Probability and Its Applications

Published in association with the Applied Probability Trust
Editors: J. Gani, C.C. Heyde, P. Jagers, T.G. Kurtz

Probability and Its Applications

Azencott et al.: Series of Irregular Observations. Forecasting and Model Building. 1986
Bass: Diffusions and Elliptic Operators. 1997
Bass: Probabilistic Techniques in Analysis. 1995
Berglund/Gentz: Noise-Induced Phenomena in Slow-Fast Dynamical Systems:
A Sample-Paths Approach. 2006
Biagini/Hu/Øksendal/Zhang: Stochastic Calculus for Fractional Brownian Motion and Applications. 2008
Chen: Eigenvalues, Inequalities and Ergodic Theory. 2005
Costa/Fragoso/Marques: Discrete-Time Markov Jump Linear Systems. 2005
Daley/Vere-Jones: An Introduction to the Theory of Point Processes I: Elementary
Theory and Methods. 2nd ed. 2003, corr. 2nd printing 2005
Daley/Vere-Jones: An Introduction to the Theory of Point Processes II: General Theory and Structure. 2nd ed. 2008
de la Peña/Gine: Decoupling: From Dependence to Independence, Randomly Stopped Processes U-Statistics and Processes Martingales and Beyond. 1999 de la Peña/Lai/Shao: Self-Normalized Processes. 2009
Del Moral: Feynman-Kac Formulae. Genealogical and Interacting Particle Systems with Applications. 2004
Durrett: Probability Models for DNA Sequence Evolution. 2002, 2nd ed. 2008
Galambos/Simonelli: Bonferroni-Type Inequalities with Equations. 1996
Gani (ed.): The Craft of Probabilistic Modelling. A Collection of Personal Accounts. 1986
Gut: Stopped Random Walks. Limit Theorems and Applications. 1987
Guyon: Random Fields on a Network. Modeling, Statistics and Applications. 1995
Kallenberg: Foundations of Modern Probability. 1997, 2nd ed. 2002
Kallenberg: Probabilistic Symmetries and Invariance Principles. 2005
Last/Brandt: Marked Point Processes on the Real Line. 1995
Molchanov: Theory of Random Sets. 2005
Nualart: The Malliavin Calculus and Related Topics, 1995, 2nd ed. 2006
Schmidli: Stochastic Control in Insurance. 2008
Schneider/Weil: Stochastic and Integral Geometry. 2008
Shedler: Regeneration and Networks of Queues. 1986
Silvestrov: Limit Theorems for Randomly Stopped Stochastic Processes. 2004
Rachev/Rueschendorf: Mass Transportation Problems. Volume I: Theory and
Volume II: Applications. 1998
Resnick: Extreme Values, Regular Variation and Point Processes. 1987
Thorisson: Coupling, Stationarity and Regeneration. 2000

Victor H. de la Peña \cdot Tze Leung Lai \cdot Qi-Man Shao

Self-Normalized Processes

Limit Theory and Statistical Applications

Victor H. de la Peña
Department of Statistics
Columbia University
Mail Code 4403
New York, NY 10027
USA
vp@stat.columbia.edu

Tze Leung Lai
Department of Statistics
Sequoia Hall, 390 Serra Mall
Stanford University
Stanford, CA 94305-4065
USA
lait@stat.stanford.edu

Qi-Man Shao
Department of Mathematics
Hong Kong University of Science and Technology
Clear Water Bay
Kowloon, Hong Kong
People's Republic of China
maqmshao@ust.hk

Series Editors:

Joe Gani
Chris Heyde
Centre for Mathematics and its Applications
Mathematical Sciences Institute
Australian National University
Canberra, ACT 0200
Australia
gani@maths.anu.edu.au
Peter Jagers
Mathematical Statistics
Chalmers University of Technology
and Göteborg (Gothenburg) University
41296 Göteborg
Sweden
jagers@chalmers.se

Thomas G. Kurtz
Department of Mathematics
University of Wisconsin - Madison
480 Lincoln Drive
Madison, WI 53706-1388
USA
kurtz@math.wisc.edu

ISBN: 978-3-540-85635-1
e-ISBN: 978-3-540-85636-8
Probability and Its Applications ISSN print edition: 1431-7028
Library of Congress Control Number: 2008938080
Mathematics Subject Classification (2000): Primary: 60F10, 60F15, 60G50, 62E20;
Secondary: 60E15, 60G42, 60G44, 60G40, 62L10
(C) 2009 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Cover design: WMXDesign GmbH, Heidelberg
Printed on acid-free paper

To our families

for V.H.P., Colleen, Victor, Mary-Margaret and Patrick

for T.L.L., Letitia, Peter and David
for Q.-M.S., Jiena and Wenqi

Preface

This year marks the centennial of Student's seminal 1908 paper, "On the probable error of a mean," in which the t-statistic and the t-distribution were introduced. During the past century, the t-statistic has evolved into much more general Studentized statistics and self-normalized processes, and the t-distribution generalized to the multivariate case, leading to multivariate processes with matrix self-normalization and bootstrap- t methods for tests and confidence intervals. The past two decades have also witnessed the active development of a rich probability theory of selfnormalized processes, beginning with laws of the iterated logarithm, weak convergence, large and moderate deviations for self-normalized sums of independent random variables, and culminating in exponential and moment bounds and a universal law of the iterated logarithm for self-normalized processes in the case of dependent random variables. An important goal of this book is to present the main techniques and results of these developments in probability and to relate them to the asymptotic theory of Studentized statistics and to other statistical applications.

Another objective of writing this book is to use it as course material for a Ph.D. level course on selected topics in probability theory and its applications. Lai and Shao co-taught such a course for Ph.D. students in the Department of Statistics at Stanford University in the summer of 2007. These students had taken the Ph.D. core courses in probability (at the level of Durrett's Probability: Theory and Examples) and in theoretical statistics (at the level of Lehmann's Testing Statistical Hypotheses and Theory of Point Estimation). They found the theory of self-normalized processes an attractive topic, supplementing and integrating what they had learned from their core courses in probability and theoretical statistics and also exposing them to new techniques and research topics in both areas. The success of the experimental course STATS 300 (Advanced Topics in Statistics and Probability) prompted Lai and Shao to continue offering it periodically at Stanford and Hong Kong University of Science and Technology. A similar course is being planned at Columbia University by de la Peña. With these courses in mind, we have included exercises and supplements for the reader to explore related concepts and methods not covered in introductory Ph.D.-level courses, besides providing basic references related to these topics. We also plan to update these periodically at the Web site for the book: http://www.math.ust.hk/~maqmshao/book-self/SNP.html.

We acknowledge grant support for our research projects related to this book from the National Science Foundation (DMS-0505949 and 0305749) and the Hong Kong Research Grants Council (CERG-602206 and 602608). We thank three anonymous reviewers for their valuable suggestions, and all the students who took STATS 300 for their interest in the subject and comments on an earlier draft of certain chapters of the book that were used as lecture notes. We also thank our collaborators Hock Peng Chan, Bing-Yi Jing, Michael Klass, David Siegmund, Qiying Wang and Wang Zhou for working with us on related projects and for their helpful comments. We are particularly grateful to Cindy Kirby who helped us to coordinate our writing efforts and put together the separate chapters in an efficient and timely fashion. Without her help, this book would not have been completed in 2008 to commemorate Student's centennial.

Department of Statistics, Columbia University
Department of Statistics, Stanford University
Department of Mathematics, Hong Kong University of Science \& Technology

Victor H. de la Peña
Tze Leung Lai
Qi-Man Shao

Contents

1 Introduction 1
Part I Independent Random Variables
2 Classical Limit Theorems, Inequalities and Other Tools 7
2.1 Classical Limit Theorems 7
2.1.1 The Weak Law, Strong Law and Law of the Iterated Logarithm 8
2.1.2 The Central Limit Theorem 9
2.1.3 Cramér's Moderate Deviation Theorem 11
2.2 Exponential Inequalities for Sample Sums 11
2.2.1 Self-Normalized Sums 11
2.2.2 Tail Probabilities for Partial Sums 13
2.3 Characteristic Functions and Expansions Related to the CLT 17
2.3.1 Continuity Theorem and Weak Convergence 18
2.3.2 Smoothing, Local Limit Theorems and Expansions 19
2.4 Supplementary Results and Problems 21
3 Self-Normalized Large Deviations 25
3.1 A Classical Large Deviation Theorem for Sample Sums 25
3.2 A Large Deviation Theorem for Self-Normalized Sums 27
3.2.1 Representation by Supremum over Linear Functions of $\left(S_{n}, V_{n}^{2}\right)$ 27
3.2.2 Proof of Theorem 3.1 28
3.3 Supplementary Results and Problems 31
4 Weak Convergence of Self-Normalized Sums 33
4.1 Self-Normalized Central Limit Theorem 33
4.2 Non-Normal Limiting Distributions for Self-Normalized Sums 37
4.3 Supplementary Results and Problems 38
5 Stein's Method and Self-Normalized Berry-Esseen Inequality 41
5.1 Stein's Method 41
5.1.1 The Stein Equation 41
5.1.2 Stein's Method: Illustration of Main Ideas 44
5.1.3 Normal Approximation for Smooth Functions 46
5.2 Concentration Inequality and Classical Berry-Esseen Bound 49
5.3 A Self-Normalized Berry-Esseen Inequality 52
5.3.1 Proof: Outline of Main Ideas 53
5.3.2 Proof: Details 55
5.4 Supplementary Results and Problems 60
6 Self-Normalized Moderate Deviations and Laws of the Iterated Logarithm 63
6.1 Self-Normalized Moderate Deviations: Normal Case 63
6.1.1 Proof of the Upper Bound 64
6.1.2 Proof of the Lower Bound 66
6.2 Self-Normalized Moderate Deviations: Stable Case 69
6.2.1 Preliminary Lemmas 70
6.2.2 Proof of Theorem 6.6 76
6.3 Self-Normalized Laws of the Iterated Logarithm 81
6.4 Supplementary Results and Problems 84
7 Cramér-Type Moderate Deviations for Self-Normalized Sums 87
7.1 Self-Normalized Cramér-Type Moderate Deviations 87
7.2 Proof of Theorems 90
7.2.1 Proof of Theorems 7.2, 7.4 and Corollaries 90
7.2.2 Proof of Theorem 7.1 91
7.2.3 Proof of Propositions 94
7.3 Application to Self-Normalized LIL 96
7.4 Cramér-Type Moderate Deviations for Two-Sample t-Statistics 104
7.5 Supplementary Results and Problems 106
8 Self-Normalized Empirical Processes and \boldsymbol{U}-Statistics 107
8.1 Self-Normalized Empirical Processes 107
8.2 Self-Normalized U-Statistics 108
8.2.1 The Hoeffding Decomposition and Central Limit Theorem 109
8.2.2 Self-Normalized U-Statistics and Berry-Esseen Bounds 109
8.2.3 Moderate Deviations for Self-Normalized U-Statistics 110
8.3 Proofs of Theorems 8.5 and 8.6 111
8.3.1 Main Ideas of the Proof 111
8.3.2 Proof of Theorem 8.6 112
8.3.3 Proof of Theorem 8.5 113
8.3.4 Proof of Proposition 8.7 113
8.4 Supplementary Results and Problems 119

Part II Martingales and Dependent Random Vectors

9 Martingale Inequalities and Related Tools 123
9.1 Basic Martingale Theory 123
9.1.1 Conditional Expectations and Martingales 123
9.1.2 Martingale Convergence and Inequalities 125
9.2 Tangent Sequences and Decoupling Inequalities 125
9.2.1 Construction of Decoupled Tangent Sequences 126
9.2.2 Exponential Decoupling Inequalities 126
9.3 Exponential Inequalities for Martingales 128
9.3.1 Exponential Inequalities via Decoupling 128
9.3.2 Conditionally Symmetric Random Variables 132
9.3.3 Exponential Supermartingales and Associated Inequalities 134
9.4 Supplementary Results and Problems 135
10 A General Framework for Self-Normalization 137
10.1 An Exponential Family of Supermartingales Associated with Self-Normalization 137
10.1.1 The I.I.D. Case and Another Derivation of (3.8) 137
10.1.2 A Representation of Self-Normalized Processes and Associated Exponential Supermartingales 138
10.2 Canonical Assumptions and Related Stochastic Models 139
10.3 Continuous-Time Martingale Theory 140
10.3.1 Doob-Meyer Decomposition and Locally Square-Integrable Martingales 141
10.3.2 Inequalities and Stochastic Integrals 143
10.4 Supplementary Results and Problems 146
11 Pseudo-Maximization via Method of Mixtures 149
11.1 Pseudo-Maximization and Laplace's Method 149
11.2 A Class of Mixing Densities 150
11.3 Application of Method of Mixtures to Boundary Crossing Probabilities 152
11.3.1 The Robbins-Siegmund Boundaries for Brownian Motion 152
11.3.2 Extensions to General Self-Normalized Processes 154
11.4 Supplementary Results and Problems 157
12 Moment and Exponential Inequalities for Self-Normalized Processes 161
12.1 Inequalities of Caballero, Fernandez and Nualart, Graversen and Peskir, and Kikuchi 161
12.2 Moment Bounds via the Method of Mixtures 164
12.2.1 Gaussian Mixing Densities 165
12.2.2 The Mixing Density Functions in Sect. 11.2 167
12.3 Applications and Examples 174
12.3.1 Proof of Lemma 8.11 174
12.3.2 Generalizations of Theorems 12.1, 12.2 and 12.3 175
12.3.3 Moment Inequalities Under Canonical Assumption for a Restricted Range 176
12.4 Supplementary Results and Problems 177
13 Laws of the Iterated Logarithm for Self-Normalized Processes 179
13.1 Stout's LIL for Self-Normalized Martingales 179
13.2 A Universal Upper LIL 182
13.3 Compact LIL for Self-Normalized Martingales 186
13.4 Supplementary Results and Problems 190
14 Multivariate Self-Normalized Processes with Matrix Normalization 193
14.1 Multivariate Extension of Canonical Assumptions 193
14.1.1 Matrix Sequence Roots for Self-Normalization 193
14.1.2 Canonical Assumptions for Matrix-Normalized Processes 194
14.2 Moment and Exponential Inequalities via Pseudo-Maximization 196
14.3 LIL and Boundary Crossing Probabilities for Multivariate Self-Normalized Processes 201
14.4 Supplementary Results and Problems 202
Part III Statistical Applications
15 The t-Statistic and Studentized Statistics 207
15.1 Distribution Theory of Student's t-Statistics 207
15.1.1 Case of Infinite Second Moment 208
15.1.2 Saddlepoint Approximations 210
15.1.3 The t-Test and a Sequential Extension 212
15.2 Multivariate Extension and Hotelling's T^{2}-Statistic 213
15.2.1 Sample Covariance Matrix and Wishart Distribution 213
15.2.2 The Multivariate t-Distribution and Hotelling's T^{2}-Statistic 213
15.2.3 Asymptotic Theory in the Case of Non-Normal Y_{i} 215
15.3 General Studentized Statistics 216
15.3.1 Martingale Central Limit Theorems and Asymptotic Normality 216
15.3.2 Non-Normal Limiting Distributions in Unit-Root Nonstationary Autoregressive Models 217
15.3.3 Studentized Statistics in Stochastic Regression Models 218
15.4 Supplementary Results and Problems 221
16 Self-Normalization for Approximate Pivots in Bootstrapping 223
16.1 Approximate Pivots and Bootstrap- t Confidence Intervals 223
16.2 Edgeworth Expansions and Second-Order Accuracy 224
16.2.1 Edgeworth Expansions for Smooth Functions of Sample Means 224
16.2.2 Edgeworth and Cornish-Fisher Expansions: Applications to Bootstrap- t and Percentile Intervals 225
16.3 Asymptotic \boldsymbol{U}-Statistics and Their Bootstrap Distributions 228
16.4 Application of Cramér-Type Moderate Deviations 232
16.5 Supplementary Results and Problems 233
17 Pseudo-Maximization in Likelihood and Bayesian Inference 235
17.1 Generalized Likelihood Ratio Statistics 235
17.1.1 The Wilks and Wald Statistics 236
17.1.2 Score Statistics and Their Martingale Properties 238
17.2 Penalized Likelihood and Bayesian Inference 238
17.2.1 Schwarz's Bayesian Selection Criterion 239
17.2.2 Pseudo-Maximization and Frequentist Properties of Bayes Procedures 240
17.3 Supplementary Results and Problems 241
18 Sequential Analysis and Boundary Crossing Probabilities for Self-Normalized Statistics 243
18.1 Information Bounds and Asymptotic Optimality of Sequential GLR Tests 244
18.1.1 Likelihood Ratio Identities, the Wald-Hoeffding Lower Bounds and their Asymptotic Generalizations 244
18.1.2 Asymptotic Optimality of 2-SPRTs and Sequential GLR Tests 247
18.2 Asymptotic Approximations via Method of Mixtures and Geometric Integration 251
18.2.1 Boundary Crossing Probabilities for GLR Statistics via Method of Mixtures 251
18.2.2 A More General Approach Using Saddlepoint Approximations and Geometric Integration 252
18.2.3 Applications and Examples 257
18.3 Efficient Monte Carlo Evaluation of Boundary Crossing Probabilities 260
18.4 Supplementary Results and Problems 262
References 267
Index 273

Chapter 1
 Introduction

A prototypical example of a self-normalized process is Student's t-statistic based on a sample of normal i.i.d. observations X_{1}, \ldots, X_{n}, dating back to 1908 when William Gosset ("Student") considered the problem of statistical inference on the mean μ when the standard deviation σ of the underlying distribution is unknown. Let $\bar{X}_{n}=n^{-1} \sum_{i=1}^{n} X_{i}$ be the sample mean and $s_{n}^{2}=(n-1)^{-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}$ be the sample variance. Gosset (1908) derived the distribution of the t-statistic $T_{n}=$ $\sqrt{n}\left(\bar{X}_{n}-\mu\right) / s_{n}$ for normal X_{i}; this is the t-distribution with $n-1$ degrees of freedom. The t-distribution converges to the standard normal distribution, and in fact T_{n} has a limiting standard normal distribution as $n \rightarrow \infty$ even when the X_{i} are nonnormal. When nonparametric methods were subsequently introduced, the t-test was compared with the nonparametric tests (e.g., the sign test and rank tests), in particular for "fat-tailed" distributions with infinite second or even first absolute moments. It has been found that the t-test of $\mu=\mu_{0}$ is robust against non-normality in terms of the Type I error probability but not the Type II error probability. Without loss of generality, consider the case $\mu_{0}=0$ so that

$$
\begin{equation*}
T_{n}=\frac{\sqrt{n} \bar{X}_{n}}{s_{n}}=\frac{S_{n}}{V_{n}}\left\{\frac{n-1}{n-\left(S_{n} / V_{n}\right)^{2}}\right\}^{1 / 2} \tag{1.1}
\end{equation*}
$$

where $S_{n}=\sum_{i=1}^{n} X_{i}, V_{n}^{2}=\sum_{i=1}^{n} X_{i}^{2}$. Efron (1969) and Logan et al. (1973) have derived limiting distributions of self-normalized sums S_{n} / V_{n}. In view of (1.1), if T_{n} or S_{n} / V_{n} has a limiting distribution, then so does the other, and it is well known that they coincide; see, e.g., Proposition 1 of Griffin (2002).

Active development of the probability theory of self-normalized processes began in the 1990s with the seminal work of Griffin and Kuelbs $(1989,1991)$ on laws of the iterated logarithm for self-normalized sums of i.i.d. variables belonging to the domain of attraction of a normal or stable law. Subsequently, Bentkus and Götze (1996) derived a Berry-Esseen bound for Student's t-statistic, and Giné et al. (1997) proved that the t-statistic has a limiting standard normal distribution if and only if X_{i} is in the domain of attraction of a normal law. Moreover, Csörgő et al. (2003a)
proved a self-normalized version of the weak invariance principle under the same necessary and sufficient condition. Shao (1997) proved large deviation results for S_{n} / V_{n} without moment conditions and moderate deviation results when X_{i} is the domain of attraction of a normal or stable law. Subsequently Shao (1999) obtained Cramér-type large deviation results when $E\left|X_{1}\right|^{3}<\infty$. Jing et al. (2004) derived saddlepoint approximations for Student's t-statistic with no moment assumptions. Bercu et al. (2002) obtained large and moderate deviation results for self-normalized empirical processes. Self-normalized sums of independent but non-identically distributed X_{i} have been considered by Bentkus et al. (1996), Wang and Jing (1999), Jing et al. (2003) and Csörgő et al. (2003a).

Part I of the book presents in Chaps. 3-7 the basic ideas and results in the probability theory of self-normalized sums of independent random variables described above. It also extends in Chap. 8 the theory to self-normalized U-statistics based on independent random variables. Part II considers self-normalized processes in the case of dependent variables. Like Part I that begins by introducing some basic probability theory for sums of independent random variables in Chap. 2, Part II begins by giving in Chap. 9 an overview of martingale inequalities and related results which will be used in the subsequent chapters. Chapter 10 provides a general framework for self-normalization, which links the approach of de la Peña et al. $(2000,2004)$ for general self-normalized processes to that of Shao (1997) for large deviations of selfnormalized sums of i.i.d. random variables. This general framework is also applicable to dependent random vectors that involve matrix normalization, as in Hotelling's T^{2}-statistic which generalizes Student's t-statistic to the multivariate case. In particular, it is noted in Chap. 10 that a basic ingredient in Shao's (1997) self-normalized large deviations theory is $e^{\psi(\theta, \rho)}:=E \exp \left\{\theta X_{1}-\rho \theta^{2} X_{1}^{2}\right\}$, which is always finite for $\rho>0$. This can be readily extended to the multivariate case by replacing θX_{1} with $\theta^{\prime} X_{1}$, where θ and X_{1} are d-dimensional vectors. Under the assumptions $E X_{1}=0$ and $E\left\|X_{1}\right\|^{2}<\infty$, Taylor's theorem yields

$$
\psi(\theta, \rho)=\log \left(E \exp \left\{\theta^{\prime} X_{1}-\rho\left(\theta^{\prime} X_{1}\right)^{2}\right\}\right)=\left\{\left(\frac{1}{2}-\rho+o(1)\right) \theta^{\prime} E\left(X_{1} X_{1}^{\prime}\right) \theta\right\}
$$

as $\theta \rightarrow 0$. Let $\gamma>0, C_{n}=(1+\gamma) \sum_{i=1}^{n} X_{i} X_{i}^{\prime}, A_{n}=\sum_{i=1}^{n} X_{i}$. It then follows that ρ and ε can be chosen sufficiently small so that

$$
\begin{equation*}
\left\{\exp \left(\theta^{\prime} A_{n}-\theta^{\prime} C_{n} \theta / 2\right), \mathscr{F}_{n}, n \geq 1\right\} \tag{1.2}
\end{equation*}
$$

is a supermartingale with mean ≤ 1, for $\|\theta\|<\varepsilon$.
Note that (1.2) implies that $\left\{\int_{\|\theta\|<\varepsilon} e^{\theta^{\prime} A_{n}-\theta^{\prime} C_{n} \theta / 2} f(\theta) d \theta, \mathscr{F}_{n}, n \geq 1\right\}$ is also a supermartingale, for any probability density f on the ball $\{\theta:\|\theta\|<\varepsilon\}$.

In Chap. 11 and its multivariate extension given in Chap. 14, we show that the supermartingale property (1.2), its weaker version $E\left\{\exp \left(\theta^{\prime} A_{n}-\theta^{\prime} C_{n} \theta / 2\right)\right\} \leq 1$ for $\|\theta\|<\varepsilon$, and other variants given in Chap. 10 provide a general set of conditions from which we can derive exponential bounds and moment inequalities for selfnormalized processes in dependent settings. A key tool is the pseudo-maximization
method which involves Laplace's method for evaluating integrals of the form $\int_{\|\theta\|<\varepsilon} e^{\theta^{\prime} A_{n}-\theta^{\prime} C_{n} \theta / 2} f(\theta) d \theta$. If the random function $\exp \left\{\theta^{\prime} A_{n}-\theta^{\prime} C_{n} \theta / 2\right\}$ in (1.2) could be maximized over θ inside the expectation $E\left\{\exp \left(\theta^{\prime} A_{n}-\theta^{\prime} C_{n} \theta / 2\right)\right\}$, taking the maximizing value $\theta=C_{n}^{-1} A_{n}$ would yield the expectation of the selfnormalized variable $\exp \left\{A_{n} C_{n}^{-1} A_{n} / 2\right\}$. Although this argument is not valid, integrating $\exp \left\{\theta^{\prime} A_{n}-\theta^{\prime} C_{n} \theta / 2\right\}$ with respect to $f(\theta) d \theta$ and applying Laplace's method to evaluate the integral basically achieves the same effect as in the heuristic argument. This method is used to derive exponential and L_{p}-bounds for selfnormalized processes in Chap. 12. The exponential bounds are used to derive laws of the iterated logarithm for self-normalized processes in Chap. 13.

Student's t-statistic $\sqrt{n}\left(\bar{X}_{n}-\mu\right) / s_{n}$ has also undergone far-reaching generalizations in the statistics literature during the past century. Its generalization is the Studentized statistic $\left(\hat{\theta}_{n}-\theta\right) / \widehat{\operatorname{se}}_{n}$, where θ is a functional $g(F)$ of the underlying distribution function $F, \hat{\theta}_{n}$ is usually chosen to be the corresponding functional $g\left(\hat{F}_{n}\right)$ of the empirical distribution, and $\widehat{\mathrm{se}}_{n}$ is a consistent estimator of the standard error of $\hat{\theta}_{n}$. Its multivariate generalization, which replaces $1 / \widehat{\operatorname{se}}_{n}$ by $\hat{\Sigma}_{n}^{-1 / 2}$, where $\hat{\Sigma}_{n}$ is a consistent estimator of the covariance matrix of the vector $\hat{\theta}_{n}$ or its variant, is ubiquitous in statistical applications. Part III of the book, which is on statistical applications of self-normalized processes, begins with an overview in Chap. 15 of the distribution theory of the t-statistic and its multivariate extensions, for samples first from normal distributions and then from general distributions that may have infinite second moments. Chapter 15 also considers the asymptotic theory of general Studentized statistics in time series and control systems and relates this theory to that of self-normalized martingales. An alternative to inference based on asymptotic distributions of Studentized statistics is to make use of bootstrapping. Chapter 16 describes the role of self-normalization in deriving approximate pivots for the construction of bootstrap confidence intervals, whose accuracy and correctness are analyzed by Edgeworth and Cornish-Fisher expansions. Chapter 17 introduces generalized likelihood ratio statistics as another class of self-normalized statistics. It also relates the pseudo-maximization approach and the method of mixtures in Part II to the close connections between likelihood and Bayesian inference. Whereas the framework of Part I covers the classical setting of independent observations sampled from a population, that of Part II is applicable to time series models and stochastic dynamic systems, and examples are given in Chaps. 15, 17 and 18. Moreover, the probability theory in Parts I and II is related not only to samples of fixed size, but also to sequentially generated samples that are associated with asymptotically optimal stopping rules. Part III concludes with Chap. 18 which considers self-normalized processes in sequential analysis and the associated boundary crossing problems.

Part I
Independent Random Variables

Chapter 2
 Classical Limit Theorems, Inequalities and Other Tools

This chapter summarizes some classical limit theorems, basic probability inequalities and other tools that are used in subsequent chapters. Throughout this book, all random variables are assumed to be defined on the same probability space (Ω, \mathscr{F}, P) unless otherwise specified.

2.1 Classical Limit Theorems

The law of large numbers, the central limit theorem and the law of the iterated logarithm form a trilogy of the asymptotic behavior of sums of independent random variables. They are closely related to moment conditions and deal with three modes of convergence of a sequence of random variables Y_{n} to a random variable Y. We say that Y_{n} converges to Y in probability, denoted by $Y_{n} \xrightarrow{P} Y$, if, for any $\varepsilon>0$, $P\left(\left|Y_{n}-Y\right|>\varepsilon\right) \rightarrow 0$ as $n \rightarrow \infty$. We say that Y_{n} converges almost surely to Y (or Y_{n} converges to Y with probability 1), denoted by $Y_{n} \xrightarrow{\text { a.s. }} Y$, if $P\left(\lim _{n \rightarrow \infty} Y_{n}=Y\right)=1$. Note that almost sure convergence is equivalent to $P\left(\max _{k \geq n}\left|Y_{k}-Y\right|>\varepsilon\right) \rightarrow 0$ as $n \rightarrow \infty$ for any given $\varepsilon>0$. We say that Y_{n} converges in distribution (or weakly) to Y, and write $Y_{n} \xrightarrow{D} Y$ or $Y_{n} \Rightarrow Y$, if $P\left(Y_{n} \leq x\right) \rightarrow P(Y \leq x)$, at every continuity point of the cumulative distribution function of Y. If the cumulative distribution $P(Y \leq x)$ is continuous, then $Y_{n} \xrightarrow{D} Y$ not only means $P\left(Y_{n} \leq x\right) \rightarrow P(Y \leq x)$ for every x, but also implies that the convergence is uniform in x, i.e.,

$$
\sup _{x}\left|P\left(Y_{n} \leq x\right)-P(Y \leq x)\right| \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

The three modes of convergence are related by

$$
Y_{n} \xrightarrow{\text { a.s. }} Y \Longrightarrow Y_{n} \xrightarrow{P} Y \Longrightarrow Y_{n} \xrightarrow{D} Y .
$$

The reverse relations are not true in general. However, $Y_{n} \xrightarrow{D} c$ is equivalent to $Y_{n} \xrightarrow{P} c$ when c is a constant. Another relationship is provided by Slutsky's theorem: If $Y_{n} \xrightarrow{D} Y$ and $\xi_{n} \xrightarrow{P} c$, then $Y_{n}+\xi_{n} \xrightarrow{D} Y+c$ and $\xi_{n} Y_{n} \xrightarrow{D} c Y$.

2.1.1 The Weak Law, Strong Law and Law of the Iterated Logarithm

Let X_{1}, X_{2}, \ldots be independent and identically distributed (i.i.d.) random variables and let $S_{n}=\sum_{i=1}^{n} X_{i}$. Then we have Kolmogorov's strong law of large numbers and Feller's weak law of large numbers.
Theorem 2.1. $n^{-1} S_{n} \xrightarrow{\text { a.s. }} c<\infty$ if and only if $E\left(\left|X_{1}\right|\right)<\infty$, in which case $c=E\left(X_{1}\right)$.
Theorem 2.2. In order that there exist constants c_{n} such that $n^{-1} S_{n}-c_{n} \xrightarrow{P} 0$, it is necessary and sufficient that $\lim _{x \rightarrow \infty} x P\left(\left|X_{1}\right| \geq x\right)=0$. In this case, $c_{n}=$ $E X_{1} I\left(\left|X_{1}\right| \leq n\right)$.

The Marcinkiewicz-Zygmund law of large numbers gives the rate of convergence in Theorem 2.1.

Theorem 2.3. Let $1<p<2$. If $E\left(\left|X_{1}\right|\right)<\infty$, then

$$
\begin{equation*}
n^{1-1 / p}\left(n^{-1} S_{n}-E\left(X_{1}\right)\right) \xrightarrow{\text { a.s. }} 0 \tag{2.1}
\end{equation*}
$$

if and only if $E\left(\left|X_{1}\right|^{p}\right)<\infty$.
When $p=2$, (2.1) is no longer valid. Instead, we have the Hartman-Wintner law of the iterated logarithm (LIL), the converse of which is established by Strassen (1966).

Theorem 2.4. If $E X_{1}^{2}<\infty$ and $E X_{1}=\mu, \operatorname{Var}\left(X_{1}\right)=\sigma^{2}$, then

$$
\begin{gathered}
\limsup _{n \rightarrow \infty} \frac{S_{n}-n \mu}{\sqrt{2 n \log \log n}}=\sigma \text { a.s. } \\
\liminf _{n \rightarrow \infty} \frac{S_{n}-n \mu}{\sqrt{2 n \log \log n}}=-\sigma \text { a.s. } \\
\limsup _{n \rightarrow \infty} \frac{\max _{1 \leq k \leq n}\left|S_{k}-k \mu\right|}{\sqrt{2 n \log \log n}}=\sigma \text { a.s. }
\end{gathered}
$$

Conversely, if there exist finite constants a and τ such that

$$
\limsup _{n \rightarrow \infty} \frac{S_{n}-n a}{\sqrt{2 n \log \log n}}=\tau \text { a.s., }
$$

then $a=E\left(X_{1}\right)$ and $\tau^{2}=\operatorname{Var}\left(X_{1}\right)$.

The following is an important tool for proving Theorems 2.1, 2.3 and 2.4.

Lemma 2.5 (Borel-Cantelli Lemma).

(1) Let A_{1}, A_{2}, \ldots be an arbitrary sequence of events on (Ω, \mathscr{F}, P). Then $\sum_{i=1}^{\infty} P\left(A_{i}\right)<\infty$ implies $P\left(A_{n}\right.$ i.o. $)=0$, where $\left\{A_{n}\right.$ i.o. $\}$ denotes the event $\cap_{k \geq 1} \cup_{n \geq k} A_{n}$, i.e., A_{n} occurs infinitely often.
(2) Let A_{1}, A_{2}, \ldots, be a sequence of independent events on (Ω, \mathscr{F}, P). Then $\sum_{i=1}^{\infty} P\left(A_{i}\right)=\infty$ implies $P\left(A_{n}\right.$ i.o. $)=1$.

The strong law of large numbers and LIL have also been shown to hold for independent but not necessarily identically distributed random variables X_{1}, X_{2}, \ldots.

Theorem 2.6.

(1) If $b_{n} \uparrow \infty$ and $\sum_{i=1}^{\infty} \operatorname{Var}\left(X_{i}\right) / b_{i}^{2}<\infty$, then $\left(S_{n}-E S_{n}\right) / b_{n} \xrightarrow{\text { a.s. }} 0$.
(2) If $b_{n} \uparrow \infty, \sum_{i=1}^{\infty} P\left(\left|X_{i}\right| \geq b_{i}\right)<\infty$ and $\sum_{i=1}^{\infty} b_{i}^{-2} E X_{i}^{2} I\left(\left|X_{i}\right| \leq b_{i}\right)<\infty$, then $\left(S_{n}-\right.$ $\left.a_{n}\right) / b_{n} \xrightarrow{\text { a.s. }} 0$, where $a_{n}=\sum_{i=1}^{n} E X_{i} I\left(\left|X_{i}\right| \leq b_{i}\right)$.

The "if" part in Theorems 2.1 and 2.3 can be derived from Theorem 2.6, which can be proved by making use Kolmogorov's three-series theorem and the Kronecker lemma in the following.

Theorem 2.7 (Three-series Theorem). The series $\sum_{i=1}^{\infty} X_{i}$ converges a.s. if and only if the three series

$$
\sum_{i=1}^{\infty} P\left(\left|X_{i}\right| \geq c\right), \quad \sum_{i=1}^{\infty} E X_{i} I\left(\left|X_{i}\right| \leq c\right), \quad \sum_{i=1}^{\infty} \operatorname{Var}\left\{X_{i} I\left(\left|X_{i}\right| \leq c\right)\right\}
$$

converge for some $c>0$.
Lemma 2.8 (Kronecker's Lemma). If $\sum_{i=1}^{\infty} x_{i}$ converges and $b_{n} \uparrow \infty$, then $b_{n}^{-1} \sum_{i=1}^{n} b_{i} x_{i} \rightarrow 0$.

We end this subsection with Kolmogorov's LIL for independent but not necessarily identically distributed random variables; see Chow and Teicher (1988, Sect. 10.2). Assume that $E X_{i}=0$ and $E X_{i}^{2}<\infty$ and put $B_{n}^{2}=\sum_{i=1}^{n} E X_{i}^{2}$. If $B_{n} \rightarrow \infty$ and $X_{n}=o\left(B_{n}\left(\log \log B_{n}\right)^{-1 / 2}\right)$ a.s., then

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{S_{n}}{B_{n} \sqrt{2 \log \log B_{n}}}=1 \text { a.s. } \tag{2.2}
\end{equation*}
$$

2.1.2 The Central Limit Theorem

For any sequence of random variables X_{i} with finite means, the sequence $X_{i}-E\left(X_{i}\right)$ has zero means and therefore we can assume, without loss of generality, that the mean of X_{i} is 0 . For i.i.d. X_{i}, we have the classical central limit theorem (CLT).

Theorem 2.9. If X_{1}, \ldots, X_{n} are i.i.d. with $E\left(X_{1}\right)=0$ and $\operatorname{Var}\left(X_{1}\right)=\sigma^{2}<\infty$, then

$$
\frac{S_{n}}{\sqrt{n} \sigma} \xrightarrow{D} N(0,1) .
$$

The Berry-Esseen inequality provides the convergence rate in the CLT.
Theorem 2.10. Let Φ denote the standard normal distribution function and $W_{n}=$ $S_{n} /(\sqrt{n} \sigma)$. Then

$$
\begin{align*}
& \sup _{x}\left|P\left(W_{n} \leq x\right)-\Phi(x)\right| \tag{2.3}\\
& \leq 4.1\left\{\sigma^{-2} E X_{1}^{2} I\left(\left|X_{1}\right|>\sqrt{n} \sigma\right)+n^{-1 / 2} \sigma^{-3} E\left|X_{1}\right|^{3} I\left(\left|X_{1}\right| \leq \sqrt{n} \sigma\right)\right\}
\end{align*}
$$

In particular, if $E\left|X_{1}\right|^{3}<\infty$, then

$$
\begin{equation*}
\sup _{x}\left|P\left(W_{n} \leq x\right)-\Phi(x)\right| \leq \frac{0.79 E\left|X_{1}\right|^{3}}{\sqrt{n} \sigma^{3}} \tag{2.4}
\end{equation*}
$$

For general independent not necessarily identically distributed random variables, the CLT holds under the Lindeberg condition, under which a non-uniform BerryEsseen inequality of the type in (2.3) still holds.

Theorem 2.11 (Lindberg-Feller CLT). Let X_{n} be independent random variables with $E\left(X_{i}\right)=0$ and $E\left(X_{i}^{2}\right)<\infty$. Let $W_{n}=S_{n} / B_{n}$, where $B_{n}^{2}=\sum_{i=1}^{n} E\left(X_{i}^{2}\right)$. If the Lindberg condition

$$
\begin{equation*}
B_{n}^{-2} \sum_{i=1}^{n} E X_{i}^{2} I\left(\left|X_{i}\right| \geq \varepsilon B_{n}\right) \longrightarrow 0 \quad \text { for all } \varepsilon>0 \tag{2.5}
\end{equation*}
$$

holds, then $W_{n} \xrightarrow{D} N(0,1)$. Conversely, if $\max _{1 \leq i \leq n} E X_{i}^{2}=o\left(B_{n}^{2}\right)$ and $W_{n} \xrightarrow{D} N$ $(0,1)$, then the Lindberg condition (2.5) is satisfied.

Theorem 2.12. With the same notations as in Theorem 2.11,

$$
\begin{align*}
& \sup _{x}\left|P\left(W_{n} \leq x\right)-\Phi(x)\right| \tag{2.6}\\
& \leq 4.1\left(B_{n}^{-2} \sum_{i=1}^{n} E X_{i}^{2} I\left\{\left|X_{i}\right|>B_{n}\right\}+B_{n}^{-3} \sum_{i=1}^{n} E\left|X_{i}\right|^{3} I\left\{\left|X_{i}\right| \leq B_{n}\right\}\right)
\end{align*}
$$

and

$$
\begin{align*}
& \left|P\left(W_{n} \leq x\right)-\Phi(x)\right| \tag{2.7}\\
& \leq C\left(\sum_{i=1}^{n} \frac{E X_{i}^{2} I\left\{\left|X_{i}\right|>(1+|x|) B_{n}\right\}}{(1+|x|)^{2} B_{n}^{2}}+\sum_{i=1}^{n} \frac{E\left|X_{i}\right|^{3} I\left\{\left|X_{i}\right| \leq(1+|x|) B_{n}\right\}}{(1+|x|)^{3} B_{n}^{3}}\right)
\end{align*}
$$

where C is an absolute constant.

2.1.3 Cramér's Moderate Deviation Theorem

The Berry-Esseen inequality gives a bound on the absolute error in approximating the distribution of W_{n} by the standard normal distribution. The usefulness of the bound may be limited when $\Phi(x)$ is close to 0 or 1 . Cramér's theory of moderate deviations provides the relative errors. Petrov (1975, pp. 219-228) gives a comprehensive treatment of the theory and introduces the Cramér series, which is a power series whose coefficients can be expressed in terms of the cumulants of the underlying distribution and which is used in part (a) of the following theorem.

Theorem 2.13.

(a) Let X_{1}, X_{2}, \ldots be i.i.d. random variables with $E\left(X_{1}\right)=0$ and $E e^{t_{0}\left|X_{1}\right|}<\infty$ for some $t_{0}>0$. Then for $x \geq 0$ and $x=o\left(n^{1 / 2}\right)$,

$$
\begin{equation*}
\frac{P\left(W_{n} \geq x\right)}{1-\Phi(x)}=\exp \left\{x^{2} \lambda\left(\frac{x}{\sqrt{n}}\right)\right\}\left(1+O\left(\frac{1+x}{\sqrt{n}}\right)\right) \tag{2.8}
\end{equation*}
$$

where $\lambda(t)$ is the Cramér series.
(b) If $E e^{t_{0}} \sqrt{\left|X_{1}\right|}<\infty$ for some $t_{0}>0$, then

$$
\begin{equation*}
\frac{P\left(W_{n} \geq x\right)}{1-\Phi(x)} \rightarrow 1 \quad \text { as } n \rightarrow \infty \text { uniformly in } x \in\left[0, o\left(n^{1 / 6}\right)\right) \tag{2.9}
\end{equation*}
$$

(c) The converse of (b) is also true; that is, if (2.9) holds, then $E e^{t_{0} \sqrt{\left|X_{1}\right|}}<\infty$ for some $t_{0}>0$.
In parts (a) and (b) of Theorem 2.13, $P\left(W_{n} \geq x\right) /(1-\Phi(x))$ can clearly be replaced by $P\left(W_{n} \leq-x\right) / \Phi(-x)$. Moreover, similar results are also available for standardized sums S_{n} / B_{n} of independent but not necessarily identically distributed random variables with bounded moment generating functions in some neighborhood of the origin; see Petrov (1975). In Chap. 7, we establish Cramér-type moderate deviation results for self-normalized (rather than standardized) sums of independent random variables under much weaker conditions.

2.2 Exponential Inequalities for Sample Sums

2.2.1 Self-Normalized Sums

We begin by considering independent Rademacher random variables.
Theorem 2.14. Assume that ε_{i} are independent and $P\left(\varepsilon_{i}=1\right)=P\left(\varepsilon_{i}=-1\right)=1 / 2$. Then

$$
\begin{equation*}
P\left(\frac{\sum_{i=1}^{n} a_{i} \varepsilon_{i}}{\left(\sum_{i=1}^{n} a_{i}^{2}\right)^{1 / 2}} \geq x\right) \leq e^{-x^{2} / 2} \tag{2.10}
\end{equation*}
$$

for $x>0$ and real numbers $\left\{a_{i}\right\}$.

Proof. Without loss of generality, assume $\sum_{i=1}^{n} a_{i}^{2}=1$. Observe that

$$
\frac{1}{2}\left(e^{-t}+e^{t}\right) \leq e^{t^{2} / 2}
$$

for $t \in \mathbb{R}$. We have

$$
\begin{aligned}
P\left(\sum_{i=1}^{n} a_{i} \varepsilon_{i} \geq x\right) & \leq e^{-x^{2}} E e^{x \sum_{i=1}^{n} a_{i} \varepsilon_{i}} \\
& =e^{-x^{2}} \prod_{i=1}^{n} \frac{1}{2}\left(e^{-a_{i} x}+e^{a_{i} x}\right) \\
& \leq e^{-x^{2}} \prod_{i=1}^{n} e^{a_{i}^{2} x^{2} / 2}=e^{-x^{2} / 2} .
\end{aligned}
$$

Let X_{n} be independent random variables and let $V_{n}^{2}=\sum_{i=1}^{n} X_{i}^{2}$. If we further assume that X_{i} is symmetric, then X_{i} and $\varepsilon_{i} X_{i}$ have the same distribution, where $\left\{\varepsilon_{i}\right\}$ are i.i.d. Rademacher random variables independent of $\left\{X_{i}\right\}$. Hence the selfnormalized sum S_{n} / V_{n} has the same distribution as $\left(\sum_{i=1}^{n} X_{i} \varepsilon_{i}\right) / V_{n}$. Given $\left\{X_{i}, 1 \leq\right.$ $i \leq n\}$, applying (2.10) to $a_{i}=X_{i}$ yields the following.

Theorem 2.15. If X_{i} is symmetric, then for $x>0$,

$$
\begin{equation*}
P\left(S_{n} \geq x V_{n}\right) \leq e^{-x^{2} / 2} \tag{2.11}
\end{equation*}
$$

The next result extends the above "sub-Gaussian" property of the self-normalized sum S_{n} / V_{n} to general (not necessarily symmetric) independent random variables.
Theorem 2.16. Assume that there exist $b>0$ and a such that

$$
\begin{equation*}
P\left(S_{n} \geq a\right) \leq 1 / 4 \quad \text { and } \quad P\left(V_{n}^{2} \geq b^{2}\right) \leq 1 / 4 . \tag{2.12}
\end{equation*}
$$

Then for $x>0$,

$$
\begin{equation*}
P\left\{S_{n} \geq x\left(a+b+V_{n}\right)\right\} \leq 2 e^{-x^{2} / 2} \tag{2.13}
\end{equation*}
$$

In particular, if $E\left(X_{i}\right)=0$ and $E\left(X_{i}^{2}\right)<\infty$, then

$$
\begin{equation*}
P\left\{\left|S_{n}\right| \geq x\left(4 B_{n}+V_{n}\right)\right\} \leq 4 e^{-x^{2} / 2} \quad \text { for } x>0 \tag{2.14}
\end{equation*}
$$

where $B_{n}=\left(\sum_{i=1}^{n} E X_{i}^{2}\right)^{1 / 2}$.
Proof. When $x \leq 1,(2.13)$ is trivial. When $x>1$, let $\left\{Y_{i}, 1 \leq i \leq n\right\}$ be an independent copy of $\left\{X_{i}, 1 \leq i \leq n\right\}$. Then

$$
\begin{aligned}
P\left(\sum_{i=1}^{n} Y_{i} \leq a, \sum_{i=1}^{n} Y_{i}^{2} \leq b^{2}\right) & \geq 1-P\left(\sum_{i=1}^{n} Y_{i}>a\right)-P\left(\sum_{i=1}^{n} Y_{i}^{2}>b^{2}\right) \\
& \geq 1-1 / 4-1 / 4=1 / 2
\end{aligned}
$$

Noting that

$$
\begin{aligned}
& \left\{S_{n} \geq x\left(a+b+V_{n}\right), \sum_{i=1}^{n} Y_{i} \leq a, \sum_{i=1}^{n} Y_{i}^{2} \leq b^{2}\right\} \\
& \subset\left\{\sum_{i=1}^{n}\left(X_{i}-Y_{i}\right) \geq x\left(a+b+\left(\sum_{i=1}^{n}\left(X_{i}-Y_{i}\right)^{2}\right)^{1 / 2}-\left(\sum_{i=1}^{n} Y_{i}^{2}\right)^{1 / 2}\right)-a, \sum_{i=1}^{n} Y_{i}^{2} \leq b^{2}\right\} \\
& \subset\left\{\sum_{i=1}^{n}\left(X_{i}-Y_{i}\right) \geq x\left(\sum_{i=1}^{n}\left(X_{i}-Y_{i}\right)^{2}\right)^{1 / 2}\right\}
\end{aligned}
$$

and that $\left\{X_{i}-Y_{i}, 1 \leq i \leq n\right\}$ is a sequence of independent symmetric random variables, we have

$$
\begin{aligned}
P\left(S_{n} \geq x\left(a+b+V_{n}\right)\right) & =\frac{P\left(S_{n} \geq x\left(a+b+V_{n}\right), \sum_{i=1}^{n} Y_{i} \leq a, \sum_{i=1}^{n} Y_{i}^{2} \leq b^{2}\right)}{P\left(\sum_{i=1}^{n} Y_{i} \leq a, \sum_{i=1}^{n} Y_{i}^{2} \leq b^{2}\right)} \\
& \leq 2 P\left(\sum_{i=1}^{n}\left(X_{i}-Y_{i}\right) \geq x\left(\sum_{i=1}^{n}\left(X_{i}-Y_{i}\right)^{2}\right)^{1 / 2}\right) \\
& \leq 2 e^{-x^{2} / 2}
\end{aligned}
$$

by (2.11). This proves (2.13), and (2.14) follows from (2.13) with $a=b=2 B_{n}$.

2.2.2 Tail Probabilities for Partial Sums

Let X_{n} be independent random variables and let $S_{n}=\sum_{i=1}^{n} X_{i}$. The following theorem gives the Bennett-Hoeffding inequalities.

Theorem 2.17. Assume that $E X_{i} \leq 0, X_{i} \leq a(a>0)$ for each $1 \leq i \leq n$, and $\sum_{i=1}^{n} E X_{i}^{2} \leq B_{n}^{2}$. Then

$$
\begin{array}{r}
E e^{t S_{n}} \leq \exp \left(a^{-2}\left(e^{t a}-1-t a\right) B_{n}^{2}\right) \quad \text { for } t>0, \\
P\left(S_{n} \geq x\right) \leq \exp \left(-\frac{B_{n}^{2}}{a^{2}}\left\{\left(1+\frac{a x}{B_{n}^{2}}\right) \log \left(1+\frac{a x}{B_{n}^{2}}\right)-\frac{a x}{B_{n}^{2}}\right\}\right) \tag{2.16}
\end{array}
$$

and

$$
\begin{equation*}
P\left(S_{n} \geq x\right) \leq \exp \left(-\frac{x^{2}}{2\left(B_{n}^{2}+a x\right)}\right) \quad \text { for } x>0 \tag{2.17}
\end{equation*}
$$

Proof. It is easy to see that $\left(e^{s}-1-s\right) / s^{2}$ is an increasing function of s. Therefore

$$
\begin{equation*}
e^{t s} \leq 1+t s+(t s)^{2}\left(e^{t a}-1-t a\right) /(t a)^{2} \tag{2.18}
\end{equation*}
$$

for $s \leq a$, and hence

$$
\begin{aligned}
E e^{t S_{n}} & =\prod_{i=1}^{n} E e^{t X_{i}} \leq \prod_{i=1}^{n}\left(1+t E X_{i}+a^{-2}\left(e^{t a}-1-t a\right) E X_{i}^{2}\right) \\
& \leq \prod_{i=1}^{n}\left(1+a^{-2}\left(e^{t a}-1-t a\right) E X_{i}^{2}\right) \leq \exp \left(a^{-2}\left(e^{t a}-1-t a\right) B_{n}^{2}\right)
\end{aligned}
$$

This proves (2.15). To prove (2.16), let $t=a^{-1} \log \left(1+a x / B_{n}^{2}\right)$. Then, by (2.15),

$$
\begin{aligned}
P\left(S_{n} \geq x\right) & \leq e^{-t x} E e^{t S_{n}} \\
& \leq \exp \left(-t x+a^{-2}\left(e^{t a}-1-t a\right) B_{n}^{2}\right) \\
& =\exp \left(-\frac{B_{n}^{2}}{a^{2}}\left\{\left(1+\frac{a x}{B_{n}^{2}}\right) \log \left(1+\frac{a x}{B_{n}^{2}}\right)-\frac{a x}{B_{n}^{2}}\right\}\right),
\end{aligned}
$$

proving (2.16). To prove (2.17), use (2.16) and

$$
(1+s) \log (1+s)-s \geq \frac{s^{2}}{2(1+s)} \quad \text { for } s>0
$$

The inequality (2.17) is often called Bernstein's inequality. From the Taylor expansion of e^{x}, it follows that

$$
\begin{equation*}
e^{x} \leq 1+x+x^{2} / 2+|x|^{3} e^{x} / 6 \tag{2.19}
\end{equation*}
$$

Let $\beta_{n}=\sum_{i=1}^{n} E\left|X_{i}\right|^{3}$. Using (2.19) instead of (2.18) in the above proof, we have

$$
\begin{gather*}
E e^{t S_{n}} \leq \exp \left(\frac{1}{2} t^{2} B_{n}^{2}+\frac{1}{6} t^{3} \beta_{n} e^{t a}\right) \tag{2.20}\\
P\left(S_{n} \geq x\right) \tag{2.21}
\end{gather*}
$$

for all $t>0$, and in particular

$$
\begin{equation*}
P\left(S_{n} \geq x\right) \leq \exp \left(-\frac{x^{2}}{2 B_{n}^{2}}+\frac{x^{3}}{6 B_{n}^{6}} \beta_{n} e^{a x / B_{n}^{2}}\right) \tag{2.22}
\end{equation*}
$$

When X_{i} is not bounded above, we can first truncate it and then apply Theorem 2.17 to prove the following inequality.

Theorem 2.18. Assume that $E X_{i} \leq 0$ for $1 \leq i \leq n$ and that $\sum_{i=1}^{n} E X_{i}^{2} \leq B_{n}^{2}$. Then

$$
\begin{align*}
P\left(S_{n} \geq x\right) \leq & P\left(\max _{1 \leq i \leq n} X_{i} \geq b\right)+\exp \left(-\frac{B_{n}^{2}}{a^{2}}\left\{\left(1+\frac{a x}{B_{n}^{2}}\right) \log \left(1+\frac{a x}{B_{n}^{2}}\right)-\frac{a x}{B_{n}^{2}}\right\}\right) \\
& +\sum_{i=1}^{n} P\left(a<X_{i}<b\right) P\left(S_{n}-X_{i}>x-b\right) \tag{2.23}
\end{align*}
$$

for $x>0$ and $b \geq a>0$. In particular,

$$
\begin{equation*}
P\left(S_{n} \geq x\right) \leq P\left(\max _{1 \leq i \leq n} X_{i}>\delta x\right)+\left(\frac{3 B_{n}^{2}}{B_{n}^{2}+\delta x^{2}}\right)^{1 / \delta} \tag{2.24}
\end{equation*}
$$

for $x>0$ and $\delta>0$.
Proof. Let $\bar{X}_{i}=X_{i} I\left(X_{i} \leq a\right)$ and $\bar{S}_{n}=\sum_{i=1}^{n} \bar{X}_{i}$. Then

$$
\begin{align*}
P\left(S_{n} \geq x\right) \leq & P\left(\max _{1 \leq i \leq n} X_{i} \geq b\right)+P\left(S_{n} \geq x, \max _{1 \leq i \leq n} X_{i} \leq a\right) \\
& +P\left(S_{n} \geq x, \max _{1 \leq i \leq n} X_{i}>a, \max _{1 \leq i \leq n} X_{i}<b\right) \\
\leq & P\left(\max _{1 \leq i \leq n} X_{i} \geq b\right)+P\left(\bar{S}_{n} \geq x\right) \\
& +\sum_{i=1}^{n} P\left(S_{n} \geq x, a<X_{i}<b\right) \tag{2.25}\\
\leq & P\left(\max _{1 \leq i \leq n} X_{i} \geq b\right)+P\left(\bar{S}_{n} \geq x\right) \\
& +\sum_{i=1}^{n} P\left(S_{n}-X_{i} \geq x-b, a<X_{i}<b\right) \\
= & P\left(\max _{1 \leq i \leq n} X_{i} \geq b\right)+P\left(\bar{S}_{n} \geq x\right) \\
& +\sum_{i=1}^{n} P\left(a<X_{i}<b\right) P\left(S_{n}-X_{i} \geq x-b\right) .
\end{align*}
$$

Applying (2.16) to \bar{S}_{n} gives

$$
P\left(\bar{S}_{n} \geq x\right) \leq \exp \left(-\frac{B_{n}^{2}}{a^{2}}\left[\left(1+\frac{a x}{B_{n}^{2}}\right) \log \left(1+\frac{a x}{B_{n}^{2}}\right)-\frac{a x}{B_{n}^{2}}\right]\right),
$$

which together with (2.26) yields (2.23). From (2.23) with $a=b=\delta x$, (2.24) follows.

The following two results are about nonnegative random variables.
Theorem 2.19. Assume that $X_{i} \geq 0$ with $E\left(X_{i}^{2}\right)<\infty$. Let $\mu_{n}=\sum_{i=1}^{n} E X_{i}$ and $B_{n}^{2}=$ $\sum_{i=1}^{n} E X_{i}^{2}$. Then for $0<x<\mu_{n}$,

$$
\begin{equation*}
P\left(S_{n} \leq x\right) \leq \exp \left(-\frac{\left(\mu_{n}-x\right)^{2}}{2 B_{n}^{2}}\right) \tag{2.26}
\end{equation*}
$$

Proof. Note that $e^{-a} \leq 1-a+a^{2} / 2$ for $a \geq 0$. For any $t \geq 0$ and $x \leq \mu_{n}$, we have

$$
\begin{aligned}
P\left(S_{n} \leq x\right) & \leq e^{t x} E e^{-t S_{n}}=e^{t x} \prod_{i=1}^{n} E e^{-t X_{i}} \\
& \leq e^{t x} \prod_{i=1}^{n} E\left(1-t X_{i}+t^{2} X_{i}^{2} / 2\right) \\
& \leq \exp \left(-t\left(\mu_{n}-x\right)+t^{2} B_{n}^{2} / 2\right) .
\end{aligned}
$$

Letting $t=\left(\mu_{n}-x\right) / B_{n}^{2}$ yields (2.26).

Theorem 2.20. Assume that $P\left(X_{i}=1\right)=p_{i}$ and $P\left(X_{i}=0\right)=1-p_{i}$. Then for $x>0$,

$$
\begin{equation*}
P\left(S_{n} \geq x\right) \leq\left(\frac{\mu e}{x}\right)^{x} \tag{2.27}
\end{equation*}
$$

where $\mu=\sum_{i=1}^{n} p_{i}$.
Proof. Let $t>0$. Then

$$
\begin{aligned}
P\left(S_{n} \geq x\right) & \leq e^{-t x} \prod_{i=1}^{n} E e^{t X_{i}}=e^{-t x} \prod_{i=1}^{n}\left(1+p_{i}\left(e^{t}-1\right)\right) \\
& \leq \exp \left(-t x+\left(e^{t}-1\right) \sum_{i=1}^{n} p_{i}\right)=\exp \left(-t x+\left(e^{t}-1\right) \mu\right)
\end{aligned}
$$

Since the case $x \leq \mu$ is trivial, we assume that $x>\mu$. Then letting $t=\log (x / \mu)$ yields

$$
\exp \left(-t x+\left(e^{t}-1\right) \mu\right)=\exp (-x \log (x / \mu)+x-\mu) \leq(\mu e / x)^{x}
$$

We end this section with the Ottaviani maximal inequality.
Theorem 2.21. Assume that there exists a such that $\max _{1 \leq k \leq n} P\left(S_{k}-S_{n} \geq a\right) \leq 1 / 2$. Then

$$
\begin{equation*}
P\left(\max _{1 \leq k \leq n} S_{k} \geq x\right) \leq 2 P\left(S_{n} \geq x-a\right) \tag{2.28}
\end{equation*}
$$

In particular, if $E\left(X_{i}\right)=0$ and $E\left(X_{i}^{2}\right)<\infty$, then

$$
\begin{equation*}
P\left(\max _{1 \leq k \leq n} S_{k} \geq x\right) \leq 2 P\left(S_{n} \geq x-\sqrt{2} B_{n}\right) \tag{2.29}
\end{equation*}
$$

where $B_{n}=\sqrt{\sum_{i=1}^{n} E\left(X_{i}^{2}\right)}$.
Proof. Let $A_{1}=\left\{S_{1} \geq x\right\}$ and $A_{k}=\left\{S_{k} \geq x, \max _{1 \leq i \leq k-1} S_{i}<x\right\}$. Then $\left\{\max _{1 \leq k \leq n} S_{k}\right.$ $\geq x\}=\cup_{k=1}^{n} A_{k}$ and

$$
\begin{aligned}
P\left(\max _{1 \leq k \leq n} S_{k} \geq x\right) & \leq P\left(S_{n} \geq x-a\right)+\sum_{k=1}^{n} P\left(A_{k}, S_{n}<x-a\right) \\
& \leq P\left(S_{n} \geq x-a\right)+\sum_{k=1}^{n} P\left(A_{k}, S_{n}-S_{k}<-a\right) \\
& =P\left(S_{n} \geq x-a\right)+\sum_{k=1}^{n} P\left(A_{k}\right) P\left(S_{n}-S_{k}<-a\right) \\
& \leq P\left(S_{n} \geq x-a\right)+(1 / 2) \sum_{k=1}^{n} P\left(A_{k}\right) \\
& =P\left(S_{n} \geq x-a\right)+(1 / 2) P\left(\max _{1 \leq k \leq n} S_{k} \geq x\right)
\end{aligned}
$$

which gives (2.28). (2.29) follows from (2.28) with $a=\sqrt{2} B_{n}$.

The proof of Kolmogorov's LIL (2.2) involves upper exponential bounds like those in Theorem 2.17 and the following lower exponential bound, whose proof is given in Chow and Teicher (1988, pp. 352-354) and uses the "conjugate method" that will be described in Sect. 3.1.

Theorem 2.22. Assume that $E X_{i}=0$ and $\left|X_{i}\right| \leq a_{i}$ a.s. for $1 \leq i \leq n$ and that $\sum_{i=1}^{n} E X_{i}^{2}=B_{n}^{2}$. Let $c_{n} \geq c_{0}>0$ be such that $\lim _{n \rightarrow \infty} a_{n} c_{n} / B_{n}=0$. Then for every $0<\gamma<1$, there exists $0<\delta_{\gamma}<1 / 2$ such that for all large n,

$$
P\left\{S_{n} \geq(1-\gamma)^{2} c_{n} B_{n}\right\} \geq \delta_{\gamma} \exp \left\{-(1-\gamma)\left(1-\gamma^{2}\right) c_{n}^{2} / 2\right\}
$$

2.3 Characteristic Functions and Expansions Related to the CLT

Let Y be a random variable with distribution function F. The characteristic function of Y is defined by $\varphi(t)=E e^{i t Y}=\int_{-\infty}^{\infty} e^{i t y} d F(y)$ for $t \in \mathbb{R}$. In view of Lévy's inversion formula

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{2 \pi} \int_{-T}^{T} \frac{e^{-i t a}-e^{-i t b}}{i t} \varphi(t) d t=P(a<Y<b)+\frac{1}{2}\{P(Y=a)+P(Y=b)\} \tag{2.30}
\end{equation*}
$$

for $a<b$ (see Durrett, 2005, pp. 93-94), the characteristic function uniquely determines the distribution function. The characteristic function φ is continuous, with $\varphi(0)=1,|\varphi(t)| \leq 1$ for all $t \in \mathbb{R}$. There are three possibilities concerning solutions to the equation $|\varphi(t)|=1$ (see Durrett, 2005, p. 129):
(a) $|\varphi(t)|<1$ for all $t \neq 0$.
(b) $|\varphi(t)|=1$ for all $t \in \mathbb{R}$. In this case, $\varphi(t)=e^{i t a}$ and Y puts all its mass at a.
(c) $|\varphi(\tau)|=1$ and $|\varphi(t)|<1$ for $0<t<\tau$. In this case $|\varphi|$ has period τ and there exists $b \in \mathbb{R}$ such that the support of Y is the lattice $\{b+2 \pi j / \tau: j=0$, $\pm 1, \pm 2, \ldots\}$, i.e., Y is lattice with span $2 \pi / \tau$.

A random variable Y is called non-lattice if its support is not a lattice, which corresponds to case (a) above. It is said to be strongly non-lattice if it satisfies Cramér's condition

$$
\begin{equation*}
\limsup _{|t| \rightarrow \infty}|\varphi(t)|<1 . \tag{2.31}
\end{equation*}
$$

Note that (2.31), which is only concerned with the asymptotic behavior of $|\varphi(t)|$ as $|t| \rightarrow \infty$, is stronger than (a) because it rules out (b) and (c).

If the characteristic function φ of Y is integrable, i.e., $\int_{-\infty}^{\infty}|\varphi(t)| d t<\infty$, then Y has a bounded continuous density function f with respect to Lebesgue measure and

$$
\begin{equation*}
f(y)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i t y} \varphi(t) d t \tag{2.32}
\end{equation*}
$$

This is the Fourier inversion formula; see Durrett (2005, p. 95). In this case, since $\varphi(t)=\int_{-\infty}^{\infty} e^{i t y} f(y) d y$ and f is integrable,

$$
\begin{equation*}
\lim _{|t| \rightarrow \infty} \varphi(t)=0 \tag{2.33}
\end{equation*}
$$

by the Riemann-Lebesgue lemma; see Durrett (2005, p. 459). Hence, if Y has an integrable characteristic function, then Y satisfies Cramér's condition (2.31).

In the case of lattice distributions with support $\{b+h k: k=0, \pm 1, \pm 2, \ldots\}$, let $p_{k}=P(Y=b+h k)$. Then the characteristic function is a Fourier series $\varphi(t)=$ $\sum_{k=-\infty}^{\infty} p_{k} e^{i t(b+h k)}$, with

$$
\begin{equation*}
p_{k}=\frac{h}{2 \pi} \int_{-\pi / h}^{\pi / h} e^{-i t(b+h k)} \varphi(t) d t \tag{2.34}
\end{equation*}
$$

noting that the span h corresponds to $2 \pi / \tau$ (or $\tau=2 \pi / h$) in (b).

2.3.1 Continuity Theorem and Weak Convergence

Theorem 2.23. Let φ_{n} be the characteristic function of Y_{n}.
(a) If $\varphi_{n}(t)$ converges, as $n \rightarrow \infty$, to a limit $\varphi(t)$ for every t and if φ is continuous at 0 , then φ is the characteristic function of a random variable Y and $Y_{n} \Rightarrow Y$.
(b) If $Y_{n} \Rightarrow Y$ and φ is the characteristic function of Y, then $\lim _{n \rightarrow \infty} \varphi_{n}(t)=\varphi(t)$ for all $t \in \mathbb{R}$.

For independent random variables X_{1}, \ldots, X_{n}, the characteristic function of the sum $S_{n}=\sum_{k=1}^{n} X_{k}$ is the product of their characteristic functions $\varphi_{1}, \ldots, \varphi_{n}$. If X_{i} has mean 0 and variance σ_{i}^{2}, quadratic approximation of $\varphi_{i}(t)$ in a neighborhood of the origin by Taylor's theorem leads to the central limit theorem under the Lindeberg condition (2.5). When the X_{k} have infinite second moments, the limiting distribution of $\left(S_{n}-b_{n}\right) / a_{n}$, if it exists for suitably chosen centering and scaling constants, is an infinitely divisible distribution, which is characterized by the property that its characteristic function is the nth power of a characteristic function for every integer $n \geq 1$. Equivalently, Y is infinitely divisible if for every $n \geq 1, Y \stackrel{D}{=} X_{n 1}+\cdots+X_{n n}$, where $X_{n i}$ are i.i.d. random variables and $\stackrel{D}{=}$ denotes equality in distribution (i.e., both sides having the same distribution). Another equivalent characterization of infinite divisibility is the Lévy-Khintchine representation of the characteristic function φ of Y :

$$
\begin{equation*}
\varphi(t)=\exp \left\{i \gamma t+\int_{-\infty}^{\infty}\left(e^{i t u}-1-\frac{i t u}{1+u^{2}}\right)\left(\frac{1+u^{2}}{u^{2}}\right) d G(u)\right\} \tag{2.35}
\end{equation*}
$$

where $\gamma \in \mathbb{R}$ and G is nondecreasing, left continuous with $G(-\infty)=0$ and $G(\infty)<\infty$. Examples of infinitely divisible distributions include the normal,

