
Daley/Vere-Jones:An Introduction to the Theory of Point Processes I: Elementary
Theory and Methods. 2nd ed. 2003, corr. 2nd printing 2005

Daley/Vere-Jones:An Introduction to the Theory of Point Processes II: General
Theory and Structure. 2nd ed. 2008

de la Peña/Gine: Decoupling: From Dependence to Independence, Randomly
Stopped Processes, U-Statistics and Processes, Martingales and Beyond. 1999

Del Moral: Feynman-Kac Formulae. Genealogical and Interacting Particle
Systems with Applications. 2004

Durrett: Probability Models for DNA Sequence Evolution. 2002, 2nd ed. 2008
Galambos/Simonelli: Bonferroni-Type Inequalities with Equations. 1996
Gani (ed.): The Craft of Probabilistic Modelling. A Collection of Personal
Accounts. 1986

Gut: Stopped RandomWalks. Limit Theorems and Applications. 1987
Guyon: Random Fields on a Network. Modeling, Statistics and Applications. 1995
Kallenberg: Foundations of Modern Probability. 1997, 2nd ed. 2002
Kallenberg: Probabilistic Symmetries and Invariance Principles. 2005
Last/Brandt:Marked Point Processes on the Real Line. 1995
Molchanov: Theory of Random Sets. 2005
Nualart: The Malliavin Calculus and Related Topics, 1995, 2nd ed. 2006
Rachev/Rueschendorf:Mass Transportation Problems. Volume I: Theory and
Volume II: Applications. 1998

Resnick: Extreme Values, Regular Variation and Point Processes. 1987
Schmidli: Stochastic Control in Insurance. 2008
Schneider/Weil: Stochastic and Integral Geometry. 2008
Shedler: Regeneration and Networks of Queues. 1986
Silvestrov: Limit Theorems for Randomly Stopped Stochastic Processes. 2004
Thorisson: Coupling, Stationarity and Regeneration. 2000



Rolf Schneider · Wolfgang Weil

Stochastic and
Integral Geometry

123



Rolf Schneider
Mathematisches Institut
Albert-Ludwigs-Universität
Eckerstr. 1
79104 Freiburg
Germany
rolf.schneider@math.uni-freiburg.de

Wolfgang Weil
Institut für Algebra und Geometrie
Universität Karlsruhe
Englerstraße 2
76128 Karlsruhe
Germany
weil@math.uka.de

Series Editors:
Joe Gani
Chris Heyde
Centre for Mathematics and its Applications
Mathematical Sciences Institute
Australian National University
Canberra, ACT 0200
Australia
gani@maths.anu.edu.au

Peter Jagers
Mathematical Statistics
Chalmers University of Technology
and Göteborg (Gothenburg) University
412 96 Göteborg
Sweden
jagers@chalmers.se

Thomas G. Kurtz
Department of Mathematics
University of Wisconsin - Madison
480 Lincoln Drive
Madison, WI 53706-1388
USA
kurtz@math.wisc.edu

ISBN: 978-3-540-78858-4 e-ISBN: 978-3-540-78859-1
DOI: 10.1007/978-3-540-78859-1

Probability and Its Applications ISSN print edition: 1431-7028

Library of Congress Control Number: 2008933565

Mathematics Subject Classification (2000): 60D05, 52A22, 60G55, 62M30

c© 2008 Springer-Verlag Berlin Heidelberg
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover design: Erich Kirchner, Heidelberg

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com



Preface

Stochastic Geometry deals with mathematical models for random geometric
structures and spatial data, as they frequently arise in modern applications.
As a mathematical discipline, stochastic geometry came into life in the last
third of the twentieth century, but its roots and the close connections between
geometric probability and integration techniques using invariant measures
(though not under this name) date back much farther. The famous Buffon
needle problem of 1777 was solved by what seems to be the first application
of integral calculus to a probability question. A variety of problems in Geomet-
ric Probability was treated in the late nineteenth and early twentieth century.
After the role of invariant measures had become clear, the discipline of Inte-
gral Geometry was initiated in the 1930s, mostly by Wilhelm Blaschke and his
school. The book Integral Geometry and Geometric Probability by Luis San-
taló (1976) summarizes the concepts and results of the preceding development.
Interpretations of integral geometric results in terms of geometric probability
abound in that work. At that time, David Kendall and Georges Matheron had
already developed, independently, a theory of Random Sets, and Roger Miles
had written his pioneering thesis on Poisson processes of certain geometric
objects. The book Random Sets and Integral Geometry by Matheron (1975)
presented the new field of Stochastic Geometry in its intimate relation with
Integral Geometry. Applications in Spatial Statistics and Stereology, later also
in Image Analysis, contributed to a rapid development. The classical integral
geometry of Euclidean spaces is well suited to the treatment of random sets
and point processes with invariance properties, like stationarity and isotropy.
The necessity of studying structures which exhibit anisotropy, or even without
spatial homogeneity, grew hand in hand with new developments in integral
geometry, coming from Geometric Measure Theory. In particular, Federer’s
local formulas for curvature measures proved useful, and Translative Integral
Geometry was promoted, meeting the needs of stationary structures.

Over many years, we both gave courses on Integral Geometry or Stochas-
tic Geometry in Freiburg and Karlsruhe. This led to the joint publication
of lecture notes in German, under the titles of Integralgeometrie (1992) and
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Stochastische Geometrie (2000). It was always our plan later to amalgamate
both topics in one extended monograph in English. During the time we worked
on this project, the field of stochastic geometry has expanded considerably in
various directions, too many to include them all in one volume. We decided
to concentrate on our original idea, namely to present the basic models of sto-
chastic geometry and their properties, the fundamental concepts and formulas
of integral geometry, and the interrelations between these two fields.

In this book, therefore, we have three main aims: to give a sound mathe-
matical foundation for the most basic and general models of stochastic geo-
metry, namely random closed sets, particle processes, and random mosaics,
to introduce the reader to the parts of integral geometry that are relevant for
the applications in stochastic geometry, and, naturally, to demonstrate such
applications. Since the strength of integral geometry lies in the computation
of mean values and in integral transformations, this means that we develop
mainly a ‘first order theory’ of stochastic geometry, centering around expec-
tations. This restricted concept, with its foundational character, implies that
essential and interesting parts of stochastic geometry are missing: we do not
treat special point process models other than Poisson processes, nor higher
order moment measures, limit theorems, spatial statistics, practical proce-
dures, simulations; however, we comment on some of these developments in
the section notes. The integral geometry here is taylored to its use in stochas-
tic geometry; this influences the selection of topics as well as the approach,
which is measure theoretic rather than differential geometric. Another re-
striction may be seen in the predominance of invariance and independence.
The first means that we study (except in one chapter providing an outlook)
only random sets and geometric point processes that are stationary (spatially
homogeneous) or even stationary and isotropic, in distribution. Invariance of
measures and distributions is the leitmotiv of this volume; it underlies both the
stochastic geometry parts and the integral geometric parts. On the stochastic
side, there is a preference for independence assumptions, as for example in the
prominent role of Poisson processes, with their strong independence proper-
ties. Very often, only invariance and independence assumptions allow simple
approaches and lead to beautiful results. The confinement to the fundamen-
tals of stochastic geometry leaves us room for emphasizing the geometry; in
fact, in integral as well as in stochastic geometry, we draw a richer picture
than sketched above, and we include various topics of geometric appeal. For
example, there is a chapter on Geometric Probability, since this area has seen
a recent revival with many interesting problems and results.

Naturally, this book employs notions and results from other fields. We
make use of some basic facts from general topology, from the theory of topo-
logical groups and homogeneous spaces of Euclidean geometry and their in-
variant measures, and from the geometry of convex sets; further, some more
specialized results concerning geometric inequalities and additive functionals
on convex bodies are needed. Anticipating that the familiarity of the readers
with these topics will not be uniform, we have collected the required material
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in an Appendix; this should be consulted whenever necessary. This also allows
us to start directly with the fundamental notion in this book, the concept of
a random closed set.

We are grateful to many colleagues for their helpful comments on early
drafts of our book. Special thanks go to Paul Goodey, Günter Last and Werner
Nagel, for providing useful hints after reading parts of the final manuscript,
and in particular to Daniel Hug, who has carefully read all of it. He prevented
us from including a number of flaws and made many suggestions for improve-
ments. We also thank the Mathematisches Forschungsinstitut Oberwolfach for
giving us the opportunity to spend some time, working on our mansucript, in
their wonderful ‘Research in Pairs’ programme.

Freiburg i. Br., Karlsruhe Rolf Schneider
Spring 2008 Wolfgang Weil
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Prolog

1.1 Introduction

Since this book is about relations between stochastic geometry and integral
geometry, we begin with an imaginary experiment that demonstrates the need
for and use of integral geometry for certain geometric probability questions
and at the same time leads in a natural way to a basic model of stochastic
geometry.

We assume that K and W are given convex bodies (nonempty compact
convex sets) in d-dimensional Euclidean space Rd. The body K serves to
generate a random field of congruent copies of K, and the body W plays the
role of an ‘observation window’. The random field consists of countably many
congruent copies ofK which are laid out in space randomly and independently,
overlappings being allowed. The number of bodies in the random field that
hit (that is, have nonempty intersection with) the observation window W
is a random variable. We ask for its distribution. This is, of course, not a
meaningful question, as long as no stochastic model for the random field of
convex bodies is specified. In a few steps, we shall introduce some natural
assumptions, which motivate a precise model and lead to an explicit formula
for the desired distribution.

In the first step, we consider a much simpler situation. We take a ball Br

of radius r and origin 0 that contains the observation window W , and we
consider only one randomly moving copy of K, under the condition that it
hits Br. We ask for the probability that it also hits W . There is a geometri-
cally very natural way of specifying a probability distribution of a randomly
moving convex body that satisfies the side condition. A random congruent
copy of K can be represented in the form g̃K, where g̃ is a random element
of the group Gd of rigid motions. The locally compact group Gd carries an
essentially unique Haar measure, that is, a locally finite Borel measure that is
similarly under left and right multiplications and is not identically zero. We
denote this measure, with a suitable normalization, by µ. A natural probabil-
ity distribution of a random congruent copy of K hitting Br is then obtained
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by restricting µ as required by the side condition, normalizing, and taking an
image measure. Thus, in our situation we define a probability measure Q on
the space K of convex bodies (with its usual topology) in Rd by

Q(A) :=
µ({g ∈ Gd : gK ∩Br �= ∅, gK ∈ A})

µ({g ∈ Gd : gK ∩Br �= ∅})

for Borel sets A ⊂ K. A random congruent copy of K hitting Br is then, by
definition, a random convex body with distribution Q.

Now the probability, denoted by p, that a random congruent copy of K
hitting Br also hits W , is well defined. If we put

µ(K,M) := µ({g ∈ Gd : gK ∩M �= ∅})

for convex bodies K and M , this probability is given by

p =
µ(K,W )
µ(K,Br)

. (1.1)

The computation of µ(K,M) is a typical task of integral geometry. First,
we assume that K is a ball of radius ρ. If the Haar measure µ is suitably
normalized, the measure of all motions g that bring K into a hitting position
with M is just the measure of all translations that bring the center of K into
the parallel body

M +Bρ := {m+ b : m ∈M, b ∈ Bρ},

and hence is the volume of this body. By the Steiner formula of convex
geometry, this volume is a polynomial of degree at most d in the parameter
ρ. It is convenient to write it in the form

λd(M +Bρ) =
d∑

i=0

ρd−iκd−iVi(M), (1.2)

where λd is the Lebesgue measure on Rd and κj is the volume of the j-
dimensional unit ball. This defines the intrinsic volumes V0, . . . , Vd, which
are important functionals on the space of convex bodies.

The intrinsic volumes, which appear naturally in the computation of the
measure µ(K,M) for the special case K = Bρ, are also sufficient to handle
the general case. The principal kinematic formula of integral geometry,
specialized to convex bodies, states that

µ(K,M) =
d∑

i=0

αdiVi(K)Vd−i(M), (1.3)

with certain explicit constants αdi. From (1.1) and (1.3) we obtain
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p =
∑d

i=0 αdiVi(K)Vd−i(W )∑d
i=0 αdiVi(K)Vd−i(Br)

, (1.4)

which depends only on the intrinsic volumes of K and W (and on r).
In the second step, we consider m ≥ 2 independent, identically distributed

random convex bodies, each with distribution Q, thus each one is a random
congruent copy of K hitting Br. For k ∈ {0, 1, . . . ,m}, we denote by pk the
probability that the fixed bodyW is hit by exactly k of the random congruent
copies of K. By the independence, we obtain a binomial distribution, thus

pk =
(
m

k

)
p k(1− p)m−k,

with p given by (1.4).
In the third step, we choose m depending on the radius r and let r tend

to ∞, in such a way that

lim
r→∞

m

λd(Br)
= γ > 0

with a constant γ. Since

lim
r→∞

µ(K,Br)
λd(Br)

= 1,

we obtain limr→∞mp = γµ(K,W ) =: θ, and hence

lim
r→∞

pk =
θk

k!
e−θ (1.5)

with

θ = γ
d∑

i=0

αdiVi(K)Vd−i(W ). (1.6)

We have found, not surprisingly, a Poisson distribution. Its parameter is
expressed explicitly in terms of the constant γ, which can be interpreted as
the number density of our random system of convex bodies, and the intrinsic
volumes of K and W .

The original question and the answer given by (1.5) and (1.6) are found in
a paper by Giger and Hadwiger [260]. The answer, though nice and explicit,
is still not entirely satisfactory. We have computed a limit of probabilities and
found a Poisson law. However, this Poisson distribution is not yet interpreted
as the distribution of a well-defined random variable. What we would prefer,
and what is needed for applications, is a model that allows us to consider from
the beginning countably infinite systems of randomly placed convex bodies,
with suitable independence properties.

This goal is readily achieved by employing suitable point processes. For
the purpose of this introduction, a point process in Rd is a measurable map
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from the underlying probability space into the measurable space of locally
finite subsets of Rd. In particular, let Ξ be a Poisson point process of inten-
sity γ in Rd, with a translation invariant distribution. We choose a Poisson
process since its built-in independence properties reflect the independence
assumptions made above in the second step. With each point of Ξ, we asso-
ciate a congruent copy of K, in the following way. For easier visualization,
we suppose that 0 ∈ K. We may assume that Ξ = {ξ1, ξ2, . . .}, with a mea-
surable numeration. Let (ϑ1, ϑ2, . . .) be an independent sequence of random
rotations of Rd, each with distribution given by the invariant probability mea-
sure on the rotation group SOd; let this sequence be independent of Ξ. Then
{ξi + ϑiK, i = 1, 2, . . .} defines a random field X of convex bodies which are
congruent copies of K. For this model one can compute that the probability,
say qk, of the event that the fixed observation window W is hit by precisely
k bodies of the field X, is given by

qk =
θk

k!
e−θ, (1.7)

with θ according to (1.6).
This very special model can immediately be generalized. There is no partic-

ular reason for attaching to the points ξi of the Poisson process Ξ only rotation
images ϑiK of a fixed convex bodyK. One may as well attach to ξ1, ξ2, . . . ran-
dom convex bodies K1,K2, . . ., chosen independently and independent from
Ξ, according to some given rotation invariant probability distribution on the
space K of convex bodies. Essentially equivalent is the assumption that X is
a Poisson process in the locally compact space K, which is stationary and
isotropic, that is, whose distribution is invariant under translations and ro-
tations. Again, let qk denote the probability that the observation window W
is hit by k bodies of the particle process X. The intrinsic volumes Vi(K) ap-
pearing in (1.6), or rather γVi(K), must now be replaced by suitable densities.
Under a mild integrability condition onX (which is assumed in the following),
it can be shown that the limit

Vi(X) = lim
r→∞

1
λd(rW )

E
∑

K∈X, K⊂rW

Vi(K) (1.8)

exists for every convex bodyW with λd(W ) > 0 and is finite and independent
of W ; here E denotes mathematical expectation. The number Vi(X) is called
the density of the ith intrinsic volume, or the ith specific intrinsic
volume, of the particle process X. If we now replace (1.6) by

θ :=
d∑

i=0

αdiVi(X)Vd−i(W ),

then (1.7) still holds.
Together with the Poisson particle process X, we consider its union set,
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Z :=
⋃

K∈X

K.

Under the mentioned integrability assumption, this is almost surely a closed
set. Thus, we obtain an example of a random closed set. Generally, a ran-
dom closed set in Rd is a measurable map from the underlying probability
space into the space of closed subsets of Rd, endowed with a suitable topol-
ogy and the induced Borel σ-algebra. Random closed sets are, besides particle
processes, the second basic model of stochastic geometry. The random closed
set obtained here is of a special type: besides being stationary and isotropic,
it is the union set of a Poisson particle process. Random closed sets generated
in this way are known as Boolean models. Due to the strong indepen-
dence properties of Poisson processes, Boolean models are mathematically
more tractable than general random closed sets. We give one example, after
introducing specific intrinsic volumes of the random set Z.

In a certain analogy to (1.8), we want to define the ith specific intrinsic
volume of the random closed set Z by

Vi(Z) = lim
r→∞

1
λd(rW )

EVi(Z ∩ rW ). (1.9)

This is indeed possible. By the properties of the generating particle process
X, the set Z ∩ rW is, for a convex body W , almost surely the union of fi-
nitely many convex bodies. The intrinsic volume Vi has a unique additive and
measurable extension from K to the lattice of finite unions of convex bodies.
With this extension, also denoted by Vi, the random variable Vi(Z ∩ rW ) is
well defined, and the limit (1.9) exists for every convex body W with positive
volume, it is finite and independent ofW . The numbers V0(Z), . . . , Vd(Z) are,
in several respects, the simplest and most basic parameters for a quantita-
tive description of a stationary random set. They include the specific volume
Vd(Z), the specific surface area 2Vd−1(Z), and the specific Euler characteristic
V0(Z).

A special and remarkable property of the stationary and isotropic Boolean
model Z is now the fact that the specific intrinsic volumes of Z can be ex-
pressed explicitly in terms of the specific intrinsic volumes of the generating
particle process X, and conversely! The latter fact is rather surprising at first
sight: it says that, in principle, the specific intrinsic volumes of the particle
process can be determined by observing its union set. This is astonishing,
since observation of the union set does not allow us to observe individual par-
ticles. The explanation for this seeming paradox lies in the strong indepen-
dence properties of Poisson processes. The first two of the mentioned relations,
connecting the specific volumes and the specific surface areas of the Poisson
particle process X and of its union set Z, are given by

Vd(Z) = 1− e−Vd(X),

Vd−1(Z) = Vd−1(X)e−Vd(X).
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The remaining relations are more complicated. Their proof is a typical appli-
cation of iterated kinematic formulas of integral geometry.

Poisson processes of convex bodies and their union sets, as described, are
interesting and tractable models of stochastic geometry, but are, of course, too
special for many applications. Part I of our book, on foundations of stochastic
geometry, begins with an introduction to general random closed sets in a
topological space. The basic space, as in the treatment of point processes, is
assumed to be locally compact and to have a countable base. This generality
is sufficient, but it is also required for the geometric models to be introduced.
Some prerequisites from general topology are collected in the Appendix. Point
processes and marked point processes are the subject of Chapter 3.

Since the point processes we introduce live in quite general spaces, the
‘points’ can themselves be geometric objects, such as compact or convex sub-
sets of Rd, submanifolds or planes of a fixed dimension. This leads to the geo-
metric models which are the subject of Chapter 4. We study particle processes
and their union sets, and the geometry of processes of flats. Geometric results
are treated to an extent that does not yet require special knowledge from inte-
gral geometry, but considerable use is made of results from convex geometry.
The latter are made available in the Appendix.

The quantitative description of random closed sets and particle processes
in Rd requires the definition of suitable parameters. In the spatially homo-
geneous case one may hope that real-valued parameters already carry useful
information. Let X be a stationary particle process, Z a stationary random
closed set, and ϕ a suitable function. In analogy to (1.8) and (1.9) above, it
is a plausible attempt to define ϕ-densities by a double averaging process,
stochastically and spatially, in the form

ϕ(X) = lim
r→∞

1
λd(rW )

E
∑

K∈X, K⊂rW

ϕ(K) (1.10)

and
ϕ(Z) = lim

r→∞

1
λd(rW )

Eϕ(Z ∩ rW ), (1.11)

whereW is, say, a convex body with positive volume. Clearly, such a procedure
requires appropriate assumptions. In general, Z ∩ rW will have a well-defined
Lebesgue measure, but not, for example, a well-defined surface area or Euler
characteristic, and other appropriate functions ϕ are even harder to think of.
In most of the quantitative investigations we shall therefore restrict ourselves
to particle processes X and random closed sets Z with the properties that
K ∈ X and Z∩W , for a convex bodyW , are almost surely polyconvex, that
is, can be represented as finite unions of convex bodies. From the viewpoint of
modeling real materials and structures, this is not a severe restriction, since
such objects can be approximately represented by unions of large numbers
of small convex bodies. The advantage of this restriction is that a series of
geometrically meaningful functions ϕ becomes available. Since we want to
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generate sets as unions of convex bodies, the functions ϕ to be considered
must have a simple behavior under taking unions; therefore, we demand finite
additivity. More precisely, a real function ϕ on the space K of convex bodies
is called additive or a valuation if

ϕ(K ∪M) = ϕ(K) + ϕ(M)− ϕ(K ∩M)

whenever K,M,K ∪M ∈ K. Every continuous valuation on K has a unique
extension to an additive function on the system of polyconvex sets. For trans-
lation invariant, additive functions ϕ on polyconvex sets, suitable measura-
bility and integrability conditions are sufficient to ensure the existence of the
densities ϕ(Z) according to (1.11). The densities (1.10) already exist under
weaker assumptions. In isotropic situations, the relevant functions ϕ are well
known. By a remarkable theorem of Hadwiger, every continuous, rigid mo-
tion invariant valuation on K is a linear combination of the intrinsic volumes.
This explains the predominant role of the intrinsic volumes in large parts of
this book. The required facts about additive functionals on convex bodies and
their proofs can be found in the Appendix.

Our emphasis on polyconvex sets and intrinsic volumes and their gen-
eralizations also affects our introduction to integral geometry, in Part II of
the book. A main task of integral geometry is to compute mean values of
geometric functions with respect to invariant measures. Some fundamentals
about invariant measures are collected in the Appendix. Specifically, we need
the invariant measures on the groups and homogeneous spaces of Euclidean
geometry, namely the translation, rotation and rigid motion group, and spaces
such as spheres and linear or affine Grassmannians. Typical formulas of inte-
gral geometry will evaluate the integral, with respect to an invariant measure,
of a function taken at the intersection of a fixed and a moving polyconvex set.
First we consider fairly general additive functions and the motion group; then
we concentrate on intrinsic volumes and their local versions, the curvature
measures, and also study the case of the translation group. The picture is
enriched by also treating some related topics.

Another subject of integral geometry is integral transforms involving in-
variant measures. As an example, consider an integral, with respect to d-fold
Lebesgue measure in Rd, of a function of d points where the function does, in
fact, depend only on the hyperplane that is spanned (up to a set of measure
zero) by the d points. Then it may be of advantage to transform the integral
into one with respect to the invariant measure on the space of hyperplanes.
Integral geometry provides geometric techniques for obtaining a variety of
such transformation results, which are known as Blaschke–Petkantschin
formulas. They are extremely useful, often allowing explicit calculations in
geometric probabilities and stochastic geometry.

Part III of the book, on selected topics from stochastic geometry, combines
the first two parts, but also aims at giving a broader picture. With this goal
in mind, in Chapter 8 we present some geometric probability problems. This
topic is not only the origin of stochastic geometry, but remains to be an
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attractive subject of many investigations. Our presentation touches convex
hulls of random points, random projections of polytopes, questions about
randomly moving convex bodies and flats, touching probabilities for convex
bodies, and extremal problems for probabilities and expectations coming from
intuitive geometric settings. As this chapter intends to paint a colorful picture,
the presentation is not very systematic, and much information is to be found
in the section notes.

Chapter 9 returns to the mainstream of the book and proceeds with a quan-
titative treatment of stationary random closed sets and particle processes. We
begin with a study of the Boolean model. For more general random closed sets
and for particle processes, we then introduce, as basic descriptive parameters,
densities of additive functionals, in particular the specific intrinsic volumes. In
their further investigation, stochastic geometry and integral geometry come
close together. Intersection formulas lead to unbiased estimators for such pa-
rameters, and some selected estimation procedures are described.

Chapter 10 gives a detailed treatment of stationary random mosaics, an-
other basic model of stochastic geometry. After a careful introduction, partic-
ular attention is paid to tessellations induced by stationary Poisson processes,
either as Voronoi or Delaunay tessellations corresponding to Poisson point
processes, or as hyperplane tessellations generated by a Poisson process in
the space of hyperplanes. Zero cells and typical cells of stationary random
mosaics provide interesting examples of random polytopes and are studied in
some detail.

Chapter 11 is an outlook to non-stationary models. While, as emphasized
in the preface, invariance of measures and distributions, at least under transla-
tions, is an essential feature in this book, we want to conclude with extending
some of the results in previous chapters to non-stationary situations. Natu-
rally, the statements become more involved, but it is perhaps surprising to see
how the structure of the translative results is still recognizable and how the
tools developed in the stationary case remain indispensable.

Part IV, the Appendix, collects basic material from other fields that is
needed in the different chapters of the book. In Chapters 12 to 14, the reader
will find, when necessary, the employed notions and results from general topol-
ogy, the theory of invariant measures, and the geometry of convex bodies.

1.2 General Hints to the Literature

As explained in the preface, our presentation of stochastic geometry in this
book has restricted aims only: to lay sound foundations for the standard
models of stochastic geometry, and to prepare and describe the use of integral
geometry. Although several further topics of geometric interest are touched,
we are necessarily far from giving a complete picture of stochastic geometry.
Therefore, in the following we list monographs and collections where the reader
may find what is missing here. We shall, with a few exceptions, mention only
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literature of the last forty years, the period in which stochastic geometry, as
it is understood today, has developed. We order the references in thematic
groups and then chronologically.

Stochastic geometry:
1974 Harding, Kendall (eds.) [321] (collection of articles)
1975 Matheron [462]
1987 Stoyan, Kendall, Mecke [743] (second ed. 1995)
1988 Hall [317] (coverage processes)
1990 Ambartzumian [35]
1990 Mecke, Schneider, Stoyan, Weil [500] (DMV seminar, in German)
1993 Ambartzumian, Mecke, Stoyan [36] (in German)
1999 Barndorff–Nielsen, Kendall, van Lieshout (eds.) [80] (collection)
2004 Beneš, Rataj [90]
2007 Baddeley, Bárány, Schneider, Weil [50] (C.I.M.E. course)

Integral geometry:
1957 Hadwiger [307] (chapter 6, in German)
1968 Stoka [738] (in French)
1972 Sulanke, Wintgen [749] (chapter 5, in German)
1976 Santaló [662]
1982 Ambartzumian [34] (combinatorial integral geometry)
1994 K. Mecke [505] (applications to statistical physics, in German)
1994 Ren [635]
1997 Klain, Rota [416] (combinatorial aspects)
2007 Voss [772] (applied to stereology and image processing, in German)

Geometric probability:
1963 Kendall, Moran [397]
1978 Solomon [731]
1999 Mathai [456]

Random sets:
1993 Molchanov [543] (limit theorems)
1997 Goutsias, Mahler, Nguyen (eds.) [284] (collection of articles)
1997 Jeulin (ed.) [384] (collection of articles)
2005 Molchanov [548]
2006 Nguyen [583]

Point processes with geometric applications:
1986 Kallenberg [385]
1986 Matérn [454]
1988 Daley, Vere–Jones [194]
1992 König, Schmidt [423] (in German)
1993 Kingman [413]
2005 Daley, Vere–Jones [195]
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2008 Daley, Vere–Jones [196]
2008 Illian, Penttinen, H. Stoyan, D. Stoyan [376]

Stereology:
1980 Weibel [778]
1998 Jensen [379]
2005 Baddeley, Jensen [53]

Spatial and geometric statistics:
1981 Ripley [644]
1988 Ripley [645]
1983 Diggle [204]
1991 Karr [389]
1992 D. Stoyan, H. Stoyan [746] (in German 1992, in English 1994)
1993 Cressie [185]
1997 Molchanov [546] (statistics of the Boolean model)
1999 Kendall, Barden, Carne, Le [396] (shape theory and shape statistics)
2000 van Lieshout [439]
2002 Ohser, Mücklich [587] (materials science)
2002 Torquato [759] (materials science)
2004 Møller, Waagepetersen [556]
2006 Baddeley, Gregori, Mateu, Stoica, D. Stoyan [51] (collection)

Random tessellations:
1994 Møller [553]
2000 Okabe, Boots, Sugihara, Chiu [591]

Several areas involving random geometric structures overlap more or less
with stochastic geometry, or can be subsumed under it (the more so as sto-
chastic geometry is not clearly defined), or they apply stochastic geometry.
The following list is certainly not exhaustive.

1981 Adler [1] (random fields)
1982 Serra [729] (image analysis and mathematical morphology)
1996 Meesters, Roy [509] (continuum percolation)
2003 Penrose [598] (random geometric graphs)
2007 Adler, Taylor [2] (random fields)

Introductory surveys, emphasizing different aspects of stochastic geometry,
were written by Baddeley [44, 45, 49], Cruz–Orive [189], Stoyan [741, 742],
Weil [785], Weil and Wieacker [806].

1.3 Notation and Conventions

We collect here some basic notation, which will be used throughout the book.
More detailed explanations of fundamental notions are found in the Appendix.
The reader is advised to consult Chapters 12 to 14 whenever the notions and
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results from general topology, the theory of invariant measures, or convex
geometry that we use do not appear sufficiently familiar.

Let E be a set. We denote by P(E) the power set, that is, the system of
all subsets of E. For a subset A ⊂ E, the complement of A is denoted by Ac

and the indicator function by 1A. When one of the latter two notions is used,
it will be clear from the context to which basic set E it refers. We also write
1{x ∈ A} instead of 1A(x), if convenient.

Let E be a topological space. Most of the considered spaces will be locally
compact or compact; by definition, this includes the Hausdorff property. Let A
a subset of E. Then clA, intA, bdA are, respectively, the closure, the interior
and the boundary of A. The system of closed, open, and compact subsets of
E is denoted, in this order, by F , G, C. If necessary to avoid ambiguities,
we also write F(E), G(E), C(E). A prime always indicates the corresponding
system of nonempty sets, thus F ′, G′, C′ are the systems of nonempty closed,
open, compact subsets of E, respectively. The vector space of continuous real
functions on E is denoted by C(E), and Cc(E) is the subspace of functions
with compact support.

A measure or signed measure on a topological space E will always be
defined on the σ-algebra B(E) of Borel sets of the space, unless a different
domain is indicated. B(E) is the smallest σ-algebra in E containing the open
sets. Also measurability, of sets or mappings, refers to Borel σ-algebras, if no
other σ-algebras are mentioned explicitly. We write

µr := µ⊗ . . .⊗ µ (r factors)

for the r-fold product of a measure µ. The restriction of a measure µ to a
measurable set A is denoted by µ A, thus (µ A)(B) := µ(B ∩A) for all B
in the domain of µ. If X,Y are topological spaces, ρ is a measure on X and
f : X → Y is a measurable map, we denote the image measure of ρ under f
by f(ρ).

In probabilistic considerations, the underlying probability space will gen-
erally be denoted by (Ω,A,P). If ξ is a random variable, then Pξ denotes its
distribution. We employ the usual abbreviations, such as P(ξ ∈ A) := P({ω ∈
Ω : ξ(ω) ∈ A}). The expected value of a real random variable ξ is denoted by
E ξ.

Most of our investigations take place in Euclidean space. Rd is the d-
dimensional real Euclidean vector space, with scalar product 〈·, ·〉 and induced
norm ‖·‖. The distance of two points x, y ∈ Rd is denoted by d(x, y) := ‖x−y‖,
the distance of two nonempty sets K,L ⊂ Rd by d(K,L) := inf{d(x, y) : x ∈
K, y ∈ L}, and we write d(K,x) = d(x,K) := d({x},K) for the distance of
the point x from the set K.

For subsets A,B ⊂ Rd, the set A + B := {a + b : a ∈ A, b ∈ B} is the
vector sum or Minkowski sum, λA := {λa : a ∈ A} is the dilate of A by the
number λ ≥ 0, and −A := {−a : a ∈ A} is the image of A under reflection
in the origin. A−B means A+ (−B). This has to be distinguished from the
Minkowski difference of A and B, which is defined by
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A�B :=
⋂
b∈B

(A− b) = {x ∈ Rd : B + x ⊂ A}

(note that in some of the literature this is A�−B). We denote by convA the
convex hull of the set A, and by posA its positive hull.

If A ⊂ Rd and if E ⊂ Rd is an affine subspace, then A|E denotes the image
of A under orthogonal projection to E.

The following systems of subsets will play a prominent role. K is the family
of compact convex subsets of Rd. The convex ringR consists of all finite unions
of compact convex sets; its elements are sometimes called polyconvex sets. A
locally polyconvex set in Rd is defined by the property that its intersection
with any compact convex set is polyconvex. The system of these sets is denoted
by S and is called the extended convex ring. P is the family of (compact,
convex) polytopes. Again, K′, R′, S ′, P ′ denote the corresponding systems of
nonempty sets. On C′ (and thus also on K′) the Hausdorff metric δ is defined
by

δ(K,L) := max
{

max
x∈K

min
y∈L

d(x, y), max
x∈L

min
y∈K

d(x, y)
}
.

Some particular subsets of Rd will occur frequently. These are the unit ball
Bd := {x ∈ Rd : ‖x‖ ≤ 1}, the unit sphere Sd−1 := {x ∈ Rd : ‖x‖ = 1}, and
the unit cube Cd := [0, 1]d. The ‘half-open’ cube Cd

0 := [0, 1)d is useful since
its translates by the vectors of Zd form a decomposition of Rd; moreover, the
‘upper right’ boundary ∂+Cd := Cd \ Cd

0 is an element of the convex ring.
Hyperplanes of Rd are written in the form

H(u, τ) := {x ∈ Rd : 〈x, u〉 = τ}

with u ∈ Sd−1 and τ ∈ R; this representation is unique if τ > 0. For H(u, 0)
we often write u⊥.

The following measures are used. Lebesgue measure on Rd is denoted by
λ or, if there is danger of ambiguity, by λd. For k ∈ {0, . . . , d − 1}, λk is the
k-dimensional Lebesgue measure on a k-dimensional affine subspace of Rd. If
E is this subspace, the Lebesgue measure on E is also denoted by λE . If F is
a compact convex set with affine hull E, then

λF := λE F.

The spherical Lebesgue measure on a k-dimensional great subsphere of Sd−1

is denoted by σk, and we write σ instead of σd−1 if this does not cause am-
biguities. Occasionally, the k-dimensional Hausdorff measure is used, which
is denoted by Hk. For the Lebesgue measure of a compact set C, we often
use the notation Vd(C) and call it the volume of C. The intrinsic volumes
V0(M), . . . , Vd−1(M) of a compact convex set M are defined by the Steiner
formula (1.2); they are discussed in more detail in Section 14.3.

A frequently occurring constant is the volume of the unit ball,
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κd := λd(Bd) =
π

d
2

Γ
(
1 + d

2

) .
The surface area of the unit sphere Sd−1 is given by

ωd := σd−1(Sd−1) = dκd =
2π

d
2

Γ
(

d
2

) .
The standard groups operating on Rd are the translation group, which is

the additive group of Rd and is denoted by Td if a distinction is appropriate,
the group SOd of proper (orientation-preserving) rotations, and the group
Gd of rigid motions, or orientation-preserving isometries. These groups carry
their standard topologies.

The translation by the vector x ∈ Rd is denoted by tx, thus txy := y + x
for y ∈ Rd. For a set A ⊂ Rd, we have A + x := txA = {a + x : a ∈ A}.
If µ is a measure on Rd, then the image measure tx(µ) is also denoted by
txµ = µ+x, thus (µ+x)(A) = µ(t−1

x A) = µ(A−x) for A ∈ B(Rd). Similarly,
(ϑµ)(A) := µ(ϑ−1A) for ϑ ∈ SOd.

For k ∈ {0, . . . , d}, the Grassmannian of k-dimensional linear subspaces of
Rd is denoted by G(d, k), and the affine Grassmannian of k-dimensional affine
subspaces by A(d, k); both are equipped with their standard topologies.

We denote by R = R ∪ {−∞,∞} the extended system of real numbers,
and by R+ the set of positive real numbers.



Part I

Foundations of Stochastic Geometry



2

Random Closed Sets

A random set in a space E is defined, in agreement with the usual approach
of axiomatic probability, as a set-valued random variable, that is, as a mea-
surable map from some abstract probability space into a system of subsets
of E, endowed with a suitable σ-algebra. It has turned out to be particularly
tractable to assume that E is a locally compact space with a countable base
and to consider the system F of its closed subsets, equipped with the topology
of closed convergence and the induced σ-algebra of Borel sets. This approach
is described in Section 2.1.

The distribution of a random closed set is completely determined by certain
hitting probabilities, in particular, by its capacity functional. This gives, for
every compact set C ⊂ E, the probability that the random set has nonempty
intersection with C. The capacity functional can be seen in a certain analogy
to the distribution function of a real random variable. Like distribution func-
tions, the possible capacity functionals can be completely characterized. This
characterization is provided by the Theorem of Choquet, for which we give a
proof in Section 2.2. Some applications of this theorem are treated in Section
2.3. Special features of random closed sets in Euclidean spaces are the subject
of Section 2.4.

2.1 Random Closed Sets in Locally Compact Spaces

The basic space in this chapter is a locally compact topological space E with
a countable base. We denote by F , G, C the system of the closed, open, and
compact subsets of E, respectively. The empty set is always included; we
write F ′ := F \ {∅}, and similarly G′ and C′ are defined. If necessary to avoid
ambiguities, we write F(E), G(E), C(E) for F , G, C.

Since random sets will be investigated in terms of their hitting probabilities
with given sets, the following notation is fundamental. For A ⊂ E we write

FA := {F ∈ F : F ∩A = ∅},



18 2 Random Closed Sets

FA := {F ∈ F : F ∩A �= ∅},

and we set
FA

A1,...,Ak
:= FA ∩ FA1 ∩ . . . ∩ FAk

(:= FA for k = 0), if k ∈ N0 and A1, . . . , Ak ⊂ E.

Definition 2.1.1. The topology of closed convergence on F is the topol-
ogy generated by the set system

{F C : C ∈ C} ∪ {FG : G ∈ G}.

The topology of closed convergence is also known as the ‘Fell topology’. It
is an example of a ‘hit-and-miss topology’.

In the following, F will always be equipped with the topology of closed
convergence. Basic properties of this topology are proved in Chapter 12, which
the reader is advised to consult when necessary. The space F is compact
and has a countable base (Theorem 12.2.1), and the subspace F ′ is locally
compact.

Lemma 2.1.1. The σ-algebra B(F) of Borel sets of F is generated by either
of the systems

{F C : C ∈ C} and {FG : G ∈ G}.

Proof. As shown in the proof of Theorem 12.2.1, the topology of F is generated
by a countable subsystem of A := {F C : C ∈ C} ∪ {FG : G ∈ G}. Therefore,
A generates B(F).

Let G ∈ G. According to Theorem 12.1.1, there is a sequence (Ci)i∈N of
compact sets with

⋃
i∈N Ci = G, hence

FG =
⋃
i∈N

FCi
=

⋃
i∈N

(F Ci)c.

This shows that the system {F C : C ∈ C} is sufficient to generate the σ-
algebra B(F).

Let C ∈ C. According to Theorem 12.1.1, there is a sequence (Gi)i∈N of
open neighborhoods of C such that every open set G with C ⊂ G contains a
suitable set Gi. This yields

F C =
⋃
i∈N

F Gi =
⋃
i∈N

(FGi
)c,

hence also the system {FG : G ∈ G} is sufficient to generate B(F). ��

Remark. Similarly, also each of the systems {FC : C ∈ C} and {F G : G ∈ G}
generates B(F).
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The following consequence is important. If the map ϕ : T → F from
some topological space T to F is upper or lower semicontinuous (see Section
12.2), then it is Borel measurable. In fact, if ϕ is upper semicontinuous, then
ϕ−1(F C) is open, and hence a Borel set, for every compact set C ∈ C. Since
{F C : C ∈ C} is a generating system of B(F), the measurability of ϕ follows.
For lower semicontinuous maps, the proof is analogous.

Lemma 2.1.2. C is a Borel set in F .

Proof. By Theorem 12.1.1, there is a sequence (Ci)i∈N of compact sets with
Ci ⊂ intCi+1 for i ∈ N and

⋃
i∈N Ci = E. This yields

C =
⋃
i∈N

F Cc
i ,

where each F Cc
i is closed, hence C is a Borel set in F . ��

Now we introduce random closed sets.

Definition 2.1.2. A random closed set in E is an F-valued random vari-
able, that is, an (A,B(F))-measurable map Z : Ω → F from some proba-
bility space (Ω,A,P) into F . The distribution of Z is the image measure
PZ := Z(P) of P under Z.

In the following, ‘random closed set’ always means ‘random closed set in
E’.

As usual in probability theory, the essential feature of a random variable
is its distribution and what can be derived from it. Two random closed sets
Z and Z ′, which may be defined on different probability spaces, are called
stochastically equivalent if they have the same distribution. This is also
written as Z D= Z ′ (equality in distribution). Even though every ran-
dom closed set Z has a canonical representation Z ′ with Z ′ D= Z, via the
identical map on (F ,B(F),PZ), it is still more convenient to use the general
representation of Definition 2.1.2, with an abstract probability space.

For PZ(A), where A ∈ B(F), we also use the notation P(Z ∈ A), as an
abbreviation for P({ω ∈ Ω : Z(ω) ∈ A}), etc. If P(Z ∈ A) = 1, we say that
‘Z ∈ A almost surely’ (a.s.).

If, in the following, several (finitely or countably many) random closed
sets are treated simultaneously, we always assume that they are defined on
the same probability space (Ω,A,P). If Z1, . . . , Zk are random closed sets,
their joint distribution is the probability measure PZ1,...,Zk

on Fk defined
by

PZ1,...,Zk
(A1 × . . .×Ak) = P(Z1 ∈ A1, . . . , Zk ∈ Ak)

for A1, . . . , Ak ∈ B(F). Analogously, the joint distribution PZ1,Z2,... of a se-
quence Z1, Z2, . . . of random closed sets is defined. It is a probability measure
on F N. As usual, the random closed sets Z1, . . . , Zk, respectively Z1, Z2, . . .,
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are called (stochastically) independent if their joint distribution is the
product of their individual distributions, that is, if

PZ1,...,Zk
= PZ1 ⊗ . . .⊗ PZk

,

respectively
PZ1,Z2,... =

⊗
i∈N

PZi
.

From given random closed sets Z and Z ′, one can obtain new ones by
means of set-theoretic or topological operations. If ϕ : F → F and ψ : F×F →
F are measurable maps, then also the compositions ϕ ◦Z and ψ ◦ (Z,Z ′) are
measurable. Therefore, the continuity or semicontinuity results of Theorems
12.2.3, 12.2.6, 13.1.1 yield the following.

Theorem 2.1.1. If Z and Z ′ are random closed sets, then also Z∪Z ′, Z∩Z ′,
bdZ and clZc are random closed sets. If the topological group G operates
continuously on E, then for g ∈ G also gZ is a random closed set.

We mention some simple examples of random closed sets. Trivially, if
F ∈ F , the constant map ω �→ F from Ω into F is a random closed set.
Therefore, Theorem 2.1.1 implies that for a random closed set Z also the
intersection Z ∩ F with a fixed set F ∈ F is a random closed set (and sim-
ilarly Z ∪ F ). If ξ1, ξ2, . . . is a sequence of random variables with values in
E, then the countable set Z = {ξ1, ξ2, . . .} is a random closed set if the set
{ξ1(ω), ξ2(ω), . . .} has no accumulation points, for almost all ω. If, as in this
case, Z ∩ C is almost surely finite for every compact set C ∈ C, we say that
the random closed set Z is locally finite.

Now we introduce, for random closed sets, a functional which can be con-
sidered as an analog to the distribution function of a real random variable.
We first recall this latter notion.

For a random variable ξ with values in (−∞,∞], the distribution function
ϕ = ϕξ is defined by

ϕξ(t) := P(ξ ≤ t) = P({ξ} ∩ (−∞, t] �= ∅), t ∈ [−∞,∞).

It has the following properties:

(a) 0 ≤ ϕ ≤ 1, ϕ(−∞) = 0,
(b)ϕ is continuous from the right, that is, ti ↓ t implies ϕ(ti)→ ϕ(t),
(c) ϕ is increasing, that is, ϕ(t0 + t1) − ϕ(t0) ≥ 0 for all t1 ≥ 0 and all
t0 ∈ [−∞,∞).

The distribution function ϕξ determines the distribution Pξ uniquely. For
any function ϕ satisfying (a), (b), (c), there exists a random variable with
distribution function ϕ.

A tool with analogous properties exists in the theory of random closed
sets.
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Definition 2.1.3. The capacity functional TZ of the random closed set Z
is defined by

TZ(C) := PZ(FC) = P(Z ∩ C �= ∅) for C ∈ C.

The following theorem shows that the capacity functional has properties
corresponding to the properties (a), (b), (c) of a distribution function. We
denote by Ai ↓ A the monotone convergence of sets Ai to A; this means
that Ai+1 ⊂ Ai for i ∈ N and

⋂
i∈NAi = A. Similarly, Ai ↑ A means that

Ai+1 ⊃ Ai for i ∈ N and
⋃

i∈NAi = A. If a function T : C → R is given, we
define

S0(C) := 1− T (C) for C ∈ C
and then, by recurrence,

Sk(C0;C1, . . . , Ck) := Sk−1(C0;C1, . . . , Ck−1)− Sk−1(C0 ∪ Ck;C1, . . . , Ck−1)

for C0, C1, . . . , Ck ∈ C and k ∈ N. It should be kept in mind that Sk depends
on T , although the notation does not reveal this.

Theorem 2.1.2. The capacity functional T = TZ of a random closed set Z
has the following properties:

(a) 0 ≤ T ≤ 1, T (∅) = 0,
(b) if Ci, C ∈ C and Ci ↓ C, then T (Ci)→ T (C),
(c) Sk(C0;C1, . . . , Ck) ≥ 0 for C0, C1, . . . , Ck ∈ C and k ∈ N0.

Proof. Assertion (a) follows immediately from the definition.
(b) If Ci ↓ C, then the sequence (FCi

)i∈N is decreasing, and FC ⊂⋂
i∈N FCi

. We show that FCi
↓ FC . Let F ∈

⋂
i∈N FCi

, then F ∩ Ci �= ∅
for all i ∈ N. From

⋂
i∈N Ci = C and the intersection property of compact

sets it follows that F ∩ C =
⋂

i∈N(F ∩ Ci) �= ∅. Hence, F ∈ FC and thus⋂
i∈N FCi

= FC . Assertion (b) now follows from the fact that the probability
measure PZ is continuous from above.

(c) Clearly, S0 ≥ 0. Using the relation

F C0
C1,...,Ck

= F C0
C1,...,Ck−1

\ F C0∪Ck

C1,...,Ck−1
, (2.1)

one shows by induction with respect to k that

Sk(C0;C1, . . . , Ck) = PZ(F C0
C1,...,Ck

), k ∈ N. (2.2)

The assertion follows. ��

A real function T on C satisfying (a) and (b) of Theorem 2.1.2 is called
a Choquet capacity. (The reason for this terminology comes from the fact
that T can be extended to a set function on the power set P(E) of E which
has the properties of a capacity; see Choquet [174].) A Choquet capacity
satisfying (c) is called alternating of infinite order. The distribution of a
random closed set is uniquely determined by its capacity functional.
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Theorem 2.1.3. If Z,Z ′ are random closed sets with TZ = TZ′ , then Z D= Z ′.

Proof. The equality TZ = TZ′ means that PZ(F C) = 1 − PZ(FC) = 1 −
PZ′(FC) = PZ′(F C). Since the system {F C : C ∈ C} is ∩-stable and by
Lemma 2.1.1 generates the σ-algebra B(F), the assertion follows from a well-
known uniqueness theorem of measure theory. ��

Notes for Section 2.1

1. Random sets were systematically developed by Matheron [459, 460] and D.G.
Kendall [395]. Important fundamental ideas can already be found in Choquet’s [173]
theory of capacities. The introduction given in this chapter is essentially based on
Matheron’s seminal book [462].

2. General introductions to the theory of random closed sets are found in the mono-
graphs by Molchanov [548] and by Nguyen [583]. As the reader is advised to consult
these volumes, the section notes in this chapter will be very brief.

3. Several different aspects of the theory of random sets are described in the surveys
[542, 547] of Molchanov. The volumes edited by Jeulin [384] and by Goutsias, Mahler
and Nguyen [284] contain various contributions to theory and applications of random
sets.

2.2 Characterization of Capacity Functionals

The capacity functional T = TZ of a random closed set Z has the properties
listed in Theorem 2.1.2. These properties of a function T on the system C of
compact sets are also sufficient for T to be the capacity functional of a random
closed set. This result is known as Choquet’s Theorem.

Theorem 2.2.1 (Theorem of Choquet). Let T : C → R be a function
with the following properties:

(a) 0 ≤ T ≤ 1, T (∅) = 0,
(b) if Ci, C ∈ C and Ci ↓ C, then T (Ci)→ T (C),
(c) Sk(C0;C1, . . . , Ck) ≥ 0 for C0, C1, . . . , Ck ∈ C and k ∈ N0.

Then there exists a uniquely determined probability measure P on F with

T (C) = P(FC)

for all C ∈ C.

Consequently, the function T is the capacity functional of a random closed
set Z. For example, one can take for Z the identical map on the probability
space (F ,B(F),P).

The stated uniqueness is clear from Theorem 2.1.3. For the existence, we
shall present a proof due to Matheron [462], with a simplification taken from


