Herbal Drugs: Ethnomedicine to Modern Medicine
Herbal Drugs: Ethnomedicine to Modern Medicine
About the editor

Professor K.G. Ramawat (born in 1952) received his M.Sc. (1974) and Ph.D. (1978, Plant Biotechnology) from the University of Jodhpur, Jodhpur, India and became a faculty member in January of 1979. He joined M.L. Sukhadia University as an Associate Professor in 1991 and became a Professor in 2001. He served as Head of the Department of Botany (2001–2004), was in charge of the Department of Biotechnology (2003–2004), was a member of the task force on medicinal and aromatic plants at the Department of Biotechnology (Government of India, New Delhi; 2002–2005), and was a coordinator of the UGC-DRS and DST-FIST programs (2002–2007). He did his postdoctoral study at the University of Tours, France (1983–85) and subsequently worked as visiting professor at the University of Tours (1991) and University of Bordeaux 2, France (1995, 1999, 2003, 2006). He visited Poland under the auspices of an INSA-PAN academic exchange program (2005). He has published more than 100 research papers and review articles in reputed journals and books. He has edited two books on the biotechnology of secondary metabolites and of medicinal plants (Scientific Publishers, Enfield, USA and Springer verlag, Heidelberg, Germany). Professor Ramawat has completed several major research projects from UGC, CSIR, ICAR, DBT, and DST, and has supervised the doctoral theses of 16 students. He has been a member of the Plant Tissue Culture Association of India since 1991.
Considerable progress has been made in our healthcare system, in particular with respect to sensitive diagnostic tools, reagents and very effective and precise drugs. On the other hand, high-throughput screening technology can screen vast numbers of compounds against an array of targets in a very short time, and leads thus obtained can be further explored. In developing countries, the exploding population exerts pressure not only on natural resources but also on the human population itself, whose members strive to become successful and advance in society. This leads to increased blood pressure, anxiety, obesity-associated lipid disorders, cardiovascular diseases and diabetes. Most of these diseases result in disturbed family life, including sexual behaviour.

Despite technological developments, herbal drugs still occupy a preferential place in a majority of the population in the Third World and terminal patients in the West. Herbal drugs, in addition to being cost effective and easily accessible, have been used since time immemorial and have passed the test of time without having any side effects. The multitarget effects of herbs (holistic approaches) are the fundamental basis of their utilization. This approach is already used in traditional systems of medicine like Ayurveda, which has become more popular in the West in recent years. However, the integration of modern science with traditional uses of herbal drugs is of the utmost importance if ones wishes to use ancient knowledge for the betterment of humanity. This book will try to bridge this gap and will be a valuable source for herbalists, traditional and modern medical practitioners, and researchers in botany, ethnobotany, pharmacy, phytochemistry and agriculture. Contributions on herbs used for beneficial effects on memory, sexual behaviour, neurodegeneration, erectile dysfunction, inflammation, cardiovascular diseases, cancer prevention, stroke and central nervous system disorders will provide vital information to readers.

Finally, I would like to acknowledge my contributors, who have gone to great lengths to ensure the high scientific quality of the book. I would also like to thank my colleagues at Springer.

July 2008

K.G. Ramawat
Contents

1 Medicinal Plants: A Renewable Resource for Novel Leads and Drugs .. 1
 R. Verpoorte
 1.1 Introduction ... 2
 1.2 Conclusion ... 4
 References .. 5

2 The Chemical Diversity of Bioactive Molecules and Therapeutic Potential of Medicinal Plants 7
 K.G. Ramawat, S. Dass and Meeta Mathur
 2.1 Introduction ... 7
 2.2 Traditional Use of Medicinal Plants 8
 2.3 Ancient Systems of Medicine 9
 2.3.1 Traditional Indian Medicine 9
 2.3.2 Traditional Chinese Medicine 10
 2.3.3 Traditional Egyptian Medicine 11
 2.3.4 Traditional Arabic Medicine 11
 2.3.5 African, European and Other Traditional Systems of Medicine ... 11
 2.4 Exploration of Medicinal Plants 12
 2.5 Approaches to Drug Discovery 13
 2.6 Bioactive Molecules of Medicinal Plants 15
 2.6.1 Alkaloids ... 16
 2.6.2 Phenolics ... 21
 2.6.3 Terpenes ... 24
 2.7 Conclusion ... 29
 References .. 30
3 Indigenous People and Forests: Perspectives of an Ethnobotanical Study from Rajasthan (India) ... 33
S.S. Katewa

3.1 Introduction .. 33
3.2 Study Site and People ... 35
3.3 Observations .. 35
 3.3.1 Healthcare .. 35
3.4 Wild Food Plants ... 53
3.5 Conclusions ... 54
References .. 55

4 Ginseng and Male Sexual Behavior .. 57
Laura L. Murphy and James S. Ferraro

4.1 Introduction to Ginseng .. 58
4.2 Physiology of an Erection .. 58
4.3 Ginseng and Copulatory Behavior – Animal Studies 60
4.4 Ginseng and Erectile Function 61
4.5 Nitric Oxide ... 62
4.6 Central Nervous System Actions of Ginseng 63
4.7 Conclusions ... 64
References .. 64

5 Herbal Treatments for Erectile Dysfunction 67
Jyoti Shah

5.1 Introduction .. 67
5.2 Herbal Treatments for ED .. 68
 5.2.1 Cola acuminata ... 69
 5.2.2 Damiana ... 69
 5.2.3 DHEA ... 70
 5.2.4 Fo-Ti ... 70
 5.2.5 Gamma-Butyrolactone (GBL) 70
 5.2.6 Ginkgo biloba ... 70
 5.2.7 Ginseng ... 71
 5.2.8 Horny Goat Weed .. 72
 5.2.9 L-Arginine .. 73
 5.2.10 Maca ... 74
 5.2.11 Muira Puama ... 75
 5.2.12 Propionly-L-Carnitine ... 75
 5.2.13 Reishi ... 76
 5.2.14 Tongkat Ali ... 76
 5.2.15 Tribulus ... 77
 5.2.16 Yohimbine ... 77
References .. 79
6 *Harpagophytum procumbens* – Traditional Anti-inflammatory Herbal Drug with Broad Therapeutic Potential 81
 G.P. McGregor
 6.1 Introduction ... 82
 6.2 The Status and Use of Hp-Containing Products 84
 6.3 Chemical Constituents of Hp Extracts 84
 6.4 Pharmacological Properties ... 85
 6.4.1 In Vivo Anti-Inflammatory Effects of Hp Extracts and Harpagoside .. 86
 6.4.2 In Vivo Analgesic Effects of Hp Extracts and Harpagoside .. 87
 6.4.3 Effects of Hp Extracts and Harpagoside on Pro-Inflammatory Molecular Targets – Eicanooids, Cytokines, Second-Messenger Pathways and Effector Molecules .. 87
 6.4.4 Possible Mode of Action of Hp .. 90
 6.5 Secondary Pharmacology of Hp ... 91
 6.6 Clinical Studies of Hp .. 92
 6.7 Toxicological Considerations ... 93
 6.8 Concluding Remarks and Outlook 93
 References ... 94

7 The Role of Curcumin in Modern Medicine 97
 Gautam Sethi, Bokyung Sung and Bharat B. Aggarwal
 7.1 Introduction .. 97
 7.2 Isolation and Chemical Properties of Curcumin 98
 7.3 Antioxidant Properties of Curcumin 98
 7.4 Molecular Targets of Curcumin ... 99
 7.4.1 Cytokines and Growth Factors 101
 7.4.2 Receptors .. 101
 7.4.3 Transcription Factors .. 102
 7.4.4 Proinflammatory Enzymes .. 102
 7.4.5 Protein Kinases ... 103
 7.4.6 Cell Cycle .. 103
 7.4.7 Adhesion Molecules .. 103
 7.4.8 Antiapoptotic Proteins .. 104
 7.4.9 Multidrug Resistance .. 104
 7.5 Disease Targets of Curcumin ... 104
 7.5.1 Anticancer Effects .. 104
 7.5.2 Skin Diseases ... 107
 7.5.3 Diabetes ... 107
 7.5.4 Rheumatoid Arthritis ... 107
 7.5.5 Multiple Sclerosis ... 108
 7.5.6 Alzheimer’s Disease ... 109
 7.5.7 Inflammatory Bowel Disease 109
7.5.8 Cystic Fibrosis .. 109
7.5.9 Others .. 109
7.6 Structure Activity Relationship of Curcumin 110
7.7 Conclusions .. 110
References .. 111

8 Proprietary Herbal Medicines in Circulatory Disorders: Hawthorn, Ginkgo, Padma 28 .. 115
Jörg Melzer and Reinhard Saller
8.1 Introduction ... 115
8.2 Hawthorn .. 116
8.2.1 Plant .. 116
8.2.2 Tradition .. 117
8.2.3 Chemistry and Pharmacology 117
8.2.4 Clinical Evidence .. 119
8.2.5 Hawthorn Leaves and Flowers in CHF 119
8.2.6 Hawthorn Berries in CHF 122
8.2.7 Safety .. 123
8.2.8 Summary .. 123
8.3 Padma 28 .. 124
8.3.1 Plants .. 124
8.3.2 Tradition .. 124
8.3.3 Chemistry and Pharmacology 126
8.3.4 Clinical Evidence .. 127
8.3.5 Summary .. 128
8.4 Ginkgo .. 129
8.4.1 Plant .. 129
8.4.2 Tradition .. 129
8.4.3 Chemistry and Pharmacology 130
References .. 132

9 The Effects of the Green Tea Polyphenol Epigallocatechin Gallate on the Central Nervous, Endocrine, and Innate Immune Systems . . . 137
Lisa A. Beltz
9.1 Introduction ... 137
9.2 The Effects of EGCG on the Central Nervous System 138
9.2.1 Alzheimer’s Disease 139
9.2.2 Parkinson’s Disease 140
9.2.3 Huntington’s Disease 141
9.2.4 Amyotrophic Lateral Sclerosis (ALS) 142
9.2.5 Ischemic Conditions/Stroke 142
9.2.6 Multiple Sclerosis .. 143
9.2.7 Anxiety ... 143
9.2.8 Memory ... 144
9.2.9 HIV-Associated Dementia (HAD) 144
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2.10</td>
<td>Neuronal Activity</td>
<td>144</td>
</tr>
<tr>
<td>9.2.11</td>
<td>Neurotransmitters and Their Receptors</td>
<td>145</td>
</tr>
<tr>
<td>9.3</td>
<td>The Effects of EGCG on the Endocrine System (Table 9.2)</td>
<td>146</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Production of Hormones and Consequent Events</td>
<td>146</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Diseases Involving Insulin Alterations</td>
<td>147</td>
</tr>
<tr>
<td>9.4</td>
<td>Effects of EGCG on Aspects of the Innate Immune System</td>
<td>148</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Cytokine Production</td>
<td>148</td>
</tr>
<tr>
<td>9.4.2</td>
<td>The Role of Reactive Oxygen Species</td>
<td>149</td>
</tr>
<tr>
<td>9.4.3</td>
<td>The Role of Reactive Nitrogen Species</td>
<td>150</td>
</tr>
<tr>
<td>9.5</td>
<td>Conclusions</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>151</td>
</tr>
<tr>
<td>10</td>
<td>Natural Products in Cancer Chemoprevention and Chemotherapy</td>
<td>153</td>
</tr>
<tr>
<td>K.G. Ramawat and Shaily Goyal</td>
<td>10.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>10.2</td>
<td>Cancer Chemoprevention</td>
<td>155</td>
</tr>
<tr>
<td>10.3</td>
<td>Anticancer Drugs from Microorganisms</td>
<td>158</td>
</tr>
<tr>
<td>10.4</td>
<td>Anticancer Drugs from Plants</td>
<td>159</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Podophyllotoxins</td>
<td>159</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Vinblastine</td>
<td>161</td>
</tr>
<tr>
<td>10.4.3</td>
<td>Taxol</td>
<td>161</td>
</tr>
<tr>
<td>10.4.4</td>
<td>Camptothecin</td>
<td>163</td>
</tr>
<tr>
<td>10.4.5</td>
<td>Others</td>
<td>163</td>
</tr>
<tr>
<td>10.5</td>
<td>Mechanism of Action</td>
<td>164</td>
</tr>
<tr>
<td>10.6</td>
<td>Herb-Drug Interactions</td>
<td>167</td>
</tr>
<tr>
<td>10.7</td>
<td>Conclusions</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>168</td>
</tr>
<tr>
<td>11</td>
<td>Artemisinin: A Versatile Weapon from Traditional Chinese Medicine</td>
<td>173</td>
</tr>
<tr>
<td>Thomas Efferth</td>
<td>11.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>11.2</td>
<td>Use of Artemisinin in Traditional Chinese Medicine</td>
<td>174</td>
</tr>
<tr>
<td>11.3</td>
<td>Mode of Action of Artemisinin</td>
<td>175</td>
</tr>
<tr>
<td>11.4</td>
<td>Activity Against Malaria</td>
<td>177</td>
</tr>
<tr>
<td>11.5</td>
<td>Activity Against Cancer</td>
<td>179</td>
</tr>
<tr>
<td>11.6</td>
<td>Activity Against Schistosomiasis</td>
<td>181</td>
</tr>
<tr>
<td>11.7</td>
<td>Activity Against Viral Infections</td>
<td>182</td>
</tr>
<tr>
<td>11.7.1</td>
<td>Human Cytomegalovirus</td>
<td>182</td>
</tr>
<tr>
<td>11.7.2</td>
<td>Human Hepatitis B Virus (HBV)</td>
<td>184</td>
</tr>
<tr>
<td>11.7.3</td>
<td>Human Hepatitis C Virus (HCV)</td>
<td>185</td>
</tr>
<tr>
<td>11.7.4</td>
<td>Bovine Viral Diarrhea Virus (BVDV)</td>
<td>186</td>
</tr>
<tr>
<td>11.7.5</td>
<td>Other Viruses</td>
<td>186</td>
</tr>
<tr>
<td>11.8</td>
<td>Side Effects of Artemisinin</td>
<td>187</td>
</tr>
<tr>
<td>11.9</td>
<td>Conclusion and Perspectives</td>
<td>188</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>189</td>
</tr>
</tbody>
</table>
12 Anticancer and Immunomodulatory Properties of *Tinospora* 195

Anil Mittal and Rana P. Singh

12.1 Introduction ... 196
12.2 Effect of *Tinospora* on Carcinogen/Drug Metabolism and Antioxidant Systems ... 198
12.3 Anticancer Activity of *Tinospora* .. 198
12.4 *Tinospora* Inhibits Tumor Angiogenesis 199
12.5 *Tinospora* Inhibits Cancer Metastasis 199
12.6 Radioprotective Potential of *Tinospora* 200
12.7 *Tinospora* Activates Tumor-Associated Macrophages of Dalton’s Lymphoma .. 200
12.8 Immunostimulating Properties of *Tinospora* 201
12.9 Mechanism of Macrophage Activation by (1 → 4) α-D Glucan from *Tinospora* .. 201
12.10 G1-4A, an Immunomodulatory Polysaccharide from *Tinospora* 202
12.11 Hepatoprotective Properties of *Tinospora* 203
12.12 Summary .. 203

References ... 204

13 Safety and Efficacy of Phytomedicines in Cancer Prevention and Treatment ... 207

Giuseppina Benoni and Laura Cuzzolin

13.1 Introduction ... 207
13.1.1 Reasons for Using Phytomedicines in Cancer Treatment and Prevention .. 208
13.2 Methods ... 209
13.3 Epidemiological data .. 209
13.4 Herbs Commonly Used in Cancer Treatment and Prevention 210
13.5 Herbs for Treating the Side Effects of Chemotherapy and Radiation ... 212
13.6 Safety Data of Herbal Compounds in Cancer Patients 214
13.7 Conclusions .. 217

References ... 218

14 Novel Leads from Herbal Drugs for Neurodegenerative Diseases 221

Maheep Bhatnagar

14.1 Introduction ... 221
14.2 Ayurveda, Herbal Drugs, and the Central Nervous System 222
14.3 Neurodegenerative Diseases: ... 224
14.4 Medicinal Plants, Neurodegenerative Diseases, and Therapeutics: 226
14.5 Plants Native to India .. 229
14.5.1 Acorus calamus .. 229
14.5.2 Asparagus racemosus .. 229
14.5.3 Bacopa monnieri .. 229
14.5.4 Celastrus paniculatus .. 230
14.5.5 Centella asiatica ... 230
14.5.6 Convolvulus pleuricaulis 230
14.5.7 Crocus sativus ... 231
14.5.8 Curculigo orchioides 231
14.5.9 Curcuma longa ... 231
14.5.10 Cyprus rotundus ... 232
14.5.11 Ficus religiosa .. 232
14.5.12 Ginkgo biloba .. 232
14.5.13 Mucuna pruriens .. 233
14.5.14 Nardostachys jatamanasi 233
14.5.15 Plumbago zeylanica 233
14.5.16 Semecarpus anacardium 234
14.5.17 Swertia chirayita ... 234
14.5.18 Withania somnifera .. 234
14.6 Plants not Native to India 235
14.6.1 Galanthus woronii ... 235
14.6.2 Huperzine serrata ... 235
14.6.3 Lavandula stoechas ... 235
14.7 Conclusion .. 236
References ... 236

15 Traditional Medicine for Memory Enhancement 239
Melanie-Jayne R. Howes and Peter J. Houghton
15.1 Introduction .. 240
15.1.1 Cognitive Disorders .. 240
15.1.2 Alzheimer’s Disease ... 241
15.1.3 Cholinergic Function ... 241
15.1.4 Symptoms Related to Memory Disorders in Traditional Practices of Medicine .. 242
15.2 Activities Relevant to the Treatment of Cognitive Disorders .. 243
15.2.1 Precursors of Acetylcholine 243
15.2.2 Muscarinic Receptor Stimulation 243
15.2.3 Nicotinic Receptor Stimulation/Nicotinic Agonists .. 244
15.2.4 Cholinesterase Inhibitors 245
15.2.5 Anti-Inflammatory Activity 245
15.2.6 Antioxidant Activity .. 246
15.2.7 Estrogenic Activity ... 247
15.2.8 NMDA Antagonists ... 249
15.3 Plants as a Source of Useful Therapeutic Agents in Cognitive Diseases .. 249
15.4 Plants Used in Traditional Ayurvedic Medicine 250
15.4.1 Areca catechu L. ... 250
15.4.2 Bacopa monniera Wettst. 251
15.4.3 Centella asiatica (L.) Urb. 252
15.4.4 *Celastrus paniculatus* Willd. 253
15.4.5 *Clitoria ternatea* L. .. 254
15.4.6 *Curcuma longa* L. ... 255
15.4.7 *Withania somnifera* (L.) Dunal 256

15.5 Plants Used in Traditional Chinese Medicine (TCM) 259
15.5.1 *Evodia rutaecarpa* (Juss.) Benth. 259
15.5.2 *Ginkgo biloba* L. ... 260
15.5.3 *Huperzia serrata* (Thunb.) Trevis 263
15.5.4 *Magnolia officinalis* Rehder & E.H.Wilson 265
15.5.5 *Polygala tenuifolia* Willd. 266
15.5.6 *Salvia miltiorhiza* Bunge 268

15.6 Plants Used in Traditional European Medicine 271
15.6.1 *Galanthus* and *Narcissus* Species 271
15.6.2 *Melissa officinalis* L. 272
15.6.3 *Salvia officinalis* L. and *S. lavandulifolia* Vahl 274

15.7 Plants Used in African and South American Traditional Medicine . 276
15.7.1 *Physostigma venenosum* Balf. 276
15.7.2 *Pilocarpus* Species .. 277
15.7.3 *Psychotropical olacoides* Benth. 278

15.8 Conclusions ... 279

References .. 280

16 Neuroprotective Herbs for Stroke 293
Hocheol Kim

16.1 Introduction ... 294
16.2 Stroke Therapy in Traditional Medicine 295
16.3 Neuroprotective Herbs for Stroke 296
16.4 Single Herb Extracts and Their Active Compounds 300
16.4.1 *Panax ginseng* ... 300
16.4.2 *Salvia miltiorrhiza* .. 302
16.4.3 *Ginkgo biloba* .. 302
16.4.4 *Acanthopanax senticosus* 303
16.4.5 *Scutellaria baicalensis* 304
16.4.6 *Camilia sinensis* (Green tea) 304
16.4.7 *Pueraria thunbergiana, P. lobata* 304
16.4.8 *Cnidium thunbergianum, Ligusticum chuanxiong* 305
16.4.9 *Magnolia officinalis* ... 306
16.4.10 *Angelica gigas, A. sinensis* 306
16.4.11 *Rhodiola rosea* ... 307
16.4.12 *Paeonia suffruticosa, P. lactiflora* 307
16.4.13 *Bombycis Corpus* .. 307
16.4.14 *Corydalis yanhusuo* ... 308
16.4.15 *Acorus gramineus* ... 308
16.4.16 *Coptis japonica* .. 309
16.4.17 *Phellodendri cortex* .. 309
List of Contributors

Bharat B. Aggarwal Cytokine Research Laboratory, Departments of Experimental Therapeutics, University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA, e-mail: aggarwal@mdanderson.org

Amina A. Aly Atomic Energy Authority, National Centre for Radiation Research and Technology, Natural Products Department, 110 Nile Street, Dokki, Cairo, Egypt, e-mail: liugs@ibcas.ac.cn

Jan Barciszewski Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland, e-mail: Jan.Barciszewski@ibch.poznan.pl

Lisa A. Beltz Department of Biology, University of Northern Iowa, Cedar Falls, IA 50614, USA, e-mail: lisa.beltz@uni.edu

Giuseppina Benoni Department of Medicine & Public Health, Section of Pharmacology, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro, 37134 Verona, Italy, e-mail: Giuseppina.benoni@univr.it

Jochen Beyer Victorian Institute of Forensic Medicine, Department of Forensic Medicine, Monash University, 57-83 Kavanagh St, Southbank, Victoria 3006, Australia, e-mail: jochenb@vifm.org

Maheep Bhatnagar Animal Biotechnology and Neuroscience Laboratory, Department of Zoology, M.L. Sukhadia University, Udaipur-313001, India, e-mail: mbhatnagar@yahoo.com, m.maheep@gmail.com

Brian F.C. Clark Department of Molecular and Structural Biology, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark, e-mail: bfcc@mb.au.dk
Laura Cuzzolin Department of Medicine & Public Health, Section of Pharmacology, University of Verona, Policlinico G.B., Rossi, Piazzale L.A. Scuro, 37134 Verona, Italy, e-mail: laura.cuzzolin@univr.it

S. Dass Laboratory of Biomolecular Technology, Department of Botany, M.L. Sukhadia University, Udaipur-313001, India

Olaf H. Drummer Victorian Institute of Forensic Medicine, Department of Forensic Medicine, Monash University, 57-83 Kavanagh St, Southbank, Victoria 3006, Australia

Kalina Duszka Institute for Genomics and Bioinformatics, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria, e-mail: kalina.duszka@tugraz.at

Thomas Efferth German Cancer Research Center, Pharmaceutical Biology (C015), Im Neuenheimer Fedl 280, 69120 Heidelberg, Germany, e-mail: t.efferth@dkfz.de

James S. Ferraro Department of Physiology, Southern Illinois, University School of Medicine, Carbondale, IL 62901-6512, USA

Shaily Goyal Laboratory of Biomolecular Technology, Department of Botany, M.L. Sukhadia University, Udaipur-313001, India

Peter J. Houghton Department of Pharmacy, King’s College London, Franklin-Wilkins Building, London, UK

Melanie-Jayne R. Howes Royal Botanic Gardens, Jodrell Laboratory, Kew, Richmond, TW9 3AB, Surrey, UK, e-mail: m.howes@kew.org

Guo Juan Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Haidian District, 100093 Beijing, P.R. China

Peter Kaplan Comenius University, Jessenius Faculty of Medicine, Department of Medical Biochemistry, Malá Hora 4, 037 54 Martin, Slovak Republic

S.S. Katewa Laboratory of Ethnobotany and Agrostology, Department of Botany, University College of Science, M.L. Sukhadia University, Udaipur-313001, India, e-mail: sskatewa@yahoo.com

Hocheol Kim Department of Herbal Pharmacology, College of Oriental Medicine, Kyung Hee University, Seoul 130–701, Korea, e-mail: hckim@khu.ac.kr

Ján Lehotský Comenius University, Jessenius Faculty of Medicine, Department of Medical Biochemistry, Malá Hora 4, 037 54 Martin, Slovak Republic, e-mail: Lehotsky@jfmed.uniba.sk
Gongshe Liu Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Haidian District, 100093 Beijing, P.R. China

Frank Massino Senetek PLC, 851 Latour Court, Suite A, Napa, CA 94588, USA, e-mail: FMSenetek@aol.com

Meeta Mathur Laboratory of Biomolecular Technology, Department of Botany, M.L. Sukhadia University, Udaipur-313001, India

H.C. Hans H. Maurer Department of Experimental and Clinical Toxicology, Saarland University, 66421 Homburg/Saar, Germany

G.P. McGregor Philipps-University of Marburg, Faculty of Medicine, Deutschhausstraße 2, 35037 Marburg, Germany, e-mail: mcgregor@staff.uni-marburg.de

Jörg Melzer Institute of Complementary Medicine, Department of Internal Medicine, University Hospital Zurich, Raemistr. 100, 8091 Zurich, Switzerland, e-mail: joerg.melzer@usz.ch

Anil Mittal Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India

Laura L. Murphy Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901–6512, USA, e-mail: lmurphy@siumed.edu

Martina Pavlikova Comenius University, Jessenius Faculty of Medicine, Department of Medical Biochemistry, Malá Hora 4, 037 54 Martin, Slovak Republic

K.G. Ramawat Laboratory of Biomolecular Technology, Department of Botany, M.L. Sukhadia University, Udaipur-313001, India, e-mail: kg_ramawat@yahoo.com

Reinhard Saller Institute of Complementary Medicine, Department of Internal Medicine, University Hospital Zurich, Raemistr. 100, 8091 Zurich, Switzerland

Beata Saniova Clinic of Anesthesiology and Intensive Medicine, Kollarova 2, SK-03601 Martin, Slovak Republic

Gautam Sethi Cytokine Research Laboratory, Departments of Experimental Therapeutics, University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA

Jyoti Shah Department of Urology, St. George’s Hospital, Blackshaw Road, London SW17 OQT, UK, e-mail: jyoti.shah@imperial.ac.uk
Chen Shuangyan Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Haidian District, 100093 Beijing, P.R. China

Rana P. Singh Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India, e-mail: rana_singh@mail.jnu.ac.in

Bokyung Sung Cytokine Research Laboratory, Departments of Experimental Therapeutics, University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA

Peter Urban Comenius University, Jessenius Faculty of Medicine, Department of Medical Biochemistry, Malá Hora 4, 037 54 Martin, Slovak Republic

R. Verpoorte Department of Pharmacognosy, Section Metabolomics, Institute of Biology Leiden, PO Box 9502, 2300RA Leiden, The Netherlands, e-mail: VERPOORT@LACDR.LeidenUniv.NL
Abstract Present-day drug development is strongly focused on finding active compounds on well-defined targets using high throughput screening approaches. Unfortunately it seems that this approach is becoming less and less successful, as in most cases already good compounds are on the market, and the rapidly rising costs of drug development will make it increasingly difficult to make an economically competitive novel drug for any major disease. In other words, the reductionist approach presently used is becoming less successful. The time has come to rethink drug development. Many Western medicines are based on traditional knowledge from Europe and the Mediterranean region. This is why interest is rapidly increasing in Indian and Chinese medicine, both of which represent a very long tradition of apparently safe use. However, these healthcare systems are different from Western medicine, so novel methods are required to verify the efficacy and safety of the therapies. As it often concerns personalized medication with complex mixtures, a reductionist approach of screening for a single active compound on a known target will in many cases not be successful, as more than one target may be involved; in addition, and complicating the situation even more, synergism and prodrugs may be involved. Systems biology as a novel holistic way of dealing with biological problems seems here an interesting option. Systems biology means proceeding without a hypothesis, just observing, measuring as many parameters as possible in a biological system and afterwards using chemometrics to reveal any meaning in the data. This approach has already proven successful in studying medicinal plants and, in combination with the classical natural-product-based drug lead finding, is expected to be a major issue in the coming years. As present-day patent laws require innovative and unexpected findings, the development of old knowledge does not fit this requirement. Therefore, to support the development of evidence-based traditional medicines, it would be of great interest if some sort of protection could be obtained for companies developing such medicines so that they could earn back their huge R&D investments.
Keywords Herbal medicines · Traditional medicine · Systems biology

1.1 Introduction

Since ancient times humans have explored their environment for plants that could be used to cover all their basic needs: food, shelter, fuel and health. This has resulted in the use of a large number of plants; in particular, food plants’ extensive breeding has resulted in high-yield crops. In the case of medicinal plants, such breeding has largely not yet taken place as nature could provide a sufficient supply. The number of medicinal plants has been estimated to be on the order of 40,000 to 70,000 [1], which means that almost 25% of all plant species have some sort of medicinal use somewhere in the world. This heritage from our ancestors has continued to develop in Western medicine and has resulted in the isolation and production of pure active compounds (e.g. morphine, atropine and digoxin) and later in the development of novel synthetic compounds based on this knowledge (e.g. local anaesthetics based on cocaine, analgesics based on morphine). Some of these synthetics based on natural products have been very successful, e.g. acetylsalicylate, which development was based on the use of Salix bark as analgesic. In other cases the result has not been so successful, e.g. the acetyl derivative of morphine (heroin). This illustrates that many medicines in the West have originated in phytotherapy, as occurred in European/Mediterranean region.

In addition, the statistics on novel drugs developed in recent decades show that natural products are a major source of inspiration for drug development [2], with only 30% of all novel molecules (of the 1184 so-called novel chemical entities or NCEs) introduced into the market in the period 1981–2006 being pure synthetic and all others being natural products or natural product related. These statistics also show that the number of novel chemical compounds reaching the market is decreasing every year. The high costs (approx. 1000 million euros) and long duration (more than 10 years), as well as the fact that for most major ailments good medicines that are already available hampers the development of novel drugs by the pharmaceutical industry. Recently problems with serious side effects caused that several novel medicines had to be taken of the market shortly after their introduction. This does not also help to increase efforts at novel drug development.

At the same time the strong emerging economies of countries like India and China have led to greater interest in local healthcare systems, which are even considered an important (cheap) alternative to expensive treatments using Western drugs (see Chapters written by Pandey et al., Melzer and Saller, and McGregor (this volume)). Moreover, after thousands of years of extensive and widespread use of traditional medicines, the question arises as to why we should not consider these medicines again using all the tools of modern science [3, 4]. Further studies may lead to the discovery of novel modes of action, novel biologically active compounds, confirmation of traditional use, or, in the worst case, the fact that no activity is present and even that a given medicine’s use can carry risks of toxicity (see Chap-
1 Medicinal Plants: A Renewable Resource for Novel Leads and Drugs

...ters written by Cuzzolin and Benoni, and Benoni and Cuzzolin (this volume)). With 80% of the world’s population using such traditional medicine, it makes sense to devote much more resources to such studies. The discovery of the antimalarial compound artemisinin in traditional Chinese medicine some 30 years ago has led to an efficient novel medicine used to treat malaria. But it has also led to totally new potential applications, e.g. in treating cancer (see Chapter written by Efferth (this volume)). Many more hidden gems may be found through studies of traditional medicine (Please specify the title and author you are referring to.).

One of the problems in studying traditional medicines is the totally different healthcare systems they are embedded in, e.g. different ways of classifying diseases, personalized medicines, and the complex mixtures of ingredients in traditional medicines. Current approaches to drug development may pick up some interesting compounds with high activity, but high throughput screening (HTS) will only detect compounds with strong affinity to a target enzyme or receptor; it will miss prodrugs (such as salicin the compound in Salix bark that in the human body is converted via glucolysis and oxidation into salicylate). Also, the synergy between compounds will not be observed in HTS, as one may, for example, envisage that artemisinin may have synergy with other antitumor compounds in a plant. The study by Stermitz et al. [5] showing the synergy between berberine and 5′-methoxyhydnocarpin is now a classical example of synergy between two compounds from one plant. The way traditional Chinese medicines are made and the different roles that each plant traditionally was thought to play in fact point to the possible importance of synergy between ingredients [6]. A recent study on the effects of ginkgo on peripheral blood flow is a beautiful example of the totally different concept of activity of such a traditional medicine and present-day Western pharmacology. Boelsma et al. [7] showed in a placebo-controlled, double-blind clinical trial that a standardized ginkgo preparation caused different effects in different subjects, which would be unacceptable to the Western way of thinking. However, their systems-biology-type of approach showed that in fact the preparation lowered peripheral blood flow in those people who had an above-average peripheral blood flow level, increased it in those who had a below average level, and in the case of the average level did not produce any effect. In other words ginkgo normalizes peripheral blood flow, a concept that does not match the reductionist approach of drug development, using the single-target, single-compound paradigm.

On the other hand, HTS may pick up well-known compounds such as adenosine and GABA in their respective receptor binding assays, thus masking possible other active compounds, but it would confirm the rationale behind the traditional use of a traditional medicine used to treat hypertension [8].

In fact the holistic ideas of traditional healthcare systems demand a holistic approach to studying their activity [4]. First, instead of trying to find an active compound, clinical trials could be considered as a way to confirm activity before trying to understand the activity. In well-established ancient healthcare systems such as in Asia, such experiments could be done in relation to current treatments. The fact that these medicines have been used for several thousand years and are still used extensively means that acute toxicity is unlikely to occur,
though long-term toxicity might be a point for some further research (see also Chapters written by Cuzzolin and Benoni, and Benoni and Cuzzolin (this volume)).

In an approach using clinical studies, systems biology enters the picture. Systems biology aims at studying an organism under different conditions without a working hypothesis. Instead one tries to measure as many parameters as possible and use multivariate analysis or other related statistical tools to asses all the data and draw conclusions from this, i.e. the hypothesis comes afterwards. These data may include physiological parameters (e.g. blood pressure, pulse), chemical parameters (using metabolomics to measure e.g. metabolites in body fluids, metabolites in a medicinal plant), the proteome and the transcriptome. Using such a holistic approach prodrugs and synergy may be found. Also new modes of action can be revealed in this way. In any case I think that the different medical systems could learn from each other and in that way make some major steps forwards and become the source of novel ideas and concepts. Combining the best of all approaches would be to the great benefit of all people’s healthcare the world over.

That said, one may also wonder why the pharmaceutical industry shows such little interest in traditional medicine. Besides the fact that the above-described problems of prodrugs and synergism do not fit their present expertise for drug development, the major reason might be that of patents. It is not impossible that the activity of a traditional medicine is due to a well-known compound, e.g. GABA or adenosine, which would thus not lead to a novel active and patentable compound. Moreover, patenting of a traditional medicine might be difficult, as a patent requires some sort of innovation, something unexpected [9]. Finding antidiabetic activity in a traditional antidiabetes medicine would thus not be accepted as an innovation, and even a compound isolated for such a plant might be difficult to patent. It would be of great value to all of humanity if any industry developing a traditional medicine with a view towards an evidence-based medicine would also be given some years of protection to be able to earn back the enormous investment needed to develop an evidence-based traditional medicine.

Ginkgo may again serve as an example. There is one ginkgo preparation (see also Chapters written by Howes and Houghton, Bhatnagar, Shah, Lehotsky et al., Melzer and Seller (this volume)) that has been studied extensively in clinical trials and shown to be active. An analysis of six different preparations for sale as an over-the-counter drug on the Dutch market, one of them being an evidence-based preparation, showed that the other five had lower, and some even very low, levels of the compounds thought to be involved in the activity, but the health claims were the same as for the proven one [10, 11]. One problem facing a country such as the Netherlands that has no clear legislation regarding phytotherapy, as the government is in general unfavourably disposed towards phytomedicines, is that a de facto laissez-faire policy is established that leads to the suboptimal use of herbal medicine.

1.2 Conclusion

There is an urgent need to convince Western pharmacologists that traditional medicines can be a major source of novel medicines, as well as novel concepts, but that a different approach to studying these medicines is required.
References

Chapter 2
The Chemical Diversity of Bioactive Molecules and Therapeutic Potential of Medicinal Plants

K.G. Ramawat, S. Dass and Meeta Mathur

Abstract The therapeutic use of herbs is as old as human civilization and has evolved along with it. The vast majority of people on this planet still rely on their indigenous system of medicine and use herbal drugs. The Indian and Chinese systems of medicine are well established with written records going back around 3000 years. Medicinal plant drug discovery continues to provide new and important leads against various pharmacological targets including cancer, malaria, cardiovascular diseases and neurological disorders. Interest in herbal drugs and natural medicine is undergoing a renaissance at the present time. The medicinal properties of plants are due to the presence of active principles. These bioactive secondary metabolites are synthesized by two principal pathways: shikimic acid or aromatic amino acid, and mevalonic acid. Alkaloids, phenolics and terpenoids constitute many pharmacologically active compounds. Several natural-product drugs of plant origin have either recently been approved by the US Food and Drug Administration (FDA), including arteether, galanthamine and triotopium, or are in clinical trials. Although drug discovery from medicinal plants continues to provide an important source of new drug leads, this work is constrained by the unavailability of sufficient plant material, selection and implementation of appropriate high-throughput screening bioassay and the production of bioactive compounds in large quantities. This article reviews the use of herbs in traditional systems and bioactive therapeutic molecules responsible for this activity.

Keywords Herbal drugs · Traditional medicine · Secondary metabolites · Alkaloids · Terpenes · Polyphenolics

2.1 Introduction

The world’s population will be more than 7.5 billion in the next 10 to 15 years. This increase in population will occur mostly in the southern hemisphere, where 80%
of the population still relies on a traditional system of medicine based on herbal drugs [1]. As civilizations grew from 3000 BCE onwards in Egypt, the Middle East, India and China, the uses of herbs became more sophisticated and written records were prepared. The specific plants to be used and the methods of application for particular ailments were passed down through oral history. Later on, information regarding medicinal plants was recorded in herbals [2]. Historically, herbal drugs were used as tinctures, poultices, powders and teas followed by formulations, and lastly as pure compounds. Medicinal plants or their extracts have been used by humans since time immemorial for different ailments and have provided valuable drugs such as analgesics (morphine), antitussives (codeine), antihypertensives (reserpine), cardiotonics (digoxin), antineoplastics (vinblastine and taxol) and antimalarials (quinine and artemisinin). Some of the plants which continue to be used from Mesopotamian civilization to this day are Cedrus spp., Cupressus sempervirens, Glycyrrhiza glabra, Commiphora wightii and Papaver somniferum [1, 3, 4]. About two dozen new drugs derived from natural sources were approved by the FDA and introduced to the market during the period 2000–2005 and include drugs for cancer, neurological, cardiovascular, metabolic and immunological diseases, and genetic disorders [5]. Seven plant-derived drugs currently used clinically for various types of cancers are taxol from Taxus species, vinblastine and vincristine from Catharanthus roseus, topotecan and irinotecan from Camptotheca acuminata, and etoposide and teniposide from Podophyllum peltatum [6]. It is estimated that the worldwide market potential for herbal drugs is around US$40 billion [6]. A similar situation also exists for plant-based food additives, fragrances and biopesticides. Mostly, herbal drugs are collected from the wild, and relatively few species are cultivated. Overexploitation of plants, particularly when roots, tubers and bark are used for commercial purposes, has endangered 4,000 to 10,000 species of medicinal plants [7]. To counter overexploitation of natural resources and the consequent threats to biodiversity, alternative biotechnological methods and sustainable practices have been recommended. Several world organizations and governments have established guidelines for the collection and utilization of medicinal plants [8, 9].

2.2 Traditional Use of Medicinal Plants

Traditional medicine is the sum total of the knowledge, skills and practices based on the theories, beliefs and experiences indigenous to different cultures used in the maintenance of health, prevention of diseases and improvement of physical and mental illness. In practice, traditional medicine refers to the following components: acupuncture (China), Ayurveda (India), Unani (Arabic countries), traditional birth attendant’s medicine, mental healer’s medicine, herbal medicine, and various forms of indigenous medicine. Complementary or alternative medicine refers to a broad set of healthcare practices that are not part of a country’s own tradition and are not integrated into the dominant healthcare system. Traditional medicine has maintained its popularity in all regions of the developing world, and its use is rapidly spreading in industrialized countries [1]. Knowledge of plants and of healing have been
closely linked from the time of human beings’ earliest social and cultural groupings. The medicine man was usually an accomplished botanist. Even in historical times, botany and medicine continued to be virtually one and the same discipline until about 1500 CE, when they began to separate from their close association, to the advantage of both sciences.

Knowledge of the medicinal plants used in the drugs of traditional systems of medicine (TSM) has been of great significance, especially as a lead for the discovery of new single-molecule medicines for modern system of medicine. To determine the chemical nature of such compounds, isolation of a substance in pure form using various separation techniques, chemical properties and spectral characteristics are a prerequisite for establishing its correct structure. Thus, medicinal plants are used in crude or purified form in the preparation of drugs in different systems. In countries like India, China and others with well-founded traditional systems of medicine, plant-based formulations occupy an important place in health management [1–10]. However, the recent broadening of the horizons of drug discovery, due to advances in instrumentation and bioinformatics (computational methods), has opened up new avenues for use of this knowledge in drug development research [2–5]. Structural novelty and new modes of action are common features of plant drugs. This has been shown by anticancer agents like vinblastine, vincristine and paclitaxel, cardiovascular agents like forskolin, anti-HIV agents like calanoid, and antihyperlipidemic agents like guggulsterones.

2.3 Ancient Systems of Medicine

2.3.1 Traditional Indian Medicine

The word Ayurveda is derived from ‘Ayur’, meaning life, and ‘veda’, meaning knowledge. Ayurveda means the science of life. It is an ancient system of health care and longevity. Ayurveda takes a holistic view of human beings, their health and illness. It aims at positive health, which has been defined as a well-balanced metabolism coupled with a healthy state of being. Disease, according to Ayurveda, can arise from the body and/or mind due to external factors or intrinsic causes. Ayurvedic treatment is aimed at the patient as an organic whole and treatment consists of the salubrious use of drugs, diet and certain practices. This doctrine was conceived when science was not developed enough to understand even the human body, let alone drug molecules [6–11].

Ayurveda, perhaps the most ancient of all medicine traditions, is probably older than traditional Chinese medicine. The origin of Ayurveda is lost in prehistoric antiquity, but its characteristic concepts appear to have matured between 2500 and 500 BCE in ancient India. The earliest references to drugs and diseases can be found in the Rigveda and Atharvaveda, dating back to 2000 BCE. Atharvaveda, comprised of 6599 hymns and 700 prose lines, is considered as the forerunner of Ayurveda.
The ‘Samhitas,’ or encyclopedia of medicine, were written during the postvedic era, and include ‘Charak Samhita’ (900 BCE), ‘Sushruta Samhita’ (600 BCE) and ‘Ashtang Hridaya’(1000 CE). Later on, many more treatises were prepared and the use of medicinal plants is described in ‘Nighantu Granthas’ between the 7th and 16th centuries. The most basic concept of Ayurveda is that all living beings derive their subsistence from three essential factors (three doshas), namely vaata, pitta and kapha, which operate in unison. It believes that the human body is composed of living and non-living environments including earth, water, fire, air and space. Illness is the consequence of imbalance between the various elements, and it is the goal of treatment to restore this balance [11, 12].

Ayurvedic drugs are also attracting much attention for diseases for which there are no or inadequate drugs for treatment in modern medicine, such as metabolic and degenerative disorders. Most of these diseases have multifactorial causation, and there is a growing realization that in such conditions, a combination of drugs, acting at a number of targets simultaneously, is likely to be more effective than drugs acting at one target. Ayurvedic drugs, which are often multicomponent, have a special relevance for such conditions [12]. For various reasons, Ayurveda has not incorporated much of modern science/scientific tools. Investigation of the biological activity of multicomponent Ayurvedic drugs will bring Ayurveda into the mainstream of scientific investigations.

2.3.2 Traditional Chinese Medicine

Traditional Chinese medicine (TCM) has been in practice for more than 200 years and includes acupuncture, massage (tuina), breathing exercise (qi gong) and dietary therapy. TCM has been an integral part of China’s healthcare system along with conventional Western medicine. TCM products were safe and effective for the treatment of many human diseases before Western medicine was introduced in China. Famous texts in TCM include the Yellow Emperor’s Inner Classic (Hung Di Nei Jing; ~200 BCE to 100 CE), Divine Husband-man’s Classic of Materia Medica (Shen Nong Ben Cao Jing; 25-220 AD) and cold-induced disorders (Shang han Lun; 220 AD). The most complete reference to Chinese herbal prescriptions is Chinese Materia Medica, published in 1977. It lists nearly 6000 drugs, of which 480 are of plant origin. This ancient system of medicine, believed to be more than 5000 years old, is based on two separate theories about the natural laws that govern good health and longevity, namely ‘Yin and Yang’, which are in opposition to each other, and the five elements (wu xing). The five-element theory is similar to the four humours and elements of the Greeks or the three humours of Ayurveda. The five elements are earth, metal, water, wood and fire, each of which is linked to the main organ systems of the body—spleen, lungs, kidney, liver and heart, respectively. It considers that an unbalanced diet, lifestyle or environment will disrupt the body balance, which in turn manifests as symptoms of diseases. The aim of the practitioner of TCM is to restore health by removing the cause, correcting abnormal functioning,
opposing the imbalance and normalizing the flow of energy. *Angelica polymorpha* var. *sinensis*, *Artemesia annua*, *Ephedra sinica*, *Paeonia lactiflora*, *Panax ginseng*, *Rheum palmatum* and *Peuraria lobata* constitute the important medicinal plants of TCM [3, 13, 14].

2.3.3 Traditional Egyptian Medicine

Although Egyptian medicine dates from at least 3000 BCE, the last known and most important pharmaceutical record is the *Papyrus Ebers* (1500 BCE). Use of *Ricinus communis* seeds, *Citrilus colocynthes*, *Senna alexandrina* and *Prunica granatum* roots in large quantities is mentioned in the ancient Egyptian literature. These uses were later documented by the Greek physician Dioscorides (100 CE). Writings of the Greeks, such as Hippocrates (460–377 BCE) and Galen (130–200 CE), also used parts of the *Papyrus Ebers*. Therefore Greek, and ultimately modern, medicine has its origin in Egyptian or Nile Valley civilization [15].

2.3.4 Traditional Arabic Medicine

The Babylonians, Assyrians and Sumerians comprise one of the oldest civilizations, and several plants were domesticated during this early period. Several medicinal plants are mentioned in civil laws carved on stone and commissioned by the King of Babylon (1700 BCE). The Arabs established drugstores in the eighth century, and the Persian pharmacist Avicenna described all Greco-Roman medicine in his book *Canon of Medicine*. This text forms the basis of distinct Islamic healing system known today as Unani-Tibb. *Papaver somniferum* was known to the Sumerians in 4000 BCE as *hul gil* (joy plant). The most frequently used medicinal plants in the Middle East are: *Allium cepa*, *Astracantha gummifera*, *Carthamus tinctorius*, *Carum carvi*, *Ferula asafoetida*, *Lawsonia inermis*, *Papaver somniferum*, *Peganum harmala*, *Prunus dulcis*, *Prunica granatum*, *Salvadora persica*, *Senna alexandrina*, *Sesamum indicum*, *Trachyspermum ammi*, *Trigonella foenum-graecum* and *Vitis vinifera* [3, 16].

2.3.5 African, European and Other Traditional Systems of Medicine

Africa is considered the cradle of *Homo sapiens’* emergence. Though traditional African medicine is the oldest and perhaps the most diverse of all healthcare systems [3], detailed documentation on the use of medicinal plants in Africa is lacking. With rapid urbanization, traditional oral knowledge is dwindling fast, e.g. knowledge of traditional oral knowledge of the Khoisan, the Nguni and the Sotho-speaking peoples [17]. Traditional African medicine is holistic, involving both body and
mind. Famous African medicinal plants include *Acacia senegal* (source of gum Arabic), *Aloe ferox*, *Aloe vera*, *Artemisia afra*, *Asplanthus linearis*, *Boswellia sacra*, *Catha edulis*, *Commiphora myrrha*, *Harpagophytum procumbens*, *Catharanthus roseus*, etc.

Like Africa, South American countries are also rich in biodiversity and diverse healing cultures, but information on the use of medicinal plants is sparse. The famous medicinal plants from this region are *Cinchona pubescens*, *Erythroxylum coca*, *Ilex paraguariensis*, *Paullinia cupana*, *Spilanthes acmella* and *Uncaria tomentosa*. The European healing system is believed to have originated with Hippocrates (460–377 BCE) and Aristotle (384–322 BCE). Subsequent naturalists like Theophrastus (~300 BCE), Dioscorides (100 CE) and the pharmacist Galen (130–200 CE) recorded the use of medicinal plants. The philosophy was based on the belief that the body is composed of earth, wind, fire and water, similar to the Indian system [14]. The famous book *De Materia Medica* by the Greek physician Dioscorides was the standard reference in Europe for more than 1000 years. The use of herbal teas and decoctions is still very popular in Europe, e.g. teas prepared from *Humulus lupulus*, *Rosmarinus officinalis*, *Hypericum perforatum* and *Valeriana officinalis* [14].

Though traditional and alternative medicine and its practitioners exist in Europe, it is not officially recognized and is punishable under the law in France, Italy, Spain and other countries, while it is unregulated in UK. This requires provisions in pharmacopoeias to include herbal drugs. Allopathic medicine is practiced predominantly in developed countries, and herbal drugs are categorized as food supplements and are not reimbursed by the social security system.

2.4 Exploration of Medicinal Plants

Plants are a great source of therapeutic molecules. In the early 20th century, taxonomic surveys established the identity of plants, followed by ethnomedical surveys documenting the use of plants as medicine and other uses. The identification of active principles of medicinal plants leads to the use, misuse and abuse of substances of vegetal origin. The use may be curative (e.g. vincristine and vinblastine, reserpine, ephedrine, aspirin, morphine, digoxin) or narcotic abuse (cocaine, morphine and cannabis), and misuse has made several plants endangered species, e.g. *Podophyllum hexandrum*, *Taxus baccata*, *Coptis teeta*, *Picrorhiza kurroa* and *Nardostachys jatamansi* [18]. This overexploitation has resulted in depletion in germplasm resources, particularly in Third World countries, and urgently warrants the development of alternative biotechnological methods for micropropagation, the study of seed and reproductive biology, and, last but not least, social awareness [11]. It is estimated that approximately 1500 plant species in India are threatened including 124 endangered species [19]. About 250,000 species of higher plants are yet to be investigated for pharmacological activity. Plants can be a source of effective remedies for Alzheimer’s, Parkinson’s, epilepsy, migraine, arthritis and schizophrenia. Increased demand for natural drugs has led to the domestication of several plants such as