Stilianos E. Kountakis · Joseph B. Jacobs · Jan Gosepath (Eds.)

Revision Sinus Surgery
To the Memory of my mother, Eftihia Kountakis.
To my wife Eleni, our children and our new baby girl Alexandra Elena.
To my sister Maria Kountakis for her support during the difficult years.
To my Rhinology Fellows for a lifetime of learning.

Stilianos E. Kountakis, MD

To the Memory of my mother, Helen Jacobs.
To my wife Patti and my children Stacy and Allison.
To my sons-in-law Rich and Jeff.
To my granddaughter Ava.
To the department of Otolaryngology at New York University.

Joseph B. Jacobs, MD

To my wife Anja
To my academic teacher Professor Wolf J. Mann

Jan Gosepath, MD, PhD
The field of rhinology has rapidly advanced over the last two decades, enabling surgeons to utilize endoscopic techniques and instrumentation to perform the majority of operations within the paranasal sinuses. Despite significant progress with medical management and surgical instrumentation, however, many patients who suffer from chronic sinonasal disease develop recurrences of symptomatic disease requiring revision endoscopic sinus surgery.

Anatomic alteration due to prior sinus surgery, mucosal scarring and associated chronic mucosal inflammation all increase the complexity of such procedures. Therefore, even in the hands of experienced sinus surgeons, increased risk of negative outcomes exists. This project was undertaken to develop a concise reference that provides an exhaustive source of information relating to the complex pre- and post-operative management of the revision sinus surgery patient. *Revision Sinus Surgery* is the first textbook available dedicated to this topic.

International leading rhinologic experts were invited to author the book. Pertinent topics include specific surgical indications and techniques, pre- and post-operative medical management and recognition and treatment of surgical complications. Chapters are arranged with bulleted tips and pearls, as well as numerous illustrations to highlight the text. A DVD accompanies the book, containing videos that demonstrate actual procedures performed by the contributing authors. This book is a comprehensive volume that can be used as a complete reference source by all otolaryngologists.

Stilianos E. Kountakis, MD, PhD
Joseph B. Jacobs, MD
Jan Gosepath, MD
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Imaging Anatomy in Revision Sinus Surgery</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Ramon E. Figueroa</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Indications for Revision Endoscopic Sinus Surgery</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Marc A. Tewfik and Martin Desrosiers</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Predictors of Failure of Primary Surgery</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Iman Naseri and John M. DelGaudio</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Pathophysiology of Inflammation in the Surgically Failed Sinus Cavity</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Wytske J. Fokkens, Bas Rinia and Christos Georgalas</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Medical Management after Primary Surgery Failure and Preoperative</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Medical Management</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jan Gosepath</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>New Technologies for Revision Sinus Surgery</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Elisa M. Lynskey, Richard A. Lebowitz, Joseph B. Jacobs, and Marvin P.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fried</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Surgical Anatomy in Revision Sinus Surgery</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Adam J. Folbe and Ray R. Casiano</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Surgical Instruments in Revision Endoscopic Sinus Surgery</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Vijay R. Ramakrishnan and Todd T. Kingdom</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Anesthetic Choices, Techniques, and Injections</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>W. Derek Leight and Brent Senior</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Tips and Pearls in Revision Sinus Surgery</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Alexander G. Chiu and David W. Kennedy</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Septal and Turbinate Surgery in Revision Sinus Surgery</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>Joseph Raviv and Peter H. Hwang</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Revision Endoscopic Surgery of the Ethmoid and Maxillary Sinus</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>Biana G. Lanson, Seth J. Kanowitz, Richard A. Lebowitz, and Joseph B.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jacobs</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Revision Endoscopic Surgery of the Sphenoid Sinus</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>Richard R. Orlandi</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Endoscopic and Microscopic Revision Frontal Sinus Surgery</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Ulrike Bockmühl and Wolfgang Draf</td>
<td></td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>15</td>
<td>Revision Endoscopic Frontal Sinus Surgery</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>Patricia A. Maeso, Subinoy Das, and Stilianos E. Kountakis</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Postoperative Medical Management</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>Dennis F. Chang, David B. Conley, and Robert C. Kern</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Evaluation and Treatment of Recurrent Nasal Polyposis</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>Frederick C. Roediger and Andrew N. Goldberg</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Revision Surgery for Allergic Fungal Rhinosinusitis</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>Subinoy Das, Patricia A. Maeso, and Stilianos E. Kountakis</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Revision Endoscopic Surgery for Benign Sinonasal Tumors</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>Michael J. Sillers and Yvonne Chan</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Recurrent Cerebrospinal Fluid Leaks and Meningoencephaloceles</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>Sarah K. Wise, Richard J. Harvey, and Rodney J. Schlosser</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Delayed Complications Following Sinus Trauma</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>David M. Poetker and Timothy L. Smith</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Recurrent Mucoceles</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>Benjamin Bleier, James N. Palmer, and Bradford A. Woodworth</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Allergy and the Patient Requiring Revision Sinus Surgery</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>Li-Xing Man and Berrylin J. Ferguson</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Staging of Disease after Sinus Surgery Failure</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>Valerie J. Lund</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Headache and the Patient who Failed Primary Sinus Surgery</td>
<td>217</td>
</tr>
<tr>
<td></td>
<td>William H. Moretz III and Stilianos E. Kountakis</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Complications in Revision Sinus Surgery: Presentation and Management</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>John Scianna and James Stankiewicz</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Revision Dacryocystorhinostomy</td>
<td>235</td>
</tr>
<tr>
<td></td>
<td>Metin Onerci</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Revision Endoscopic Transsphenoidal Hypophysectomy</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>Karen A. Kölln and Brent A. Senior</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Revision Image-Guided Functional Endoscopic Sinus Surgery</td>
<td>251</td>
</tr>
<tr>
<td></td>
<td>Martin J. Citardi and Pete S. Batra</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Revision Endoscopic Sinus Surgery in Children</td>
<td>269</td>
</tr>
<tr>
<td></td>
<td>Hassan H. Ramadan</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Open Approaches after Failure of Primary Sinus Surgery</td>
<td>275</td>
</tr>
<tr>
<td></td>
<td>Mark C. Weissler</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 32
“Above and Below” Techniques in Revision Sinus Surgery 281
Timothy Haegen, Ryan M. Rehl, and Winston C. Vaughan

Chapter 33
Revision Endoscopic Skull-Base Surgery 289
Aldo C. Stamm, João Flávio, and Richard J. Harvey

Chapter 34
Stenting in Revision Sinus Surgery 301
Seth J. Kanowitz, Joseph B. Jacobs, and Richard A. Lebowitz

Chapter 35
Use of Intravenous Antibiotics in Sinus Surgery Failures 309
Seth M. Brown, Abtin Tabaee, and Vijay K. Anand

Chapter 36
Objective and Subjective Outcomes after Revision Sinus Surgery 317
Michael G. Stewart and Scott M. Ricker

Chapter 37
Bioabsorbable Materials in Revision Sinus Surgery 329
Rakesh K. Chandra and Robert C. Kern

Chapter 38
Endoscopic Approach after Failure of Open Sinus Procedures 337
Raymond Sacks and Larry Kalish

Subject Index 347
Contributors

Vijay K. Anand, MD
772 Park Ave
New York, NY 10021
USA
Email: vijayanandmd@aol.com

Pete S. Batra, MD
Section of Nasal and Sinus Disorders
Head and Neck Institute
Cleveland Clinic Foundation
950 Euclid Ave, A71
Cleveland, OH 44195
USA
Email: batrap@ccf.org

Benjamin Bleier, MD
Department of Otorhinolaryngology
University of Pennsylvania
3400 Spruce Street
Philadelphia, PA 19104
USA
Email: benjamin.bleier@uphs.upenn.edu

Ulrike Bockmühl, MD, PhD
Department of Otorhinolaryngology – Head and Neck Surgery
University Hospital Gießen
Klinikstraße 29
35392 Gießen
Germany
Email: ulrike.bockmuehl@hno.med.uni-giessen.de

Seth M. Brown, MD, MBA
12 North Main St., Suite 30
West Hartford, CT 06107
USA
Email: sethmbrown@msn.com

Roy R. Casiano, MD
University of Miami
1475 NW 12th Ave
Suite 4025
Miami, FL 33136-1002
USA
Email: rcasiano@med.miami.edu

Yvonne Chan, MD, FRCSC
Georgia Nasal and Sinus Institute
4750 Waters Avenue
Suite 112
Savannah, GA 31404-6220
USA
Email: y.chan@utoronto.ca

Rakesh K. Chandra, MD
Northwestern Sinus and Allergy Center
Department of Otolaryngology – Head and Neck Surgery
Northwestern University
Feinberg School of Medicine
675 N. St. Clair St.-Galter 15-200
Chicago, IL 60611
USA
Email: rickchandra@hotmail.com

Dennis F. Chang, MD
Loma Linda University Sinus and Allergy Center
Department of Otolaryngology – Head and Neck Surgery
Loma Linda University Medical Center
11234 Anderson Street #2586A
Loma Linda, CA 92354
USA
Email: dfchang@llcp.net
Contributors

Alexander G. Chiu, MD
Division of Rhinology
Department of Otorhinolaryngology
University of Pennsylvania
3400 Spruce Street
Philadelphia, PA 19104-4283
USA
Email: alexander.chiu@uphs.upenn.edu

Martin J. Citardi, MD
Department of Otorhinolaryngology – Head and Neck Surgery
University of Texas Medical School at Houston
6431 Fannin, MSB 5.202
Houston, TX 77030
USA
Email: martin.j.citardi@uth.tmc.edu

David B. Conley, MD
Department of Otolaryngology
Northwestern University
Feinberg School of Medicine
303 East Chicago Avenue
Chicago, IL 60611-3008
USA
Email: dbcentmd@northwestern.edu

Subinoy Das, MD
Department of Otolaryngology – Head and Neck Surgery
Medical College of Georgia
1120 Fifteenth Street, Suite BA-1414
Augusta, GA 30912
USA
Email: sdas@mcg.edu

John M. DelGaudio, MD
Department of Otolaryngology
The Emory Clinic
1365 Clifton Road, NE
Atlanta, GA 30322
USA
Email: john.delgaudio@emoryhealthcare.org

Martin Desrosiers, MD, FRCSC
Montreal General Hospital, Room A2-141
1650 Cedar Avenue
H3G 1A4 Montreal, Quebec
Canada
Email: desrosiers_martin@hotmail.com

Wolfgang Draf, MD, Hon MD, PhD, FRCSC
INI International Neuroscience Institute
ENT Department
Rudolf-Pichlmayr-Straße 4
30625 Hannover
Germany
Email: wdraf@aol.com

Berrylin J. Ferguson, MD
Division of Sino-Nasal Disorders and Allergy
Department of Otolaryngology
University of Pittsburgh School of Medicine
Eye and Ear Institute
200 Lothrop Street, Suite 500
Pittsburgh, PA 15213-2546
USA
Email: fergusonbj@upmc.edu

Ramon E. Figueroa, MD
Department of Radiology
Medical College of Georgia
1120 Fifteenth Street, Suite BA-1414
Augusta, GA 30912
USA
Email: rfiguero@mcg.edu

João Flávio, MD
Hospital Prof. Edmundo Vasconcelos
Rua Borges Lagoa, 1450
Vila Clementino
CEP 04038-905, Sao Paulo
Brazil

Adam J. Folbe, MD
Department of Otolaryngology – Head and Neck Surgery
Wayne State University
4201 St. Antoine
5E UHC
Detroit, MI 48201
USA
Email: afolbe@med.wayne.edu

Wytske J. Fokkens, MD
Department of Otorhinolaryngology
Academic Medical Centre
University of Amsterdam
Postbus 22660
1100 DD Amsterdam
The Netherlands
Email: w.j.fokkens@amc.nl
Marvin P. Fried, MD
Albert Einstein College of Medicine
Department of Otolaryngology
3400 Bainbridge Avenue, 3rd Floor
Bronx, NY 10467
USA
Email: mfried@montefiore.org

Christos Georgalas, MD
Academic Medical Centre
University of Amsterdam
Postbus 22660
1100 DD Amsterdam
The Netherlands

Andrew N. Goldberg, MD, MSCE, FACS
University of California, San Francisco
Department of Otolaryngology – Head and Neck Surgery
San Francisco, CA 94143
USA
Email: agoldberg@ohns.ucsf.edu

Jan Gosepath, MD, PhD
Department of Otolaryngology – Head and Neck Surgery
Dr. Horst Schmidt Kliniken
Ludwig-Erhard-Straße 100
65199 Wiesbaden
Germany
Email: gosepath@hno.klinik.uni-mainz.de

Timothy Haegen, MD
Head and Neck Surgery
Naval Hospital Camp Pendleton
PSC 477 Box 555191
Camp Pendleton, CA 92055
USA
Email: timothy.haegen@med.navy.mil

Richard J. Harvey, MD
Medical University of South Carolina
Department of Otolaryngology
PO Box 250550
135 Rutledge Ave., Suite 1130
Charleston, SC 29425
USA
Email: richard@richardharvey.com.au

Peter H. Hwang, MD
Department of Otolaryngology
Stanford University
801 Welch Road
Stanford, CA 94304
USA
Email: phwang@ohns.stanford.edu

Joseph B. Jacobs, MD
New York University Medical Center
Department of Otolaryngology
530 First Avenue, Suite 3C
New York, NY 10016-6402
USA
Email: joseph.jacobs@med.nyu.edu

Larry Kalish, MBBS (Hons), MS, MMed (Clin Epi), FRACS
Department of Otorhinolaryngology
Concord Repatriation Hospital
Concord, Sydney
NSW Australia
Email: lhkalish@mac.com

Seth J. Kanowitz, MD
Ear, Nose, Throat – Head and Neck Surgery
Advanced Sinus and Nasal Surgery
95 Madison Avenue, Suite 105
Morristown, NJ 07960
USA
Email: sethkanowitzmd@gmail.com

David W. Kennedy, MD
Department of Otolaryngology
University of Pennsylvania
3400 Spruce Street
5th Floor – Ravdin Building
Philadelphia, PA 19104-4283
USA
Email: kennedyd@uphs.upenn.edu

Robert C. Kern, MD
Department of Otolaryngology
Northwestern University
Feinberg School of Medicine
303 East Chicago Avenue
Chicago, IL 60611-3008
USA
Email: rkern@nmff.org
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Address</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Todd T. Kingdom, MD</td>
<td>Department of Otolaryngology</td>
<td>University of Colorado</td>
<td>todd.kingdom@uchsc.edu</td>
</tr>
<tr>
<td>Karen A. Kölln, MD</td>
<td>G0412 Neurosciences Hospital</td>
<td>101 Manning Drive</td>
<td>kkolln@unch.unc.edu</td>
</tr>
<tr>
<td>Stilianos E. Kountakis, MD</td>
<td>Department of Otolaryngology – Head and Neck</td>
<td>Medical College of Georgia</td>
<td>skountakis@mail.mcg.edu</td>
</tr>
<tr>
<td>Biana G. Lanson, MD</td>
<td>Department of Otolaryngology</td>
<td>New York University</td>
<td>bgl201@med.nyu.edu</td>
</tr>
<tr>
<td>Richard A. Lebowitz, MD</td>
<td>Department of Otolaryngology</td>
<td>New York University Medical Center</td>
<td>richard.lebowitz@nyumc.org</td>
</tr>
<tr>
<td>W. Derek Leight, MD</td>
<td>Department of Otolaryngology – Head and Neck</td>
<td>The University of North Carolina at Chapel Hill</td>
<td>wmoretz@mcg.edu</td>
</tr>
<tr>
<td>Valerie J. Lund MS FRCS FRCSEd</td>
<td>Institute of Laryngology and Otology</td>
<td>University College London</td>
<td>v.lund@ucl.ac.uk</td>
</tr>
<tr>
<td>Elisa M. Lynskey, MD</td>
<td>Department of Otolaryngology</td>
<td>New York University</td>
<td>elisa.lynskey@med.nyu.edu</td>
</tr>
<tr>
<td>Patricia A. Maeso, MD</td>
<td>Department of Otolaryngology – Head and Neck</td>
<td>Medical College of Georgia</td>
<td>pmaeso@mcm.edu</td>
</tr>
<tr>
<td>Li-Xing Man, MD, MSc</td>
<td>Department of Otolaryngology</td>
<td>University of Pittsburgh School of Medicine</td>
<td>nml@upmc.edu</td>
</tr>
<tr>
<td>William H. Moretz III, MD</td>
<td>Department of Otolaryngology – Head and Neck</td>
<td>Medical College of Georgia</td>
<td>wmoretz@mcg.edu</td>
</tr>
<tr>
<td>Iman Naseri, MD</td>
<td>Department of Otolaryngology</td>
<td>The Emory Clinic</td>
<td></td>
</tr>
</tbody>
</table>
Contributors

Metin Önerci, MD
Department of Otorhinolaryngology – Head and Neck Surgery
University of Hacettepe
06100 Sihhiye, Ankara
Turkey
Email: metin@tr.net

Richard R. Orlandi, MD, FACS
Division of Otolaryngology – Head and Neck Surgery
University of Utah School of Medicine
50 North Medical Drive, 3C120
Salt Lake City, UT 84132
USA
Email: richard.orlandi@hsc.utah.edu

James N. Palmer, MD
Hospital University of Pennsylvania
3400 Spruce Street
5th floor, Ravdin Building
Philadelphia, PA 19104
USA
Email: james.palmer@uphs.upenn.edu

David M. Poetker, MD, MA
Department of Otolaryngology and Communication Sciences
Medical College of Wisconsin
9200 W. Wisconsin Ave
Milwaukee, WI 53226
USA
Email: dpoetker@mcw.edu

Hassan H. Ramadan, MD
Department of Otolaryngology
West Virginia University
PO Box 9200
Morgantown, WV 26506-9200
USA
Email: hramadan@hsc.wvu.edu

Vijay R. Ramakrishnan, MD
Department of Otolaryngology
University of Colorado
AO-1, 12631E 17th Ave, B205
P. O. Box 6511
Aurora, CO 80045
USA

Joseph Raviv, MD
Department of Otolaryngology – Head and Neck Surgery
Northwestern University Feinberg School of Medicine
Evanston, IL
USA
Email: j-raviv@enh.org

Ryan M. Rehl, MD
Arizona Sinus Center
1515 North 9th Street, Suite B
Phoenix, AZ 85006
USA
Email: rrehl@arizonasinus.com

Scott M. Rickert, MD
Department of Otorhinolaryngology
Weill Cornell Medical College
1305 York Avenue, 5th Floor
New York, NY 10021
USA
Email: smr139@columbia.edu

Bas Rinia, MD
Department of Otolaryngology
Academic Medical Centre
University of Amsterdam
Postbus 22660
1100 DD Amsterdam
The Netherlands

Frederick C. Roediger, MD
University of California, San Francisco
Department of Otolaryngology – Head and Neck Surgery
San Francisco, CA 94143
USA
Email: froediger@ohns.ucsf.edu

Raymond Sacks, MD, Bch FCS, ORL FRACS
Head of Department of Otorhinolaryngology
Concord Repatriation Hospital
Suite12, Level 1, The Madison
25–29 Hunter Street
Hornsby
NSW Australia 2075
Email: rsacks@commander360.com
Contributors

Rodney J. Schlosser, MD
Department of Otolaryngology
Medical University of South Carolina
PO Box 250550
135 Rutledge Ave., Suite 1130
Charleston, SC 29425
USA
Email: schlossr@musc.edu

John Scianna, MD
Department of Otolaryngology
Loyola University
2160 South First Avenue
Maywood, IL 60153-3304
USA

Brent A. Senior, MD, FACS
Department of Otolaryngology – Head and Neck Surgery
The University of North Carolina at Chapel Hill
G0412 Neurosciences Hospital, CB #7070
Chapel Hill, NC 27599
USA
Email: brent_senior@med.unc.edu

Michael J. Sillers, MD, FACS
Alabama Nasal and Sinus Center
7191 Cahaba Valley Road
Birmingham, AL 35242
USA
Email: michael_sillers@charter.net

Timothy L. Smith, MD, MPH
Oregon Sinus Center
Department of Otolaryngology/Head and Neck Surgery
Oregon Health and Science University (OHSU)
3181 SW Sam Jackson Park Rd., PV-01
Portland, OR 97239
USA
Email: smithtim@ohsu.edu

Aldo C. Stamm, MD, PhD
Director of ENT Sao Paulo Center
Rua Alfonso Bras 525 - Cj 13
04511-010 Sao Paulo
Brazil
Email: cof@centrodeorl.com.br

James Stankiewicz, MD
Department of Otolaryngology
Loyola University
2160 South First Avenue
Maywood, IL 60153-3304
USA
Email: jstank@lumc.edu

Michael G. Stewart, MD, MPH
Department of Otorhinolaryngology
Weill Cornell Medical College
1305 York Avenue, 5th Floor
New York, NY 10021
USA
Email: mgs2002@med.cornell.edu

Abtin Tabaei, MD
10 Union Square East
Suite 4J
New York
USA
Email: atabaee@hotmail.com

Marc A. Tewfik, MD
Montreal General Hospital, Room A2-141
1650 Cedar Avenue
H3G 1A4 Montreal, Quebec
Canada
Email: marc.tewfik@mail.mcgill.ca

Winston C. Vaughan, MD
Stanford Sinus Center
Stanford University
R-135 Edwards Building
300 Pasteur Drive
Stanford, CA 94305
USA
Email: sinusmd@aol.com

Mark C. Weissler, MD, FACS
University of North Carolina
G0412 Neurosciences Hospital
CB 7070
Chapel Hill, NC 27599
USA
Email: mark_weissler@med.unc.edu

Sarah K. Wise, MD
Department of Otolaryngology
Medical University of South Carolina
PO Box 250550
135 Rutledge Ave., Suite 1130
Charleston, SC 29425
USA
Email: wisesa@musc.edu

Bradford A. Woodworth, MD
Division of Otolaryngology
Department of Surgery
University of Alabama – Birmingham
BDB 563, 1530 3rd Ave S
Birmingham, AL 35294
USA
Email: bwoodwo@hotmail.com
Introduction

The resulting imaging anatomy of the paranasal sinuses following initial functional endoscopic sinus surgery (FESS) must be thoroughly evaluated to establish the new postsurgical baseline of the sinonasal anatomy. These postsurgical changes may vary from subtle remodeling of anatomy to extensive resection with loss of sinus landmarks, frequently resulting in widely open sinus spaces into the nasal cavity. The great variability of the postsurgical changes is a reflection of the variety of accepted surgical techniques, the surgeon’s perception of the specific problem prior to FESS, and the individualized surgical approach to the resolution of the identified problem. The detailed assessment of the postsurgical changes must emphasize which structures have been resected and which anatomy is still intact. In addition, it must identify the presence of any scar tissue formation, retraction of mucosal surfaces, and unresolved sinus drainage issues. In cases where revision surgery is needed to solve persistent sinus obstruction or postsurgical synechiae, a detailed presurgical mapping of the anatomy must be performed with emphasis on the identification of endoscopic landmarks related to the anatomic surgical targets, especially if the surgical target is close to the lamina papyracea, cribiform plate, or sphenoid sinus walls.

The recent introduction of multidetector helical scanning with its seamless high-resolution imaging databases and the wide availability of computer-assisted surgical navigation workstations allow today a real-time mapping of the progress through the surgical procedure, even in postsurgical fields devoid of residual endoscopic anatomic

Core Messages

■ An intimate knowledge of sinus anatomy and a clear understanding of the baseline postsurgical anatomy are required for safe and effective revision sinus surgery.
■ Appropriate utilization of computer-assisted surgical navigation with CT crossregistration improves safety margins on revision sinus surgery.
■ Rhinologists should evaluate each side of the face as a completely independent anatomic, functional, and surgical entity.
■ Familiarity with anatomic variants in the frontal recess is required for safe anterior skull base and frontal recess surgery.
■ Persistent mucosal polypoid changes in a surgical site on follow-up postsurgical computed tomography, retained surgical surfaces (uncinate process, agger nasi, frontal bulla cells), or new bone formation are negative prognostic signs.

Contents

Introduction ... 1
Caldwell-Luc and Nasoantral Windows 2
Imaging Anatomy in Post-FESS Oстиометal Complex 2
Septoplasty ... 3
Turbinectomies ... 3
Uncinectomy and Maxillary Sinus Ostium Opening 4
Internal Ethmoidectomy 5
Frontal Sinus Drainage Surgery 6
Endoscopic Frontal Recess Approach
(Draf I Procedure) 7
Endoscopic Frontal Sinusotomy (Draf II Procedure) 7
Median Frontal Drainage
(Modified Lothrop Procedure or Draf III) 8
Frontal Sinus Trephination 9
Osteoplastic Flap with Frontal Sinus Obliteration 9
Endoscopic Sphenoidotomy 9
Negative Prognostic Findings Post-FESS 10
Conclusion .. 10
landmarks. The combination of improved imaging clarity from surgical navigation with computed tomography (CT) crossregistration and recent development of new powered instruments and modern endoscopic devices is effectively extending the surgical safety margin, allowing the rhinologist to solve more complex sinonasal and skull-base problems.

Caldwell-Luc and Nasoantral Windows

The Caldwell-Luc operation, named after the American physician George Caldwell and the French laryngologist Henry Luc, was first described in the late nineteenth century as a surgical decompressive technique to remove diseased mucosa from the maxillary sinus, be it infectious or tumor [1]. The procedure is performed via direct trocar puncture through the anterior maxilla above the second molar tooth, allowing for initial decompression of the maxillary disease, followed by the opening of a nasoantral window at the inferior meatus to connect the maxillary sinus lumen to the nasal cavity. This procedure is recognized on sinus CT by the associated focal defect of the anterior maxillary wall above the alveolar process and the opening within the inferior meatus into the lumen of the maxillary sinus (Fig. 1.1). This operation, which has been used widely over the last century, is being performed with less frequency today, having been replaced by the more physiologic endoscopic middle meatal antrostomy. Still, this surgery is considered safe and effective when removal of all of the diseased maxillary sinus mucosa is desired.

![Caldwell-Luc procedure](image1.png)

Imaging Anatomy in Post-FESS Ossiomeatal Complex

The postsurgical CT anatomy of the ossiomeatal complex will reflect the presurgical anatomic problems leading to surgery combined with the surgical management chosen by the surgeon to address the patient’s clinical problem. An almost infinite variety of surgical changes result from the appropriately tailored surgical approach selected by experienced rhinologists, who must carefully individualize the extent of the procedure to the specific patient’s problem (Fig. 1.2). These surgical changes, alone or in combinations, may include septoplasty, turbinate remodeling/resection, uncinctomy, middle meatal antrostomy, internal ethmoidectomy, sphenoidotomy, and/or frontal recess/frontal bulla cell/agger nasi decompression [2, 3].

- The first step in a comprehensive evaluation of a postsurgical nasal cavity is to determine which structures have been previously resected and which structures remain, thus establishing the new anatomic baseline of the nasal cavity.
- The second step in this evaluation is to determine the relationship between the postsurgical changes and the patient’s current symptoms.
- The third and final step is to review the danger zones of the nasal cavity in the light of the distorted postsurgical anatomy prior to any revision surgery.

This relationship is inferred by the presence of acute sinus fluid levels, sinus opacity, or persistent sinus mucosal dis-

Fig. 1.1a,b Caldwell-Luc procedure. Coronal and axial computed tomography (CT) images at the level of the maxillary sinuses, showing bilateral anterior maxillary sinus-wall defects (arrows in a and b) as a result of Caldwell-Luc surgery, combined with inferior meatal nasoantral windows (asterisks). Notice also the right middle meatal antrostomy and right inferior turbinatectomy.
ease. Soft-tissue density within the surgical ostia is an important postsurgical finding, suggesting the presence of scar tissue formation, polyps and/or hyperplasic mucosal changes, all of which are indistinct by CT findings.

Septoplasty

Septoplasty is a common adjunct finding in FESS due to the frequency of septal deviations producing asymmetric nasal cavity narrowing, occasionally to the point of laterally deflecting the middle and/or inferior turbinates. After septoplasty, the nasal septum will appear unusually vertical and straight, with a thin mucosa and no apparent nasal spurs. Postsurgical complications such as septal hematomas or septal ischemia may lead to triangular cartilage chondronecrosis, resulting in nasal septal perforations or saddle-nose deformity.

Turbinectomies

Partial resection of the inferior turbinate is seen frequently in patients with symptoms of chronic nasal congestion and polyposis, with the reduction of turbinate surface increasing meatal diameters, thus increasing the total air volume through the nose. Inferior turbinectomy is recognized on coronal CT as a foreshortened “stumped” inferior turbinate (Fig. 1.3).

Partial or subtotal resection of the middle turbinate may be necessary whenever a concha bullosa or a lateralized middle turbinate is producing a mass effect toward the lateral nasal wall. Whenever truly indicated, middle turbinate surgical remodeling must be carefully performed to the minimal degree that solves the clinical problem, taking into consideration the fact that its mucosa is critical for olfactory function. Its basal lamella is one of the most important surgical landmarks for safe endonasal navigation, maintaining turbinate stability by function of its three-planar attachments (vertical attachment to the cribriform plate, coronal attachment to the lamina papyracea, and axial attachment to the medial maxillary sinus wall at the prechoanal level). The iatrogenic fracture of the middle turbinate vertical attachment is a dreaded complication, resulting in the risks of cerebrospinal fluid fistula at the cribriform plate, floppy middle turbinate behavior, and postsurgical lateralization and scaring. Thus, the resulting postsurgical appearance of the middle turbinate may vary from a barely perceptible thinning of its bulbous portion, to a small residual upper basal lamella stump in cases of subtotal resection.

- Lateralization of the middle turbinate is an important postsurgical finding, since it secondarily narrows the middle meatus, potentiates synchecia formation, and predisposes to recurrent obstruction of the underlying drainage pathways by granulation tissue and scaring (Fig. 1.4).
Uncinectomy and Maxillary Sinus Ostium Opening

Resection of the uncinate process is an important element in the performance of a functional maxillary sinusotomy. Its incomplete resection is recognized by CT as a visible uncinate process within the surgical field, usually surrounded by soft tissue from a scar/graft reaction. This granulation and scar, part of the postsurgical healing response, may contribute to recurrent obstruction at the natural ostium of the maxillary sinus, the ethmoidal infundibulum, or even toward the frontal sinus outflow tract, depending upon where the residual uncinate process is located (Fig. 1.5). Widening of the maxillary sinus ostium is also variable, depending on the uncinate resection, presence of Haller cells, large bulla ethmoidalis, or the configuration of the adjacent orbital wall. Any soft tissue within the natural ostium of the maxillary sinus or in the ethmoidal infundibulum must be identified due to its potential for impairment of the mucociliary clearance. The presence of a nasoantral window is a good clinical indicator for the surgeon to look for the phenomenon of mucus recirculation, where mucociliary clearance already in the middle meatus may return to the maxillary sinus lumen through a surgical nasoantral window, thus increasing the mucus load and potential for sinus colonization with nasal pathogens. Naturally occurring posterior fontanelles must also be taken into consideration during the planning for revision FESS to avoid mistaking this space endoscopically with the maxillary sinus ostium.

Fig. 1.3a–d Inferior turbinectomies. a Coronal image showing extensive changes as a result of functional endoscopic sinus surgery (FESS), with subtotal right inferior turbinectomy (arrow) and partial left inferior turbinectomy (asterisks), wide bilateral middle meatal antrostomies, and left internal ethmoidectomies. Note the persistent polypoid mucosal disease in the right anterior ethmoid sinus. b Coronal image of the selective right inferior turbinate prechoanal resection (arrow) showing prominent widening of the inferior meatal airway. c,d A different patient with extensive FESS showing by coronal (c) and axial CT (d), loss of all lateral wall landmarks bilaterally, except for the right middle turbinate (MT).
tium, which would result in a maxillary sinusotomy not bearing mucociliary clearance.

Internal Ethmoidectomy

The internal ethmoidectomy is an intranasal endoscopic procedure that is performed to manage mucosal disease within the anterior ethmoidal air cells. It requires the initial resection of the bulla ethmoidalis followed by resection of the ethmoidal cells, located anterior and inferior to the basal lamella of the middle turbinate. If a posterior ethmoidectomy is also needed, the basal lamella of the middle turbinate is then penetrated to decompress the posterior ethmoidal air cells. This approach is also extendable to the sphenoid sinus (transethmoidal sphenooidotomy). An internal ethmoidectomy appears by CT as a wide ethmoidal cavity that is devoid of septations.

Fig. 1.4a,b Lateralized middle turbinate in a patient 4 months after FESS, with recurrent facial pain and fever. These sequential coronal images show lateralization of the right middle turbinate (arrow) obstructing the middle meatal antrostomy, already with active mucosal disease in the right maxillary sinus. Note also subtotal resection of both inferior turbinates (asterisk).

Fig. 1.5a,b Residual uncinate process. Axial (a) and coronal (b) CT images demonstrate persistent uncinate processes (arrows) bilaterally in spite of previous FESS. Note the persistent active mucosal thickening in both maxillary sinuses, which is worse on the right side.
It is important that residual opaque ethmoidal air cells are identified, since they may be an indicator for recurrent sinus disease. The presence of mucosal polyoid changes and mucosal congestion within any residual ethmoidal cells is also a concern as they obscure the underlying anatomic landmarks that are necessary for safe surgery near the skull base.

Frontal Sinus Drainage Surgery

The frontal sinus drainage pathway is one of the most complex anatomic areas of the skull base. Its drainage pathways, the frontal sinus ostium and the frontal recess, are modified, shifted, and narrowed by the pneumatized agger nasi, anterior ethmoid cells, frontal cells, supraorbital ethmoid cells, and the surrounding anatomic structures (vertical insertion of the uncinate process and bulla lamella) [4]. The complexity of the frontal sinus variable drainage pathway starts at the frontal sinus ostium, which is oriented nearly perpendicular to the posterior sinus wall, indented anteriorly by the nasal beak. Its caliber is modified by the presence and size of pneumatized agger nasi and/or frontal cells. When markedly pneumatized, agger nasi cells can cause obstruction of the frontal sinus drainage pathway and thus have surgical implications. A second group of frontal recess cells, the frontal cells, are superior to the agger nasi cells. Bent and Kuhn described the frontal cells grouping them into four patterns [5]:

1. Type 1: a single cell above the agger nasi.
2. Type 2: a tier of two or more cells above the agger nasi.
3. Type 3: a single cell extending from the agger cell into the frontal sinus.
4. Type 4: an isolated cell within the frontal sinus.

The frontal sinus ostium may also be narrowed by supraorbital ethmoid cells arising posterior to the frontal sinus and pneumatizing the orbital plate of the frontal bone. The frontal sinus ostium communicates directly with the frontal recess inferiorly, a narrow passageway bounded anteriorly by the agger nasi, laterally by the orbit, and medially by the middle turbinate. The posterior limit of the frontal recess varies depending upon the ethmoid bulla or bulla lamella, reaching to the skull base. When the bulla lamella reaches the skull base, it provides a posterior wall to the frontal recess. When the bulla lamella fails to reach the skull base, the frontal recess communicates posteriorly, directly with the suprabullar recess, and the anterior ethmoidal artery may become its only discrete posterior margin. The frontal recess opens inferiorly to either the ethmoid infundibulum or the middle meatus depending on the uncinate process configuration. When the anterior portion of the uncinate process attaches to the skull base, the frontal recess opens to the ethmoid infundibulum, and from there to the middle meatus via the hiatus semilunaris. When the uncinate process attaches to the lamina papyracea instead of the skull base, the frontal recess opens directly to the middle meatus [6].

- Each pneumatized sinus space grows independently, with its rate of growth, final volume, and configuration being determined by its ventilation, drainage, and the asymmetric lack of internal septations in the left ethmoid labyrinth internal ethmoidectomy.
corresponding growth (or lack of it) of the competing surrounding sinuses and skull base.

This independent and competing nature of the structures surrounding the frontal recess adds an additional dimension of complexity to the frontal sinus drainage pathway. It is thus understandable why chronic frontal sinusitis secondary to impaired frontal recess drainage is so difficult to manage surgically, as reflected by the wide range of surgical procedures devised for frontal sinus decompression over the years. The spectrum of treatment options ranges from surgical ostiomeatal complex decompression combined with conservative long-term medical management, to endoscopic frontal recess exploration, the more recent endoscopic frontal sinus modified Lothrop procedure, external frontal sinusotomy, osteoplastic fat obliteration, or multiple variations of all of these [7].

Most endoscopic frontal sinus procedures are performed in patients who had previous ostiomeatal complex surgery in whom long-term conservative medical management failed. In these patients, it is not uncommon to find frontal recess scarring, osteoneogenesis, and incompletely resected anatomic variants, particularly incomplete removal of obstructing agger nasi cells and/or frontal cells leading to chronic frontal sinusitis (Fig. 1.7). Modern endoscopic surgical techniques and instruments, combined with image-guided three-dimensional navigation techniques have resulted in increased endoscopic management of most frontal sinus pathology. Endoscopic approaches tend to preserve the sinus mucosa, with less scar tissue than external approaches, resulting in less mucosal shrinkage and secondary obstruction. If the endoscopic approach fails to provide long-term drainage of the frontal sinus, then an external approach with obliteration of the frontal sinus still remains as a viable surgical alternative.

Endoscopic Frontal Recess Approach (Draf I Procedure)

Dr. Wolfgang Draf popularized a progressive three-stage endoscopic approach to the management of chronic frontal sinus drainage problems for patients in whom classic ostiomeatal endoscopic sinus surgery is unsuccessful [8]. The Draf type I procedure, or endoscopic frontal recess approach, is indicated when frontal sinus disease persists in spite of more conservative ostiomeatal and anterior ethmoid endoscopic approaches. The Draf I procedure involves complete removal of the anterior ethmoid cells and the uncinate process up to the frontal sinus ostium, including the removal of any frontal cells or other obstructing structures to assure the patency of the frontal sinus ostium.

Endoscopic Frontal Sinusotomy (Draf II Procedure)

The endoscopic frontal sinusotomy, or Draf II procedure, is performed in severe forms of chronic frontal sinusitis for which the endoscopic frontal recess approach was un-

Fig. 1.7a,b Postinflammatory osteoneogenesis. Coronal (a) and axial (b) sinus CT sections at the level of the frontal sinuses show osteoneogenesis with persistent frontal sinus inflammatory mucosal engorgement (*black arrows*)
successful. The previous endoscopic drainage procedure is extended by resecting the frontal sinus floor from the nasal septum to the lamina papyracea. The dissection also removes the anterior face of the frontal recess to enlarge the frontal sinus ostium to its maximum dimension. The Draf II procedure looks very similar to the Draf I procedure on coronal images, requiring the evaluation of sequential axial or sagittal images to allow the extensive removal of the anterior face of the frontal recess and the frontal sinus floor. Endoscopic frontal sinusotomy (Draf II) procedure can also be easily distinguished from the Draf III procedure (see below) by the lack of resection of the superior nasal septum and the entire frontal sinus floor.

Median Frontal Drainage (Modified Lothrop Procedure or Draf III)

The modified Lothrop procedure, or Draf III procedure, first described in the mid-1990s, is indicated for the most severe forms of chronic frontal sinusitis, where the only other choice is an osteoplastic flap with frontal sinus obliteration. This procedure involves the removal of the inferior portion of the interfrontal septum, the superior part of the nasal septum, and both frontal sinus floors. The lamina papyracea and posterior walls of each frontal sinus remain intact. This procedure results in a wide opening into both frontal sinuses (Fig. 1.8).

Fig. 1.8a–d Draf III (modified Lothrop) procedure. Axial (a,b) coronal (c), and sagittal CT images
The surgical defect component in the superior nasal septum after a Draf III procedure should not be mistaken for an unintended postoperative septal perforation.

Frontal Sinus Trephination

The trephination procedure is a limited external approach for frontal sinus drainage. An incision is made above the brow and a hole is drilled through the anterior wall of the frontal sinus taking care to avoid the supratrochlear and supraorbital neurovascular bundles (see Chap. 33). The inferior wall of the frontal sinus is devoid of bone marrow, which may lessen the risk of developing osteomyelitis. Frontal sinus trephination is indicated in complicated acute frontal sinusitis to allow the release of pus and irrigation of the sinus to prevent impending intracranial complications. It can also be used in conjunction with endoscopic approaches to the frontal sinus in chronic frontal sinusitis or frontal sinus mucoceles, where the trephination helps to identify the frontal recess by passing a catheter down the frontal recess, also allowing it to be stented and to prevent its stenosis. This approach provides fast and easy access to the frontal sinus to place an irrigation drain in the sinus. Its main disadvantages are the risks of associated scarring, sinocutaneous fistula formation, and injury to the supraorbital nerve bundle and the trochlea, which can cause diplopia [9]. Image guidance is critical for accurate trephine placement in particularly small frontal sinuses or to gain access to isolated type 4 frontal sinus disease.

Osteoplastic Flap with Frontal Sinus Obliteration

- Long-term stability of the mucociliary clearance of the frontal sinus must be maintained for endoscopic surgery of the frontal sinus to be successful. If this is not achieved, an osteoplastic flap procedure with sinus obliteration may be the only remaining option.

The indications for this procedure include chronic frontal sinusitis in spite of prior endoscopic surgery, mucocele, frontal bone trauma with fractures involving the drainage pathways, and resection of frontal tumors near the frontal recess. The outline of the sinus can be determined by using a cut template made from a 6-foot (1.83 m) Caldwell x-ray, which approaches the exact size of the frontal sinus. Other methods include the use of a wire thorough an image-guidance-placed frontal sinus trephination to palpate the extent of the sinus. Beveled osteotomy cuts through the frontal bone prevent collapse of the anterior table into the sinus lumen upon postoperative closure. Frontal sinus obliteration requires all of the mucosa to be drill-removed and the frontal recess occluded. The sinus is then packed with fat, bone marrow, pericranial flaps, or synthetic materials, and then the bony flap is replaced.

The postoperative imaging appearance by CT and/or magnetic resonance imaging (MRI) is highly variable due to the spectrum of tissues used for sinus packing, with imaging behavior reflecting fat, chronic inflammatory changes, retained secretions, granulation tissue, and fibrosis. MRI may be of limited utility in distinguishing symptomatic patients with recurrent disease from asymptomatic patients with imaging findings related to scar tissue. Imaging is useful for the early detection of postoperative mucocele formation, which is recognized by its mass effect and signal behavior of inspissated secretions [10, 11].

Endoscopic Sphenoidotomy

The postsurgical appearance of the sphenoethmoidal recess following endoscopic sphenoidotomy varies depending upon whether the sphenoidotomy was transnasal, transethmoidal, or transseptal. Transnasal sphenoidotomy may be performed as a selective procedure, where the only subtle finding may be a selective expansion of the sphenoid sinus ostium in the sphenoethmoid recess. Transethmoidal sphenoidotomies, on the other hand, are performed in the realm of a complete functional endoscopic surgery, where middle meatal antrostomy changes, internal ethmoidectomy changes, and sphenoid sinus rostrum defects ipsilateral to the ethmoidectomy defects become parts of the imaging constellation (Fig. 1.9). Finally, transseptal sphenoidotomy changes are a combination of septal remodeling with occasional residual septal split appearance combined with a midline sphenoid rostrum defect and variable resection of the sphenoid intersinus septum. These changes are seen typically in the realm of more extensive sphenoid sinus explorations or surgical exposures for transsphenoidal pituitary surgery. The accurate imaging identification of the optic nerves, internal carotid arteries, maxillary division of the trigeminal nerve, and the vidian neurovascular package in reference to the pneumatized sphenoid sinus is even more important in postsurgical sphenoid re-exploration, since the usual anatomic and endoscopic sinus appearance may be significantly distorted by previous procedures, postsurgical scar and/or persistent inflammatory changes. Imaging guidance is thus critical for the safe and accurate depiction of all of neighboring structures of the sphenoid sinus.
There is a series of postsurgical imaging findings that imply a persistent underlying physiologic problem, with poor prognostic implications for recurrence of sinus disease. These CT findings may include a wide range of elements, such as incomplete resection of surgical structures (especially uncinate process, agger nasi, or frontal bulla cells), mucosal nodular changes at areas of prior surgical manipulation (mucosal stripping, granulation tissue, mucosal scarring, synchiae formation, polyposis), or postinflammatory increased bone formation (osseoneogenesis). All of these changes should be detectable in a good-quality postsurgical sinus CT, which should be performed ideally at least 8 weeks after the surgical trauma to allow for reversible inflammatory changes to resolve. These changes result in recurrent or persistent obstruction of the mucociliary drainage at the affected points, with increased potential for recurrent symptoms. Persistent nasal septal deviation leading to a narrowed nasal cavity and lateralization of the middle turbinate against the lateral nasal wall are two additional factors with poor prognostic implications for recurrent sinus disease. The relevance of these CT findings must be judged by the rhinologist based on the presence of mucosal congestion and/or fluid accumulation in the affected sinus space in combination with assessment of the patient’s clinical behavior (persistent sinus pressure, pain and/or fever).

The postsurgical anatomy of the paranasal sinus drainage pathways and their surrounding structures must be evaluated in an integrated fashion, emphasizing the interrelationship between sinus anatomy and function. The presence of residual surgical structures, mucosal nodular changes at areas of prior surgical manipulation or postinflammatory new bone formation are poor prognostic factors for recurrent postsurgical sinus disease.

References

Introduction

The management of chronic rhinosinusitis (CRS) can be quite challenging, even to the experienced rhinologist. This is particularly true for severe CRS that has not responded to an initial surgical attempt (refractory CRS). Revision surgery may have a role in the continuum of management of the patient’s disease condition; however, the clinician should understand that different care may be required at different time points, depending on the underlying factors contributing to sinus disease.

The decision to reoperate on a patient with sinus disease is centered principally on the demonstration of a symptomatic obstruction to sinus drainage or the presence of significant disease load in the sinuses. This must be tempered by the clinician’s judgment, experience, and comfort level. Given the nature of endoscopic sinus surgery (ESS) and the close proximity of numerous critical structures, special care must be taken to avoid serious intraoperative complications as a result of damage to adjacent structures [8,10,16]. Preoperative sinus imaging and
a precise understanding of the patient’s anatomy are thus of paramount importance.

Indications for revision sinus surgery can be grossly divided into four main categories:
1. Incomplete previous surgery.
2. Complications of previous surgery.
3. Recurrent or persistent sinus disease.

The first occurs when prior surgery has been incomplete. Such is the case when there is refractory CRS or recurrent acute sinusitis with persistence of ethmoid cells, or a deviated nasal septum not adequately repaired and causing obstruction to access or drainage. Incompletely resected cells can be identified by their typical appearance and position. Often, the agger nasi and anterior ethmoid cells have been left in place while surgery clears a straight-line back through the posterior ethmoids up to the skull base (Fig. 2.1). Unopened infraorbital ethmoid (Haller) cells can obstruct maxillary sinus outflow. The “missed ostium sequence,” as described by Parsons et al. [13], occurs when there is incomplete removal of the most anterior portion of the uncinate process, thus obscuring the position of the natural maxillary sinus ostium. This prevents the middle meatal antrostomy from communicating with the natural ostium, resulting in a recirculation phenomenon. In this instance, mucociliary flow causes mucus to re-enter the sinus, causing a functional obstruction of the maxillary sinus and continued sinus disease.

Several series have looked at the causes of postsurgical persistent or recurrent disease, and provide information regarding the frequency of various anatomic findings. Chu et al. [7] evaluated 153 patients requiring revision ESS, and found that the most common surgical alteration associated with recurrent sinus disease was middle-meatal scarring and lateralization of the middle turbinate. This was usually the result of partial middle turbinectomy during the initial surgery.

Musy and Kountakis [11] reported that the most common postsurgical findings associated with primary surgery failure are:
1. Lateralization of the middle turbinate (78%).
2. Incomplete anterior ethmoidectomy (64%).
3. Scarred frontal recess (50%).
4. Retained agger nasi cell (49%).
5. Incomplete posterior ethmoidectomy (41%).
6. Retained uncinate process (37%).
7. Middle meatal antrostomy stenosis (39%).
8. Recurrent polyposis (37%).

Ramadan [14] reviewed 52 cases and found that the most common cause of failure was residual air cells and adhesions in the ethmoid area (31%), followed by maxillary sinus ostial stenosis (27%), frontal sinus ostial stenosis (25%), and a separate maxillary sinus ostium stenosis (15%). In their series of 67 patients requiring revision frontal sinus surgery, Chiu and Vaughn [6] identified residual agger nasi cell or ethmoid bulla remnants in 79.1% of cases, retained uncinate process in 38.8%, lateralized middle turbinate remnant in 35.8%, recurrent polyposis in 29.9%, unopened frontal recess cells in 11.9%, and neo-osteogenesis of the frontal recess in 4.5%. A maxim to guide the surgeon is that the patient can never truly be deemed a failure of therapy until all obstructions to drainage and ventilation (or irrigation) are corrected.

Indications for Surgery

Incomplete Previous Surgery

1. Persistence of symptoms and signs of CRS with or without nasal polyposis or recurrent acute sinusitis with persistent ethmoid cells on computed tomography (CT).
2. Deviated nasal septum not adequately repaired at primary surgery and causing obstruction.
3. Persistent maxillary sinus disease in the setting of a retained uncinate process.

Complications of Previous Surgery

Complications of prior ESS constitute the second major group of indications for surgical revision. These include:

1. Suspected mucocele formation.
2. Suspected cerebrospinal fluid (CSF) leak for which conservative management was unsuccessful.
3. Synechiae causing obstruction of the nasal passage or sinus outflow tract.

Due to its narrow anatomic outflow pathway, the frontal sinus is particularly susceptible to this group of complications, and thus is often the target of revision sinus surgery. A mucocele can be suspected on CT when there is smooth, round enlargement of a completely opacified sinus cell with associated bony remodeling and thinning (Fig. 2.2). It is useful to follow a graded approach to the frontal sinus; a discussion of frontal sinus techniques is presented later on.

The surgeon should always be alert to the risk of pre-existing CSF leaks, which may have gone unnoticed during previous surgery. A significant proportion of CSF leaks are iatrogenic in origin. They occur most commonly in the areas of the olfactory fossa and fovea ethmoidalis (Fig. 2.3). The skull-base bone in these areas can be extremely thin, and may be penetrated by direct instrumentation or cauterization for control of bleeding [15]. In some cases, bony remodeling expose the once-protected vital structures to trauma during surgery.

Fig. 2.2 Mucocele. Left frontal sinus mucocele presenting as a painless left exophthalmos. Note the circular, sphere-like form typical of mucoceles. A three-dimensional, computer-generated illustration of the lesion is also shown (right).

Fig. 2.3 Cerebrospinal fluid leak. Coronal CT demonstrating a possible skull-base defect (arrowhead), which proved to be a pre-existing trauma at the time of surgery.

Recurrent or Persistent Sinus Disease

Recalcitrant inflammatory sinus disease is the third category of indications for revision ESS. This includes:

1. Recurrent acute sinusitis.
2. CRS with or without nasal polyps.
3. Allergic fungal rhinosinusitis (Fig. 2.4).

Another indication included in this category is in the management of patients with nasal polyposis who have an intolerance or contraindication to oral corticosteroids. It remains, as a whole, a poorly understood group of diseases. Considerable research efforts are currently focused on improving the management of these difficult patients. Although discussions of these entities and of medical management are presented in depth in later chapters, a guiding principal is that an adequate trial of maximal medical therapy must be attempted preoperatively and documented in the chart.
Histological Evidence of Neoplasia

1. Unexpected diagnosis of neoplasia on pathological analysis with subtotal resection.
2. Localized severe disease suspicious for neoplasia, such as inverted papilloma.

Once diagnosed, these patients are reoperated for complete removal of the tumor. These most commonly consist of inverted papillomas [12, 17, 18]; however, they may be any of a variety of benign or malignant nasal or paranasal sinus tumors [2].

Preoperative Workup

Assessment of the Patient with Post-ESS Symptoms

The clinician should attempt to elicit the patient’s symptoms and classify them according to their severity. The goal of the medical workup is to identify the mucosal, systemic, and environmental factors responsible for poor outcome. A history of underlying immune deficiency, connective tissue disorder, malignancies, or genetic disorder such as cystic fibrosis or primary ciliary dyskinesia should be sought. A complete immune workup, and possibly a vaccine response, should be ordered to rule out immune deficiency if it is suspected. Blood work is also helpful to rule out other systemic disorders such as Wegener’s granulomatosis and sarcoidosis. Defects in functional immune response not evident in static testing have been identified in certain patients who have refractory CRS. In the absence of a response to all other therapies, a 6-month trial of intravenous immunoglobulin may be warranted [5]. This option should be discussed with the patient before administration.

It is important to consider the potential contribution of allergy to symptoms or disease, as a significantly higher percentage of these patients will have allergies as compared to the general population. A total serum IgE level, as well as a hemogram with differential cell count to detect serum eosinophilia, may be useful to further characterize patients. Allergy testing and management should be included in their care to minimize the contribution of allergy to the disorder. Allergen reduction or avoidance, medications, and possibly immunotherapy may play a role in management.

Cigarette smoking has been associated with statistically worse outcomes after ESS based on disease-specific quality-of-life measures [4].

Sinonasal endoscopy, preferably rigid, is essential in evaluating persistent disease. It may help identify structural anomalies, masses, or secretions not seen on anterior rhinoscopy. The bacteriology of CRS may vary in an individual patient over time. Obtaining endoscopically guided cultures from the middle meatus or the sphenethmoid recess (not the nasal cavity) will help in the selection of antibiotic therapy, particularly in cases that are unresponsive to empiric therapy. Care must be taken to avoid contact with the nasal wall or vestibule to minimize contamination, and to sample directly within purulent secretions when present, rather than adjacent areas.

Imaging Studies

CT of the sinuses is essential for completing the assessment of the patient with persistent post-ESS complaints. CT may be used to assess disease load or to identify tech...
nical factors that may not be revealed on endoscopy, such as residual ethmoid cells, obstructions to sinus drainage, or mucocele formation. Disease load can be determined by identifying the number of sinuses involved with disease and the extent of their involvement (mucosal thickening vs. opacification). The Lund-MacKay staging system is an effective method of standardizing reporting of radiologic severity of disease [3,9]. Care must be exercised in the face of exuberant local disease out of proportion to the rest of the sinus cavities to ensure against a missed diagnosis of neoplasm such as inverted papilloma.

When frontal sinus involvement is suspected, helical CT with three-dimensional reconstruction is needed for analysis of the anatomy of the frontal recess. Frontal sinus opacification is often noted on CT. However, this radiologic finding also needs to be assessed in terms of clinical context by assessing the patient’s symptoms. For example, it is not unusual in extensive sinonasal polyposis for patients to demonstrate a significant amount of frontal sinus involvement. Thus, in patients with nasal polyposis, frontal sinus opacification in the absence of frontal symptoms or bony remodeling is not in and of itself an indication for revision.

The Role of Image-Guided Surgery

When ordering imaging studies, consideration should be given to the possibility of image-guided surgery as part of the initial evaluation of the potential surgical patient. The rationale for this is that normal anatomy is invariably altered in previously operated patients, and the usual anatomic landmarks – including the middle turbinate, uncinate process, and basal lamella – may have been removed. Formal indications for computer-aided surgery endorsed by the American Academy of Otolaryngology – Head and Neck Surgery are [1]:

1. Revision sinus surgery.
2. Distorted sinus anatomy of development, postoperative, or traumatic origin.
3. Extensive sinonasal polyposis.
4. Pathology involving the frontal, posterior ethmoid, and sphenoid sinuses.
5. Disease abutting the skull base, orbit, optic nerve, or carotid artery.
6. CSF rhinorrhea or conditions where there is a skull-base defect.
7. Benign and malignant sinonasal neoplasms.

Other Causes

In patients with post-ESS symptoms where no origin for their symptoms can be identified, other causes of sinonasal symptoms should be considered. In the case of facial pain: neuralgia, migraine equivalent (midfacial headache), or dental problems may be responsible. The axial CT should be used to carefully assess the possibility of a small periapical dental abscess producing pain. In individuals with a history of migraine or multiple surgeries, a trial of amitriptyline may be warranted.

Surgery

The role of revision surgery is principally to improve medical management, and surgery should be planned and executed to optimize this. This is achieved by either reducing disease load, by removing recurrent nasal polyps or hypertrophic sinonasal mucosa (Fig. 2.5), or improving access for continuing medical care in the form of topical solutions. Wide antrostomies are created for problem sinuses in order to provide better access for irrigating solutions. Continued postoperative medical therapy is essential and can be considered an integral part of surgical care.

Tips and Pearls

1. Ensure an adequate trial of maximal medical therapy before planning surgery.
2. Surgery is indicated only after failure of appropriate medical management.
3. Be wary of pain as a sole presenting symptom in the absence of other physical findings.
4. Know when and how to use navigation.
5. Know your limitations as a surgeon – be realistic.