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Preface

This book deals with the problems related to planning motion laws and tra-
jectories for the actuation system of automatic machines, in particular for
those based on electric drives, and robots. The problem of planning suitable
trajectories is relevant not only for the proper use of these machines, in order
to avoid undesired effects such as vibrations or even damages on the mechan-
ical structure, but also in some phases of their design and in the choice and
sizing of the actuators. This is particularly true now that the concept of “elec-
tronic cams” has replaced, in the design of automatic machines, the classical
approach based on “mechanical cams”.

The choice of a particular trajectory has direct and relevant implications
on several aspects of the design and use of an automatic machine, like the
dimensioning of the actuators and of the reduction gears, the vibrations and
efforts generated on the machine and on the load, the tracking errors during
the motion execution.

For these reasons, in order to understand and appreciate the peculiarities
of the different techniques available for trajectory planning, besides the math-
ematical aspects of their implementation also a detailed analysis in the time
and frequency domains, a comparison of their main properties under different
points of view, and general considerations related to their practical use are
reported.

For these reasons, we believe that the contents of this book can be of
interest, besides for students of Electrical and Mechanical Engineering courses,
also for engineers and technicians involved in the design and use of electric
drives for automatic machines.

We would like to thank all the persons and colleagues which have con-
tributed to this book. In particular, we would like to thank Claudio Bonivento,
for the initial suggestions and motivations, and Alberto Tonielli for the dis-
cussions on electric drives and their use. The colleagues and friends Roberto
Zanasi, Cesare Fantuzzi, and Alessandro De Luca have contributed not only
with several constructive comments, but also with the development of some
of the algorithms presented in this book.



VIII Preface

Finally, the help of all the students that have worked on these arguments
developing software and executing experimental activities, as well as the co-
operations and discussions with technicians and engineers of several industries
with their problems related to the design, control, and trajectory planning for
automatic machines, are gratefully acknowledged.

Bologna, Luigi Biagiotti
June 2008 Claudio Melchiorri
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8.10 Local Interpolation with Bézier Curves . . . . . . . . . . . . . . . . . . . . . 393

8.10.1 Computation of the tangent and curvature vectors . . . . . 394
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B B-spline, Nurbs and Bézier curves . . . . . . . . . . . . . . . . . . . . . . . . . 467
B.1 B-spline Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467

B.1.1 B-spline basis functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
B.1.2 Definition and properties of B-splines . . . . . . . . . . . . . . . . 471
B.1.3 Evaluation of a B-spline curve . . . . . . . . . . . . . . . . . . . . . . 474
B.1.4 Derivative of a B-spline curve . . . . . . . . . . . . . . . . . . . . . . . 475
B.1.5 Conversion from B-form to Piecewise Polynomial form

(pp-form) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
B.2 Definition and Properties of Nurbs . . . . . . . . . . . . . . . . . . . . . . . . . 481
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1

Trajectory Planning

This book deals with the problem of trajectory planning, i.e. of the
computation of desired motion profiles for the actuation system of au-
tomatic machines. Because of their wide use, only electric drives are
considered here, and their motion is defined in the context of the real-
time control of automatic machines with one or more actuators, such
as packaging machines, machine-tools, assembly machines, industrial
robots, and so on. In general, for the solution of this problem some
specific knowledge about the machine and its actuation system is also
required, such as the kinematic model (direct and inverse) (usually
the desired movement is specified in the operational space, while the
motion is executed in the actuation space and often these domains
are different) and the dynamic model of the system (in order to plan
suitable motion laws that allow to execute the desired movement with
proper loads and efforts on the mechanical structure). Moreover, for
the real-time execution of the planned motion, it is necessary to de-
fine proper position/velocity control algorithms, in order to optimize
the performances of the system and to compensate for disturbances
and errors during the movements, such as saturations of the actua-
tion system. Several techniques are available for planning the desired
movement, each of them with peculiar characteristics that must be well
known and understood. In this book, the most significant and com-
monly adopted techniques for trajectory planning are illustrated and
analyzed in details, taking into account the above mentioned prob-
lems.

1.1 A General Overview on Trajectory Planning

Basically, the trajectory planning problem consists in finding a relationship
between two elements belonging to different domains: time and space. Accord-
ingly, the trajectory is usually expressed as a parametric function of the time,
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Trajectory

One-dimensional Multi-dimensional

Point-to-pointPoint-to-point MultipointMultipoint

InterpolationInterpolation ApproximationApproximation

Fig. 1.1. Main trajectory categories.

which provides at each instant the corresponding desired position. Obviously,
after having defined this function, also other aspects related to its implemen-
tation must be considered, such as time discretization (automatic machines
are controlled by digital control systems), saturation of the actuation system,
vibrations induced on the load, and so on.

As shown in Fig. 1.1, the main distinction among the various categories of
trajectories consists in the fact that they can be one- or multi-dimensional. In
the first case they define a position for a one degree-of-freedom (dof) system,
while in the latter case a multidimensional working space is considered. From
a formal point of view, the difference between these two classes of trajectories
consists in the fact that they are defined by a scalar (q = q(t)) or a vecto-
rial (p = p(t)) function. However, the differences are deeper if one considers
the approaches and the tools used in the two cases for their computation.
Between one- and multi-dimensional trajectories, there is a class of trajecto-
ries with intermediate characteristics, namely single-axis motion laws applied
to a multi-axis system, composed by several actuators arranged in a so-called
master-slave configuration. In this case the motions of the single actuators, al-
though one-dimensional, cannot be designed separately but must be properly
coordinated/synchronized1.

In this book, the design of one-dimensional trajectories is firstly considered.
Then, the problem of their coordination/synchronization is addressed and,
finally, the planning of motions in the three-dimensional space is taken into
account.

The techniques reported in this book, both for one-dimensional and multi-
dimensional trajectories, are also classified depending on the fact that the
desired motion is defined by assuming initial and final points only (point-
to-point trajectories) or by considering also a set of intermediate via-points
which must properly interpolated/approximated (multipoint trajectories). In

1 In the literature, the two terms “coordination” and “synchronization” are used
as synonyms [1]
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(a) (b)

Fig. 1.2. Interpolation (a) and approximation (b) of a set of data points.

the former case, a complex motion is obtained by joining several2 point-to-
point trajectories which are individually optimized by considering for each
of them the initial and final boundary conditions on velocity, acceleration,
etc., and the constraints on their maximum values. Conversely, in the case of
multipoint trajectories), by specifying the intermediate points it is possible to
define arbitrarily complex motions and the trajectory is found as the solution
of a global optimization problem which depends on the conditions imposed
on each via-point and on the overall profile. Moreover, it is possible to adopt
different criteria for the definition of the motion profile on the basis of the given
via-points, which are not necessarily crossed by the trajectory. In particular,
two types of fitting can be distinguished:

• Interpolation: the curve crosses the given points for some values of the
time, Fig. 1.2(a).

• Approximation: the curve does not pass exactly through the points, but
there is an error that may be assigned by specifying a prescribed tolerance,
Fig. 1.2(b).

The latter approach can be useful when, especially in multi-dimensional tra-
jectories, a reduction of the speed/acceleration values along the curve is de-
sirable, at the expense of a lower precision.

1.2 One-dimensional Trajectories

Nowadays the design of high speed automatic machines, whose actuation sys-
tems is mainly based on electric drives, generally involves the use of several
actuators distributed in the machine and of relatively simple mechanisms, see
for example Fig. 1.3, where the sketch of a packaging machine is reported.
About twenty motion axes are present in a machine of this type. The so-
called electronic cams and electronic gears are employed for the generation
2 At least two (three) segments are necessary for a typical periodic motion com-

posed by a rise and a return phase (and, in case, by a dwell phase).
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Fig. 1.3. Sketch of an automatic machine for tea packaging (courtesy IMA).

of motion where needed, in place of a single or few actuators and complex
kinematic chains. In this manner, more flexible machines can be obtained,
able to cope with the different production needs required from the market,
[2]. In this context, the problem of trajectory planning has assumed more and
more importance [3] since, once the displacement and its duration have been
defined, the choice of the modality of motion from the initial to the final point
has important implications with respect to the sizing of the actuators, the ef-
forts generated on the structure, and the tracking capabilities of the specified
motion (tracking error). Therefore, it is necessary to carefully consider the
different types of point-to-point trajectories which could be employed with a
specific system (actuation and load). As a matter of fact, for given boundary
conditions (initial and final positions, velocities, accelerations, etc.) and dura-
tion, the typology of the trajectory has a strong influence on the peak values
of the velocity and acceleration in the intermediate points, as well as on the
spectral content of the resulting profile. For this reason, in the first part of the
book the most common families of trajectories used in the industrial practice
are described, providing their analytical expression. Then, these trajectories
are analyzed and compared, by taking into account both the frequency aspects
and the achievable performances for the overall machine.

1.3 Mechanical Cams and Electronic Cams

Mechanical cams have a very long history. Although some authors trace back
their origin even to the Paleolithic age, as referred in [4], certainly Leonardo
da Vinci can be considered as one of the first pioneers of the ’modern’ de-
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Fig. 1.4. A mechanical cam designed by Leonardo da Vinci.

sign of cam mechanisms, with his design of some machines based on these
mechanisms, Fig. 1.4.

In the last decades, mechanical cams have been widely used in automatic
machines for transferring, coordinating and changing the type of motion from
a master device to one or more slave systems, Fig. 1.5. With reference to
Fig. 1.6 the body C, the cam, is supposed to move at a constant rotational
velocity, and therefore its angular position θ is a linear function of time. The
body F, the follower, has an alternative motion q(θ) defined by the profile of
the cam. The design of mechanical cams, especially for planar mechanisms, has
been extensively and carefully investigated, and a wide literature is available
on this topic, see for example [4, 5, 6, 7, 8, 9].

As already mentioned, mechanical cams are nowadays substituted more
and more often by the so-called electronic cams. The goal is to obtain more

(a) (b)

Fig. 1.5. Mechanical cams, part of an automatic machine (courtesy IMA).
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(a)

C

F

q(θ)

θ(t)

(b)

Fig. 1.6. (a) A mechanical cam; (b) working principle of a simple mechanical cam
(C) with the follower (F).

flexible machines, with improved performances, easy to be re-programmed,
and possibly at lower costs. With electronic cams, the motion q(t) is directly
obtained by means of an electric actuator, properly programmed and con-
trolled to generate the desired motion profile. Therefore, the need of designing
cams to obtain the desired movement has been progressively replaced by the
necessity of planning proper trajectories for electric motors.

In multi-axis machines based on mechanical cams, the synchronization of
the different axes of motion is simply achieved by connecting the slaves to a
single master (the coordination is performed at the mechanical level), while
in case of electronic cams the problem must be considered in the design of the
motion profiles for the different actuators (the synchronization is performed
at the software level, see Fig. 1.7). A common solution is to obtain the syn-
chronization of the motors by defining a master motion, that can be either
virtual (generated by software) or real (the position of an actuator of the ma-
chine), and then by using this master position as “time” (i.e. the variable θ(t)
in Fig. 1.6(b)) for the other axes.

1.4 Multi-dimensional Trajectories

Properly speaking, the term trajectory denotes a path in the three-dimensional
space. For example, the Merriam-Webster dictionary defines the trajectory as
“the curve that a body describes in space”, [10].

Although in the case of a machine composed by several motors each of
them can be independently programmed and controlled (control in the joint
space), many applications require a coordination among the different axes of
motion with the purpose of obtaining a desired multi-dimensional trajectory
in the operational space of the machine. This is the case of tool machines
used to cut, mill, drill, grind, or polish a given workpiece, or of robots which
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Control unit

Power
converter

Motor Kinematic chain

Field
bus

Fig. 1.7. Structure of a multi-axis system based on electronic cams.

must perform tasks in the three-dimensional space, such as spot welding, arc
welding, handling, gluing, etc.

In these applications, it is necessary to specify

1. The geometric path p = p(u) to be followed, including also the orientation
along the curve.

2. The modality by means of which the geometric path must be tracked, that
is the motion law u = u(t).

The curve followed by the end effector must be designed on the basis of the
constraints imposed by the task (e.g. the interpolation of a given set of via-
points), while the determination of the motion law descends from other con-
straints, such as the imposition of the conditions on the maximum velocities,
accelerations, and torques that the actuation system is able to provide.

From the composition of the geometric path and of the motion law the
complete trajectory is obtained

p̃(t) = p(u(t))

as shown in Fig. 1.8. Once the desired movement is specified, the inverse kine-
matics3 of the mechanism is employed to obtain the corresponding trajectory
in the actuation (joint) space, where the motion is generated and controlled.
3 The direct kinematics of a mechanical device is a (nonlinear) function q → p =

f (q) mapping the joint positions q = [q1, q2, . . . , qn]T (i.e. the actuators’ po-
sitions) to the corresponding position/orientation p of a specific point of the
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umin umax

tmin tmax

p = p(u)

p̃(t) = p(u(t))

u = u(t)

x
y

z

Fig. 1.8. A multi-dimensional trajectory defined in the working space of an indus-
trial robot (courtesy COMAU).

1.5 Contents and Structure of this Book

A relevant, detailed bibliography is available for the problem of moving parts
of automatic machines by means of mechanical cams, and in particular for the
problem of the determination of the best cam profile in order to obtain the
desired motion at the load. As already mentioned, among the numerous and
good reference books, one can refer for example to [4, 5, 6, 7, 8, 9]. On the other
hand, a similar bibliography concerning the solution of the same problems
by means of electric actuators is not currently available. These problems,
although in a rather simplified fashion, are partially faced in robotics [11, 12,
13], but limited to the illustration of simple motion profiles and planning of
operational space trajectories.

In this book, the main problems related to the planning of trajectories in
the joint space are discussed, with particular reference to electric actuators for
automatic machines. The case of trajectories defined in the operational space
is also considered, discussing the interpolation and approximation techniques
for planning motions in the 3D space.

Specifically, the following topics are illustrated:

Part 1 Basic motion profiles

- Chapter 2. The basic functions for defining simple trajectories are illus-
trated: polynomial, trigonometric, exponential and based on the Fourier

machine in the operational space. The inverse kinematics is the inverse function
p → q = f−1(p) = g(p).
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series expansion. The main properties of these basic functions are pre-
sented and discussed.

- Chapter 3. More complex trajectories are presented, defined in order to
obtain specific characteristics in terms of motion, velocity, acceleration,
such as the trapezoidal or the double S.

- Chapter 4. Trajectories interpolating a set of via-points are presented. In
particular, the interpolation by means of polynomial functions, the cubic
splines, the B-splines, and techniques for the definition of “optimal” (i.e.
minimum time) trajectories are illustrated.

Part 2 Elaboration and analysis of trajectories

- Chapter 5. The problems of kinematic and dynamic “scaling” of a trajec-
tory are discussed. Comments on the synchronization of several motion
axes are given.

- Chapter 6. The trajectories are analyzed and compared by taking into
account the effects produced on the actuation system. For this purpose,
the maximum and the root mean square values of the velocities and ac-
celerations, consequence of the different motion profiles, are taken into
account.

- Chapter 7. The trajectories are analyzed by considering their frequency
properties and their influence on possible vibration phenomena in the me-
chanical system.

Part 3 Trajectories in the operational space

- Chapter 8. The problem of trajectory planning for automatic machines,
and in particular for robot manipulators, is considered in the operational
space. The basic tools to solve this problem are illustrated, along with
some examples.

- Chapter 9. The problem of the analytical composition of the geometric
path with the motion law is considered in detail. The goal is to define
parametric functions of time so that given constraints on velocities, accel-
erations, and so on, are satisfied.

Four appendices close the book, with details about some aspects related to the
computational issues for one-dimensional trajectories, namely efficient poly-
nomial evaluation, matrix inversion and so on (Appendix A), the B-spline,
Nurbs and Bézier definitions and properties (Appendix B), the tools for the
definition of the orientation in three-dimensional space (Appendix C), and the
spectral analysis of analog and digital signals (Appendix D).
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1.6 Notation

In this book, the following notation is adopted.
One-dimensional trajectories:

q(t) : position profile
t : independent variable, that can be either the “time” (as nor-

mally assumed in the book) or the angular position θ of the
master in a system based on electronic cams

q(1)(t), q̇(t) : time-derivative of the position (velocity profile)
q(2)(t), q̈(t) : time-derivative of the velocity (acceleration profile)
q(3)(t),

...
q (t) : time-derivative of the acceleration (jerk profile)

q(4)(t) : time-derivative of the jerk (snap, jounce or ping profile)
s(t) : spline function
qk(t) : k-th position segment (k = 0, . . . , n− 1) in multi-segment tra-

jectories
q̃(t′) : reparameterization of q(t) (scaling in time), q̃(t′) = q(t) with

t = σ(t′)
t0, t1 : initial and final time instants in point-to-point motions
T : total duration of a point-to-point trajectory (T = t1 − t0)
q0, q1 : initial and final via-points in point-to-point motions
h : total displacement (h = q1 − q0)
qk : k-th via-points (k = 0, . . . , n) in multipoint trajectories
tk : k-th time instant (k = 0, . . . , n) in multipoint trajectories
Tk : duration of the k-th segment (Tk = tk+1 − tk) in multi-segment

trajectories
v0, v1 : initial and final velocity in point-to-point motions
a0, a1 : initial and final acceleration in point-to-point motions
j0, j1 : initial and final jerk in point-to-point motions
v0, vn : initial and final velocity in multipoint motions
a0, an : initial and final acceleration in multipoint motions
j0, jn : initial and final jerk in multipoints motions
vmax : maximum speed value
amax : maximum acceleration value
jmax : maximum jerk value
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Multi-dimensional trajectories:

p(u) : geometric path
px, py, pz : x−, y−, z− components of the curve p
u : independent variable for parametric functions describing a ge-

ometric path
u(t) : function of time defining the motion law
p(1)(u) : derivative of the position (tangent vector) with respect to u
p(2)(u) : derivative of the tangent vector (curvature vector) with respect

to u
p(i)(u) : i-th time-derivative of the geometric path p(u)
pk(u) : k-th curve segment (k = 0, . . . , n− 1) in multi-segment trajec-

tories
s(u) : B-spline function
n(u) : Nurbs function
b(u) : Bézier function
p̃(t) : position trajectory obtained by composing the geometric path

with the motion law, p̃(t) = p(u) ◦ u(t)
p̃x, p̃y, p̃z : x−, y−, z− components of the trajectory p̃ as a function of the

time t

p̃(i)(t) : i-th derivative of the trajectory (i = 1 velocity, i = 2 accelera-
tion, etc.)

p̃
(i)
x , p̃

(i)
y , p̃

(i)
z : x−, y−, z− components of p̃(i)

p̂(û) : parameterization of the function p(u), p̂(û) = p(u) ◦ u(û)
qk : k-th via-points (k = 0, . . . , n) in multipoints trajectories
Rk : rotation matrix defining the orientation at the k-th via-point
tk : tangent vector at the generic k-th via-point
ūk : k-th “time instant” (k = 0, . . . , n) in multipoints trajectories
t0, tn : tangent vectors at the initial and final points in multipoints

motions
n0, nn : curvature vectors at the initial and final points in multipoints

motions
Gh : class of functions with geometric continuity up to the order h
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IN : set of natural numbers
IR : set of real numbers
C : set of complex numbers
m : scalar number
|m| : absolute value
m : vector
|m| : vector norm
mT : transpose of the vector m

M : matrix
|M | : matrix norm
|M |F : Frobenius norm of matrix M

tr(M) : trace of matrix M

diag{m1, . . . ,mn−1} : diagonal matrix
ω : angular frequency
Ts : sampling time
Ch : class of functions continuous up to the h-th

derivative
floor(·) : integer part function
sign(·) : sign function
sat(·) : saturation function
m! : factorial operator

Sometimes, these symbols have different meanings. Where not explicitly indi-
cated, the new meaning is clear from the context.
For the sake of simplicity, the numerical values used in this book are considered
dimensionless. In this manner, the mathematical expressions can be applied
without changes to several practical cases, with different physical dimensions.
In particular, positions may refer to meters, degrees, radians, . . . ; velocities
may then refer to meters/second, degrees/second, . . . ; and so on.

Finally, it is worth noticing that, without loss of generality, the algorithms
for one-dimensional trajectories assume that q1 > q0, and therefore the de-
sired displacement h = q1 − q0 is always positive. If this is not the case, the
basic motion profiles are unchanged, while the motions based on composition
of elementary trajectories (described in Ch. 3) require the adoption of the
procedure reported in Sec. 3.4.2.



Part I

Basic Motion Profiles



2

Analytic Expressions of Elementary
Trajectories

The basic trajectories are illustrated, classified into three main cat-
egories: polynomial, trigonometric, and exponential. Trajectories ob-
tained on the basis of Fourier series expansion are also explained. More
complex trajectories, able to satisfy desired constraints on velocity, ac-
celeration and jerk, can be obtained by means of a suitable composition
of these elementary functions. The case of a single actuator, or axis
of motion, is specifically considered. The discussion is general, and it
is therefore valid to define both a trajectory in the joint space and a
motion law in the operational space, see Chapter 8 and Chapter 9.

2.1 Polynomial Trajectories

In the most simple case, a motion is defined by assigning the initial and final
time instant t0 and t1, and conditions on position, velocity and acceleration
at t0 and t1. From a mathematical point of view, the problem is then to find
a function

q = q(t), t ∈ [t0, t1]

such that the given conditions are satisfied. This problem can be easily solved
by considering a polynomial function

q(t) = a0 + a1t + a2t
2 + . . . + antn

where the n+1 coefficients ai are determined so that the initial and final con-
straints are satisfied. The degree n of the polynomial depends on the number
of conditions to be satisfied and on the desired “smoothness” of the resulting
motion. Since the number of boundary conditions is usually even, the degree
n of the polynomial function is odd, i.e. three, five, seven, and so on.
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Fig. 2.1. Position, velocity and acceleration profiles of a polynomial trajectory
computed by assigning boundary and intermediate conditions (Example 2.1).

In general, besides initial and final conditions on the trajectory, other
conditions could be specified concerning its time derivatives (velocity, acceler-
ation, jerk, ...) at generic instants tj ∈ [t0, t1]. In other words, one could be in-
terested in determining a polynomial function q(t) whose k-th time-derivative
assumes a specific value q(k)(tj) at a given instant tj . Mathematically, these
conditions can be specified as

k! ak + (k + 1)! ak+1 tj + . . . +
n!

(n − k)!
an tn−k

j = q(k)(tj)

or, in matrix form, as
M a = b

where M is a known (n + 1) × (n + 1) matrix, b collects the given (n + 1)
conditions to be satisfied, and a = [a0, a1, . . . , an]T is the vector of the
unknown parameters to be computed. In principle this equation can be solved
simply as

a = M−1 b

although, for large values of n, this procedure may lead to numerical problems.
These considerations are analyzed in more details in Chapter 4.
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Example 2.1 Fig. 2.1 shows the position, velocity and acceleration profiles
of a polynomial trajectory computed by assigning the following conditions:

q0 = 10, q1 = 20, t0 = 0, t1 = 10,

v0 = 0, v1 = 0, v(t = 2) = 2, a(t = 8) = 0.

There are four boundary conditions (position and velocity at t0 and t1) and
two intermediate conditions (velocity at t = 2 and acceleration at t = 8).
Note that with six conditions it is necessary to adopt a polynomial at least of
degree five. In this case, the coefficients ai result

a0 = 10.0000, a1 = 0.0000, a2 = 1.1462,

a3 = −0.2806, a4 = 0.0267, a5 = −0.0009.

�

2.1.1 Linear trajectory (constant velocity)

The most simple trajectory to determine a motion from an initial point q0 to
a final point q1, is defined as

q(t) = a0 + a1(t − t0).

Once the initial and final instants t0, t1, and positions q0 and q1 are specified,
the parameters a0, a1 can be computed by solving the system{

q(t0) = q0 = a0

q(t1) = q1 = a0 + a1(t1 − t0)
=⇒

[
1 0
1 T

] [
a0

a1

]
=
[

q0

q1

]

where T = t1 − t0 is the time duration. Therefore⎧⎨
⎩

a0 = q0

a1 =
q1 − q0

t1 − t0
=

h

T

where h = q1−q0 is the displacement. The velocity is constant over the interval
[t0, t1] and its value is

q̇(t) =
h

T
(= a1).

Obviously, the acceleration is null in the interior of the trajectory and has an
impulsive behavior at the extremities.

Example 2.2 Fig. 2.2 reports the position, velocity and acceleration of the
linear trajectory with the conditions t0 = 0, t1 = 8, q0 = 0, q1 = 10. Note
that at t = t0, t1, the velocity is discontinuous and therefore the acceleration
is infinite in these points. For this reason the trajectory in this form is not
adopted in the industrial practice. �
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Fig. 2.2. Position, velocity and acceleration of a constant velocity trajectory, with
t0 = 0, t1 = 8, q0 = 0, q1 = 10.

2.1.2 Parabolic trajectory (constant acceleration)

This trajectory, also known as gravitational trajectory or with constant ac-
celeration, is characterized by an acceleration with a constant absolute value
and opposite sign in the acceleration/deceleration periods. Analytically, it is
the composition of two second degree polynomials, one from t0 to tf (the flex
point) and the second from tf to t1, see Fig. 2.3.
Let us consider now the case of a trajectory symmetric with respect to its
middle point, defined by tf = t0+t1

2 and q(tf ) = qf = q0+q1
2 . Note that in this

case Ta = (tf − t0) = T/2, (qf − q0) = h/2.
In the first phase, the “acceleration” phase, the trajectory is defined by

qa(t) = a0 + a1 (t − t0) + a2 (t − t0)2, t ∈ [t0, tf ].

The parameters a0, a1 and a2 can be computed by imposing the conditions
of the trajectory through the points q0, qf and the condition on the initial
velocity v0 ⎧⎪⎨

⎪⎩
qa(t0) = q0 = a0

qa(tf ) = qf = a0 + a1 (tf − t0) + a2 (tf − t0)2

q̇a(t0) = v0 = a1.
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One obtains

a0 = q0, a1 = v0, a2 =
2

T 2
(h − v0T ).

Therefore, for t ∈ [t0, tf ], the trajectory is defined as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

qa(t) = q0 + v0(t − t0) +
2

T 2
(h − v0T )(t − t0)2

q̇a(t) = v0 +
4

T 2
(h − v0T )(t − t0)

q̈a(t) =
4

T 2
(h − v0T ) (constant).

The velocity at the flex point is

vmax = q̇a(tf ) = 2
h

T
− v0.

Note that, if v0 = 0, the resulting maximum velocity has doubled with respect
to the case of the constant velocity trajectory. The jerk is always null except
at the flex point, when the acceleration changes its sign and it assumes an
infinite value.
In the second part, between the flex and the final point, the trajectory is
described by

qb(t) = a3 + a4 (t − tf ) + a5 (t − tf )2 t ∈ [tf , t1].

If the final value of the velocity v1 is assigned, at t = t1, the parameters
a3, a4, a5 can be computed by means of the following equations⎧⎪⎪⎪⎨

⎪⎪⎪⎩
qb(tf ) = qf = a3

qb(t1) = q1 = a3 + a4 (t1 − tf ) + a5 (t1 − tf )2

q̇b(t1) = v1 = a4 + 2a5 (t1 − tf )

h1

h

T
Ta

q1

qf

q0

tt0 tf
t1

Fig. 2.3. Trajectory with constant acceleration.
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from which

a3 = qf =
q0 + q1

2
, a4 = 2

h

T
− v1, a5 =

2
T 2

(v1T − h).

The expression of the trajectory for t ∈ [tf , t1] is

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

qb(t) = qf + (2
h

T
− v1)(t − tf ) +

2
T 2

(v1T − h)(t − tf )2

q̇b(t) = 2
h

T
− v1 +

4
T 2

(v1T − h)(t − tf )

q̈b(t) =
4

T 2
(v1T − h).

Note that, if v0 �= v1, the velocity profile of this trajectory is discontinuous at
t = tf .

Example 2.3 Fig. 2.4 reports the position, velocity and acceleration for this
trajectory. The conditions t0 = 0, t1 = 8, q0 = 0, q1 = 10, v0 = v1 = 0 have
been assigned. �
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Fig. 2.4. Position, velocity and acceleration of a trajectory with constant accelera-
tion, with t0 = 0, t1 = 8, q0 = 0, q1 = 10.


