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TO FRIEDRICH HIRZEBRUCH
IN GRATITUDE



Preface

And God said, Let there be light; and there was light.
Genesis 1,3

Light is not only the basis of our biological existence, but also an essential
source of our knowledge about the physical laws of nature, ranging from
the seventeenth century geometrical optics up to the twentieth century
theory of general relativity and quantum electrodynamics.

Folklore

Don’t give us numbers: give us insight!
A contemporary natural scientist to a mathematician

The present book is the second volume of a comprehensive introduction to
the mathematical and physical aspects of modern quantum field theory which
comprehends the following six volumes:

Volume I: Basics in Mathematics and Physics
Volume II: Quantum Electrodynamics
Volume III: Gauge Theory
Volume IV: Quantum Mathematics
Volume V: The Physics of the Standard Model
Volume VI: Quantum Gravitation and String Theory.

It is our goal to build a bridge between mathematicians and physicists based
on the challenging question about the fundamental forces in

• macrocosmos (the universe) and
• microcosmos (the world of elementary particles).

The six volumes address a broad audience of readers, including both under-
graduate and graduate students, as well as experienced scientists who want
to become familiar with quantum field theory, which is a fascinating topic in
modern mathematics and physics.

For students of mathematics, it is shown that detailed knowledge of the
physical background helps to motivate the mathematical subjects and to
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discover interesting interrelationships between quite different mathematical
topics. For students of physics, fairly advanced mathematics are presented,
which is beyond the usual curriculum in physics. The strategies and the
structure of the six volumes are thoroughly discussed in the Prologue to
Volume I. In particular, we will try to help the reader to understand the
basic ideas behind the technicalities. In this connection, the famous ancient
story of Ariadne’s thread is discussed in the Preface to Volume I. In terms
of this story, we want to put the beginning of Ariadne’s thread in quantum
field theory into the hands of the reader.

The present volume is devoted to the physics and mathematics of
light.

It contains the following material:

Part I: Introduction
• Chapter 1: Mathematical Principles of Modern Natural Philosophy
• Chapter 2: The Basic Strategy of Extracting Finite Information from

Infinities – Ariadne’s Thread in Renormalization Theory
• Chapter 3: The Power of Combinatorics
• Chapter 4: The Strategy of Equivalence Classes in Mathematics

Part II: Basic Ideas in Classical Mechanics
• Chapter 5: Geometrical Optics
• Chapter 6: The Principle of Critical Action and the Harmonic Oscilla-

tor as a Paradigm
Part III: Basic Ideas in Quantum Mechanics

• Chapter 7: Quantization of the Harmonic Oscillator – Ariadne’s Thread
in Quantization

• Chapter 8: Quantum Particles on the Real Line – Ariadne’s Thread in
Scattering Theory

• Chapter 9: A Glance at General Scattering Theory.
Part IV: Quantum Electrodynamics (QED)

• Chapter 10: Creation and Annihilation Operators
• Chapter 11: The Basic Equations in Quantum Electrodynamics
• Chapter 12: The Free Quantum Fields of Electrons, Positrons, and

Photons
• Chapter 13: The Interacting Quantum Field, and the Magic Dyson

Series for the S-Matrix
• Chapter 14: The Beauty of Feynman Diagrams in QED
• Chapter 15: Applications to Physical Effects

Part V: Renormalization
• Chapter 16: The Continuum Limit
• Chapter 17: Radiative Corrections of Lowest Order
• Chapter 18: A Glance at Renormalization to all Orders of Perturbation

Theory
• Chapter 19: Perspectives
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We try to find the right balance between the mathematical theory and its
applications to interesting physical effects observed in experiments. In par-
ticular, we do not consider purely mathematical models in this volume.

It is our philosophy that the reader should learn quantum field theory
by studying a realistic model, as given by quantum electrodynamics.

Let us discuss the main structure of the present volume. In Chapters 1
through 4, we consider topics from classical mathematics which are closely
related to modern quantum field theory. This should help the reader to un-
derstand the basic ideas behind quantum field theory to be considered in
this volume and the volumes to follow. In Chapter 1 on the mathematical
principles of modern natural philosophy, we discuss

• the infinitesimal strategy due to Newton and Leibniz,
• the optimality principle for processes in nature (the principle of critical action)

and the calculus of variations due to Euler and Lagrange, which leads to the
fundamental differential equations in classical field theory,

• the propagation of physical effects and the method of the Green’s function,
• harmonic analysis and the Fourier method for computing the Green’s functions,
• Laurent Schwartz’s theory of generalized functions (distributions) which is re-

lated to the idea that the measurement of physical quantities by devices is based
on averaging,

• global symmetry and conservation laws,
• local symmetry and the basic ideas of modern gauge field theory, and
• the Planck quantum of action and the idea of quantizing classical field theories.

Gauge field theory is behind both

• the Standard Model in elementary particle physics and
• Einstein’s theory of gravitation (i.e., the theory of general relativity).

In quantum field theory, a crucial role is played by renormalization. In terms
of physics, this is based on the following two steps:

• the regularization of divergent integrals, and
• the computation of effective physical parameters measured in experiments (e.g.,

the effective mass and the effective electric charge of the electron).

Renormalization is a highly technical subject. For example, the full proof
on the renormalizability of the electroweak sector of the Standard Model in
particle physics needs 100 pages. This can be found in:

E. Kraus, Renormalization of the electroweak standard model to all orders,
Annals of Physics 262 (1998), 155–259.

Whoever wants to understand quantum field theory has to understand the
procedure of renormalization. Therefore, the different aspects of renormal-
ization theory will be studied in all of the six volumes of this series of mono-
graphs. This ranges from

• resonance phenomena for the anharmonic oscillator (classical bifurcation theory),
• the Poincaré–Lindstedt series (including small divisors) in celestial mechanics,
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• and the Kolmogorov–Arnold–Moser (KAM) theory for perturbed quasi-periodic
oscillations (e.g., in celestial mechanics) based on sophisticated iterative tech-
niques (the hard implicit function theorem)

to the following fairly advanced subjects:
• the Feynman functional integral (the Faddeev–Popov approach),
• the Wiener functional integral (the Glimm–Jaffe approach),
• the theory of higher-dimensional Abelian integrals (algebraic Feynman integrals),
• Hopf algebras and Rota–Baxter algebras in combinatorics (the modern vari-

ant of the Bogoliubov–Parasiuk–Hepp–Zimmermann (BPHZ) approach due to
Kreimer),

• the Riemann–Hilbert problem and the Birkhoff decomposition (the Connes–
Kreimer approach),

• Hopf superalgebras (the Brouder–Fauser–Frabetti–Oeckl (BFFO) approach),
• characterization of physical states by cohomology and algebraic renormalization

(the Becchi–Rouet–Stora–Tyutin (BRST) approach),
• the Riesz–Gelfand theory of distribution-valued meromorphic functions (con-

struction of the Green’s functions),
• wave front sets and Hörmander’s multiplication of distributions (the Stueckelberg–

Bogoliubov–Epstein–Glaser–Scharf approach),
• the Master Ward identity as a highly non-trivial renormalization condition and

the generalized Dyson–Schwinger equation (the Dütsch–Fredenhagen approach),
• q-deformed quantum field theory (the Wess–Majid–Wachter–Schmidt approach

based on the q-deformed Poincaré group, quantum groups, and the q-analysis on
specific classes of q-deformed quantum spaces),

• deformation of bundles and quantization (the Weyl–Flato–Sternheimer–Fedosov–
Kontsevich approach),

• microlocal analysis and renormalization on curved space-times (the Radzikowski–
Brunetti–Fredenhagen–Köhler approach),

• renormalized operator products on curved space-times (the Wilson–Hollands–
Wald approach to quantum field theory),

• natural transformations of functors in category theory and covariant quantum
field theory on curved space-time manifolds (the Brunetti–Fredenhagen–Verch
approach),

as well as
• one-parameter Lie groups and the renormalization group,
• attractors of dynamical systems in the space of physical theories (the Wilson–

Polchinski–Kopper–Rivasseau approach to renormalization based on the renor-
malization group),

• the Master Ward Identity and the Stueckelberg–Petermann renormalization
group (the Dütsch–Fredenhagen approach),

• motives in number theory and algebraic geometry, the Tannakian category, and
the cosmic Galois group as a universal (motivic) renormalization group (the
Connes–Marcolli approach),

• noncommutative geometry and renormalization (the Grosse–Wulkenhaar ap-
proach).

The recent work of Alain Connes, Dirk Kreimer, and Matilde Marcolli shows
convincingly that renormalization is rooted in highly nontrivial mathemati-
cal structures. We also want to emphasize that the theory of many-particle
systems (considered in statistical physics and quantum field theory) is deeply
rooted in the theory of operator algebras. This concerns
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• von Neumann algebras (the von Neumann approach),
• C∗-algebras (the Gelfand–Naimark–Segal approach),
• local nets of operator algebras (the Haag–Kastler approach) and,
• noncommutative geometry (the Connes approach).

As a warmup, we show in Chapter 2 that the regularization of divergent
expressions represents a main subject in the history of mathematics starting
with Euler in the eighteenth century. In this connection, we will consider

• the regularization of divergent series, and
• the regularization of divergent integrals.

In particular, in Sect. 2.1.3, we will discuss the classical Mittag–Leffler theo-
rem on meromorphic functions f . If the function f has merely a finite number
of poles, then the method of partial fraction decomposition works well. How-
ever, as a rule, this method fails if the function f has an infinite number of
poles. In this case, Mittag–Leffler showed in the late nineteenth century that
one has to subtract special terms, which are called subtractions by physicists.

The subtractions force the convergence of the infinite series.

This is the prototype of the method of iteratively adding subtractions in the
Bogoliubov–Parasiuk–Hepp–Zimmermann (BPHZ) approach to renormaliza-
tion theory. The corresponding iterative algorithm (called the Bogoliubov
R-operation) has to be constructed carefully (because of nasty overlapping
divergences). This was done by Nikolai Bogoliubov in the 1950s. An ingenious
explicit solution formula for this iterative method was found by Wolfhart Zim-
mermann in 1969. This is the famous Zimmermann forest formula. In the
late 1990s, it was discovered by Dirk Kreimer that the sophisticated combi-
natorics of the Zimmermann forest formula can be understood best in terms
of a Hopf algebra generated by Feynman diagrams. By this discovery, the
modern formulation of the BPHZ approach is based on both Hopf algebras
and Rota–Baxter algebras.

As a warmup, in Chapter 3, we give an introduction to the modern com-
binatorial theory, which was founded by Gian-Carlo Rota (MIT, Cambridge,
Massachusetts) in the 1960s. This includes both Hopf algebras and Rota–
Baxter algebras.

Surprisingly enough, it turns out that the Zimmermann forest for-
mula is closely related to methods developed by Lagrange in the eigh-
teenth century when studying the solution of the Kepler equation for
the motion of planets in celestial mechanics.

In modern terminology, the Lagrange inversion formula for power series ex-
pansions is based on the so-called Faà di Bruno Hopf algebra.1 This will be
studied in Sect. 3.4.3.
1 The Italian priest and mathematician Francesco Faà di Bruno (1825–1888) was

beatified in 1988.
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In physics, symmetries are basic. For describing symmetries in terms of
mathematics, there are two approaches based on

• groups and
• Hopf algebras.

In 1941, Heinz Hopf wanted to compute the cohomology of topological groups.
Hopf discovered that the cohomology ring of topological groups is equipped
with an additional structure which is called a Hopf algebra structure today.
This additional algebraic structure is based on the notion of the coproduct.
Roughly speaking, the concept of Hopf algebra is dual to the concept of
group. Hopf algebras are intimately related to quantum groups. We will show
in Chapter 3 that:

The product and the coproduct of a Hopf algebra model the fusion
and the splitting of objects (e.g., elementary particles), respectively.

In terms of analysis, the algebra of linear differential operators with constant
coefficients can be equipped with the structure of a Hopf algebra. Here,

• the coproduct is related to the Leibniz product rule of differentiation, and
• the coinverse (also called the antipode) is related to the integration-by-parts

formula (see Sect. 3.3.1).

The integration-by-parts formula is a special case of the general Stokes inte-
gral theorem, which lies at the heart of the duality between homology and
cohomology in topology. This duality plays a key role for the mathematical
description of processes in nature. In particular, cohomology is deeply rooted
in Maxwell’s theory of electrodynamics (see Sect. 4.4.7).

Incredible cancellations. When doing computations in renormalization
theory, as a big surprise, physicists and mathematicians encounter incredible
cancellations of a large amount of terms. This dramatically simplifies the
final result. In terms of mathematics, a sophisticated combinatorics is behind
these cancellations. The prototype for this is given by the Faà di Bruno Hopf
algebra mentioned above.

The language of modern mathematics. We do not assume that the
reader of this series of monographs is familiar with the language used in mod-
ern mathematics. In this connection, we want to help the reader. For example,
many notions in advanced mathematics and hence in modern mathematical
physics are based on mathematical operations applied to equivalence classes.
For example, this concerns

• the construction of quantum states as equivalence classes of elements of Hilbert
spaces (and the relation to projective geometry),

• the Gelfand–Naimark–Segal (GNS) construction for representing the elements of
an abstract C∗-algebra as observables on a Hilbert space (the algebraic approach
to quantum theory),

• the Wightman reconstruction theorem for axiomatically defined quantum fields
(via the GNS-construction),
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• moduli spaces of Riemann surfaces (modulo conformal equivalence) and physical
states in string theory.

This leads to quotient spaces in algebra, analysis, geometry, and topology,
which will be encountered again and again in this series of monographs (e.g.,
homology groups, cohomology groups, homotopy groups, and K-theory in
topology). Chapter 4 serves as an introduction to quotient structures in math-
ematics and physics. The idea of the quotient ring (modulo a fixed integer)
can be traced back at least to the Disquisitiones arithmeticae written by the
young Gauss (1777–1855) in 1801.2 In order to give the reader a feel for the
usefulness of working with equivalence classes, we will consider the following
examples:

• Gaussian quotient rings (modulo a prime number) and coding theory (as warmup
for quantum information),

• quotient fields and Heaviside’s symbolic method in electrical engineering (the
Mikusiński operational calculus),

• physical fields, observers, bundles, and cocycles,
• deformation, mapping classes, and topological charges,
• loop spaces and higher homotopy groups,
• the projective and the injective limit of mathematical structures (e.g., topological

spaces), and
• the rigorous approach to Leibniz’s infinitesimals via ultrafilters (nonstandard

analysis).

For the foundation of nonstandard analysis, one needs the construction of
ultrafilers via Zorn’s lemma based on the axiom of choice in set theory.
The language of theoretical physics. Chapters 5 through 9 are devoted
to the basic ideas of

• classical geometric optics,
• classical mechanics, and
• quantum mechanics.

Here, we want to help mathematicians who are not familiar with theoretical
physics. In Chapter 5, we study Carathéodory’s royal road to geometrical
optics based on the fundamental duality between

• light rays and
• wave fronts

which can be traced back to the work of Huygens in the seventeenth cen-
tury. In string theory, Kähler manifolds play a crucial role. In Chapter 5, we
will show how Poincaré’s non-Euclidean geometry on the upper half-plane is
related to both geometrical optics and Kähler geometry.
2 The enormous influence of Gauss’ first masterpiece on the development of math-

ematics is described in the monograph by C. Goldstein, N. Schappacher, and J.
Schwermer: The Shaping of Arithmetic after Gauss’ Disquisitiones Arithmeticae,
Springer, Berlin 2007.
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Since all the models of quantum fields are based on the study of an infinite
number of (slightly perturbed) harmonic oscillators in the setting of pertur-
bation theory, we use the harmonic oscillator as a paradigm for both classical
mechanics and quantum mechanics. In Chapter 6 on classical mechanics, we
will study the following topics:

• Newtonian mechanics,
• Lagrangian mechanics (the Euler–Lagrange equation, the Jacobi accessory eigen-

value problem and Morse theory),
• Hamiltonian mechanics (the canonical dynamical system and the Hamilton–

Jacobi partial differential equation), and
• Poissonian mechanics.

In particular, this concerns

• the Legendre transformation and contact geometry,
• the Hamiltonian flow and symplectic geometry,
• the tangent bundle of the position space (the position-velocity space also called

the state space),
• the cotangent bundle of the position space (the position-momentum space also

called the phase space),
• the Legendre transformation as a transformation from the tangent bundle to the

cotangent bundle; the latter is equipped with a natural symplectic structure.

In terms of mathematics, the fundamental relation between symmetry and
conservation laws in physics is related to

• the Noether theorem, and
• Poisson brackets and Lie’s momentum map.

Quantum mechanics. The comprehensive Chapter 7 lies at the heart of
this series of monographs. This chapter should help the reader to understand
the different aspects of the passage from classical physics to quantum physics,
by using the different procedures of quantization. We will use the paradigm
of the harmonic oscillator in order to explain the basic ideas of the following
approaches:

• Heisenberg’s quantum mechanic (via creation and annihilation operators),
• Schrödinger’s quantum mechanics (via the Schrödinger partial differential equa-

tion),
• Feynman’s quantum mechanics (via the path integral),
• von Neumann’s functional-analytic approach (via the spectral theory for self-

adjoint operators in Hilbert spaces),
• von Neumann’s density operator in statistical physics (via trace class operators),
• Weyl’s symbolic calculus for pseudo-differential operators (deformation quanti-

zation),
• the Poincaré–Wirtinger calculus and Bargmann’s holomorphic quantization,
• the Stone-von Neumann uniqueness theorem (for the fundamental commutation

relations in quantum mechanics) and the Weyl functor3 based on symplectic
geometry,

• supersymmetric quantization.

3 At this place, the general theory of mathematical structures (also called category
theory) enters the theory of quantization (also called quantum mathematics).



Preface XV

Concerning the Feynman path integral as a fundamental tool in quantum
physics, we will study the following:

• Brownian motion and the infinite-dimensional rigorous Wiener integral based on
measure theory,

• the rigorous Feynman–Kac formula for diffusion processes,
• rigorous finite-dimensional Gaussian integrals, the computation of correlations

and moments, the Wick theorem, and Feynman diagrams,
• rigorous definition of infinite-dimensional Gaussian integrals via zeta function

regularization,
• the Wentzel–Kramers–Brioullin (WKB) method of stationary phase for the com-

putation of Gaussian integrals, and the approximate computation of Feynman
path integrals.

The Feynman path integral can be obtained from the Wiener integral by
using formal analytic continuation from real time to imaginary time. This
corresponds to the fact that the Schrödinger equation describes diffusion
processes in imaginary time. Furthermore, in Chapter 7, we discuss the basic
ideas of the algebraic approach to quantum mechanics by using C∗-algebras
and von Neumann algebras. In this connection, we consider:

• applications to statistical mechanics (Boltzmann statistics, Bose–Einstein statis-
tics, and Fermi–Dirac statistics),

• thermodynamic equilibrium states (Kubo–Martin–Schwinger (KMS) states) and
the Tomita–Takesaki theory for von Neumann algebras,

• the Murray–von Neumann classification of factors in the theory of von Neumann
algebras,

• projection operators and the main theorem of quantum logic (Gleason’s extension
theorem for C∗-algebras).

The modern theory of operator algebras culminates in Alain Connes’s non-
commutative geometry, which represents the appropriate mathematical struc-
ture for a deeper understanding of the Standard Model in elementary particle
physics. This will be investigated in Volume IV on quantum mathematics.
For the interested reader, we refer to the following fundamental monograph:

A. Connes and M. Marcolli, Noncommutative Geometry, Quantum Fields,
and Motives, American Mathematical Society 2008.
Internet: http://www.math.fsu.edu/∼ marcolli/bookjune4.pdf

Chapters 8 and 9 serve as an introduction to scattering theory, which plays
a crucial role in elementary particle physics. As a paradigm for general scat-
tering theory, we consider the scattering of a quantum particle on the real
line. We consider

• the energy levels of bound states,
• the energy levels of scattering states, and distributions as generalized eigenfunc-

tions of the Schrödinger equation,
• the transition matrix,
• the unitary S-matrix and transition probabilities for scattering processes,
• the relation between the singularities of the S-matrix in the complex energetic

plane and the energy levels of stable bound states,
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• unstable particles (resonances) and the second sheet of the energetic Riemann
surface (the Breit–Wigner formula for the energy levels and the mean lifetime of
resonances),

• stationary scattering theory, the Green’s function of the Helmholtz equation, and
the Lippmann–Schwinger integral equation,

• instationary scattering theory, wave operators, the absolutely continuous spec-
trum of the Hamiltonian, and the S-matrix in functional analysis.

Here, we do not assume that the reader is familiar with
• von Neumann’s functional-analytic spectral theory for self-adjoint operators in

Hilbert spaces,
• the Gelfand–Kostyuchenko theory of generalized eigenfunctions for self-adjoint

operators,
• the Møller–Kato theory of wave operators in scattering theory, and
• the Weyl–Kodaira theory for singular differential operators.

For the convenience of the reader, the necessary material will be summarized
at the proper place when it is needed in Volumes II and III.

Quantum electrodynamics. In the present volume, it is our main goal to
illustrate the beauty of quantum electrodynamics by proceeding pragmati-
cally.

We do not start with an abstract approach, but with the computa-
tion of important physical effects which are observed in experiments,
including radiative corrections in lowest order of renormalization the-
ory.

This should help the reader in getting a feel for the essential questions. More
sophisticated approaches are postponed to later volumes of this series of
monographs. In the introductory Chapter 10, we study creation and anni-
hilation operators for electrons, positrons, and photons. In Chapter 11, we
formulate the classical field equations of quantum electrodynamics on the in-
teraction between electrons and photons, by coupling the Maxwell equations
of the electromagnetic field to the Dirac equation of the electron wave func-
tion. This equation depends on the gauge fixing of the four-potential for the
electromagnetic field. However, it turns out that physical effects measured in
experiments are independent of the choice of the gauge fixing. The point is
that:

The classical field equations of quantum electrodynamics have to be
quantized.

In this connection, we have to distinguish between
• the single free quantum fields for electrons, positrons, and photons, and
• the total interacting quantum field for electrons, positrons, and photons.

In Chapter 12, we construct free quantum fields by using the method of
Fourier quantization based on creation and annihilation operators.

In Chapter 13, we study the interacting quantum field of electrons,
positrons, and photons by using
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• the magic Dyson formula for the S-matrix (scattering matrix), and
• the main Wick theorem for the S-matrix, which implies the Feynman diagrams.

This is Dyson’s classical approach to understanding the Feynman diagrams.4

Originally, Feynman invented his exciting diagram technique on the basis of
ingenious physical intuition. In Dyson’s mathematical setting, the Feynman
diagrams are nothing other than graphical representations of well-defined an-
alytic expressions, which are effectively produced by the main Wick theorem.
Feynman’s use of propagators and Dyson’s magic formula for the S-matrix
are closely related to Lagrange’s variation-of-parameter formula in celestial
mechanics. Many mathematicians complain about the following situation:

In the physics textbooks, one reads the Feynman rules for Feynman
diagrams, but it is not clear where the Feynman rules come from.

In the present textbook, we will thoroughly study the mathematical and
physical origin of both the Feynman diagrams and the Feynman rules. We
will also consider applications to interesting physical effects.

In Chapter 15, we investigate the following physical effects in lowest order
of perturbation theory:
• the cross section for Compton scattering between photons and electrons (im-

provement of the Thomson formula in classical electrodynamics),
• the cross section for the scattering of electrons in an external electromagnetic

field,
• the intensity of spectral lines for bound states in an external electromagnetic

field, and
• the Cherenkov radiation.

For the computation of terms corresponding to higher order of perturba-
tion theory, renormalization theory is needed. In Chapter 17, we discuss the
physics behind the following radiative corrections in lowest possible order of
renormalization theory:
• the screening of the Coulomb potential by vacuum polarization (the Uehling

potential),
• the anomalous magnetic moment of the electron (the Schwinger formula),
• the anomalous magnetic moment of the muon, and
• the Lamb shift in the spectrum of the hydrogen atom.

Unfortunately, the explicit computations (in the framework of dimensional
regularization in renormalization theory) are lengthy. We will postpone these
detailed computations to Volume III.

In Chapter 18, we discuss the main result telling us that quantum elec-
trodynamics can be renormalized to all orders of perturbation theory. The
final result consists of getting finite expressions in each order of perturbation
theory (e.g., cross sections for scattering processes), which depend on the two
fundamental free parameters
4 Dyson’s discovery of this approach is described by himself in his book, F. Dyson,

Disturbing the Universe, Harper & Row, New York, 1979 (see page 27 of Volume
I for this fascinating story).
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• meff (effective mass of the electron) and
• −eeff (effective electric charge of the electron).

Observe the crucial fact that:

The free parameters meff and eeff cannot be determined theoretically
by quantum electrodynamics.

They have to be determined by physical experiments. In the SI system, one
obtains the following values:

meff = 0.511 MeV/c2, eeff = 1.602 · 10−19 As.

A reader who wants to become familiar with quantum electrodynamics as
quickly as possible should start reading with Chapter 10.
The incredible effectiveness of perturbation theory in physics. Sur-
prisingly enough, low-order radiative corrections are sufficient for getting a
fantastic coincidence between theory and experimental data. For example,
the anomalous magnetic moment of the electron measured in experiments is
predicted very precisely by fourth-order radiative corrections (up to 9 digits).
However, the necessary amount of computations is enormous. One has to eval-
uate high-dimensional integrals which correspond to 891 Feynman diagrams;
this needs years of supercomputer time.
A warning to the reader. In summer 1976, Arthur Wightman (Princeton
University) organized a famous conference in Erice (Sicily/Italy) on renor-
malization theory. In the introduction to the Proceedings of this conference,
he writes:5

Renormalization theory is a notoriously complicated and technical sub-
ject. . . I want to tell stories with a moral for the earnest student: Renor-
malization theory has a history of egregious errors by distinguished savants
(see page 967). It has a justified reputation for perversity; a method that
works up to 13th order in the perturbation theory fails in the 14th order.
Arguments that sound plausible often dissolve into mush when examined
closely. The worst that can happen often happens. The prudent student
would do well to distinguish sharply between what has been proved and
what has been plausible, and in general he should watch out!

In 1999 Gerardus ’t Hooft and Martinus Veltman were awarded the Nobel
prize in physics for their contributions to the renormalization of the theory
of electroweak interaction and for the computation of radiative corrections in
the Standard Model of particle physics.

Perspectives. More advanced approaches to renormalization theory will be
systematically studied in the following volumes of this series of monographs.
In particular, this concerns the new approaches to perturbative quantum field
theory due to Connes and Kreimer (Hopf algebras), and Brunetti, Dütsch,

5 A. Wightman, Orientation. In: Renormalization Theory, pp. 1–20. Edited by G.
Velo and A. Wightman, Reidel, Dordrecht, 1976 (reprinted with permission).
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and Fredenhagen (microlocal analysis and the Master Ward Identity). In
order to give the reader an overview on the large variety of different ap-
proaches to renormalization theory, we summarize important references in
Section 19.11, and in Chapter 19 we sketch some basic ideas.

The propagation of light in the universe, namely,

• the deflection of light at the sun, and
• the red shift of spectral lines as a consequence of the expansion of the universe

(the Hubble effect)

will be investigated in Volume III in terms of Einstein’s theory of general
relativity.

The basic idea of our approach to quantum electrodynamics. As a
rule, mathematicians have trouble with reading some textbooks on quantum
field theory written by physicists. The point is that:

In mathematics, one never does computations with quantities which
do not exist.6

In order to respect this basic principle in mathematics, we will use the lattice
approach. That is, roughly speaking, we will proceed in the following two
steps.
Step 1: The discretized physical system. We put the physical system in a cubic
box of finite side length L and volume V = L3. The boundary conditions are
given by periodicity.

• We observe the physical system in a finite time interval [−T
2
, T

2
].

• We choose a maximal energy Emax.
• In the 3-dimensional momentum space, we introduce a finite lattice of spacing

Δp and maximal momentum Pmax. In this setting, the Fourier integral transform
is replaced by a discrete Fourier transform via finite Fourier series expansions.

• We define Dyson’s S-matrix for this situation.
• The main Wick theorem allows us to compute the S-matrix elements (i.e., the

transition amplitudes) in an elegant manner, by eliminating the creation and
annihilation operators, and replacing them by propagators (i.e., correlation func-
tions for free fields).

• The point is that the propagators are discrete algebraic Feynman integrals, which
are indeed well-defined finite sums.

• The transition amplitudes can be graphically represented by Feynman diagrams.
• The Feynman rules allow us to translate the Feynman diagrams into well-defined

finite sums.
• From the transition amplitudes, we obtain the transition probabilities which

yield the cross sections for scattering processes. Note that cross sections can be
measured in particle accelerators.

Step 2: The delicate continuum limit. Explicitly, we have to study the follow-
ing limits:

• L → ∞ (the volume L3 of the cubic box becomes infinite),
6 For example, this concerns infinite renormalization constants or ill-defined

infinite-dimensional functional/path integrals.
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• T → ∞ (the time interval becomes infinite),
• Pmax → ∞ (i.e., Emax → ∞) (high-energy limit),
• Δp → 0 (low-energy limit).

In order to force the convergence of the discrete algebraic Feynman integrals
to well-defined expressions, we modify the classical Lagrangian density by
setting

meff := me + δm, eeff := e + δe.

That is, we replace the so-called bare electron mass me and the so-called bare
electron charge −e in the Lagrangian density by

me = meff − δm, −e = −eeff + δe,

respectively. This way, the classical Lagrangian density

L(ψ, ∂ψ, A, ∂A; me, e)

is modified by the function

Lmodified(ψ, ∂ψ, A, ∂A; meff , eeff ; δm, δe).

The terms multiplied by δm, δe are called counterterms of the classical La-
grangian density L. Note that in this lattice approach, δe and δm are real
parameters which depend on the shape of the lattice, that is, they depend on
the maximal energy Emax. Now consider the high-energy limit

Emax → +∞.

Roughly speaking, we have to show that δm(Emax) and δe(Emax) can be
chosen in such a way that the finite continuum limit exists for the S-matrix
elements (i.e., the transition elements). This is the procedure of renormaliza-
tion.

Observe the following peculiarity. By the Stone–von Neumann uniqueness
theorem, a finite number of creation and annihilation operators is uniquely
determined by the commutation relations (up to unitary equivalence). This is
not true anymore for an infinite number of creation and annihilation opera-
tors, as was shown by Lars G̊arding and Arthur Wightman in 1954. However,
our approach avoids the latter ambiguity, since we only work with a finite
number of creation and annihilation operators before passing to the contin-
uum limit (of the vacuum expectation values). We also would like to empha-
size that our approach differs only slightly from the usual approach used by
physicists. In particular, we use a notation for discrete Fourier integrals such
that the formal passage to the language used by physicists is possible at each
stage of our procedure.

For the physical quantities which can be measured in experiments,
our final formulas coincide with the formulas used by physicists.
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Moreover, in each step of our procedure it is easy to pass formally to the
expressions used by physicists, since the Feynman diagrams are the same.

This way, we hope to help mathematicians in getting a better under-
standing for the ingenious and beautiful approach invented by physi-
cists.

From the physical point of view, the modification of the classical Lagrangian
density reflects the fact that:

Quantum effects have to be added to the classical theory.

Intuitively, this means that the quantum fluctuations of the ground state
of the quantum field of electrons, positrons, and photons influence physical
effects observed in experiments. For example, this concerns the anomalous
magnetic moment of the electron and the spectrum of the hydrogen atom
(Lamb shift).

Convention. If we do not expressively state the opposite, we will use the SI
system of physical units (international system of units) which can be found
in the Appendix to Volume I. In particular, note that in Chapters 10–19
on quantum electrodynamics, we will use the energetic system with c = 1
(velocity of light in a vacuum), � = h/2π = 1 (Planck’s quantum of action),
k = 1 (Boltzmann constant), ε0 = μ0 = 1 (see page 790).

The Poincaré Seminar. The best way of getting information about re-
cent developments in modern physics is to look at the books which report
the lectures given at the Poincaré Seminar in Paris. Starting in 2002, this
seminar has been organized by l’Institut Henri Poincaré in Paris (see page
1050). Bertrand Duplantier and Vincent Rivasseau write in the Foreword to
Quantum Spaces, Birkhäuser, Basel, 2007:

This book is the seventh in a series of lectures of the Séminaire Poincaré,
which is directed towards a large audience of physicists and mathemati-
cians.
The goal of this seminar is to provide up-to-date information about gen-
eral topics of great interest in physics. Both the theoretical and experimen-
tal aspects are covered, with some historical background. Inspired by the
Séminaire Bourbaki in mathematics in its organization, hence nicknamed
“Séminaire Bourbaphy,” the Poincaré Seminar is held twice a year at the
Institut Henri Poincaré in Paris, with contributions prepared in advance.
Particular care is devoted to the pedagogical nature of the presentation so
as to fulfill the goal of being readable by a large audience of scientists.

Two recent survey volumes. The following two volumes try to reflect
the state of the art by summarizing the most important approaches used in
modern quantum field theory:

• B. Fauser, J. Tolksdorf, and E. Zeidler (Eds.), Quantum Gravity: Mathematical
Models and Experimental Bounds, Birkhäuser, Basel, 2006.

• B. Fauser, J. Tolksdorf, and E. Zeidler (Eds.), Quantum Field Theory – Com-
petitive Methods, Birkhäuser, Basel, 2008.
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