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Preface

This year marks the centennial of Student’s seminal 1908 paper, “On the probable
error of a mean,” in which the t-statistic and the t-distribution were introduced. Dur-
ing the past century, the t-statistic has evolved into much more general Studentized
statistics and self-normalized processes, and the t-distribution generalized to the
multivariate case, leading to multivariate processes with matrix self-normalization
and bootstrap-t methods for tests and confidence intervals. The past two decades
have also witnessed the active development of a rich probability theory of self-
normalized processes, beginning with laws of the iterated logarithm, weak conver-
gence, large and moderate deviations for self-normalized sums of independent ran-
dom variables, and culminating in exponential and moment bounds and a universal
law of the iterated logarithm for self-normalized processes in the case of dependent
random variables. An important goal of this book is to present the main techniques
and results of these developments in probability and to relate them to the asymptotic
theory of Studentized statistics and to other statistical applications.

Another objective of writing this book is to use it as course material for a Ph.D.
level course on selected topics in probability theory and its applications. Lai and
Shao co-taught such a course for Ph.D. students in the Department of Statistics at
Stanford University in the summer of 2007. These students had taken the Ph.D. core
courses in probability (at the level of Durrett’s Probability: Theory and Examples)
and in theoretical statistics (at the level of Lehmann’s Testing Statistical Hypotheses
and Theory of Point Estimation). They found the theory of self-normalized processes
an attractive topic, supplementing and integrating what they had learned from their
core courses in probability and theoretical statistics and also exposing them to new
techniques and research topics in both areas. The success of the experimental course
STATS 300 (Advanced Topics in Statistics and Probability) prompted Lai and Shao
to continue offering it periodically at Stanford and Hong Kong University of Sci-
ence and Technology. A similar course is being planned at Columbia University
by de la Peña. With these courses in mind, we have included exercises and sup-
plements for the reader to explore related concepts and methods not covered in
introductory Ph.D.-level courses, besides providing basic references related to these
topics. We also plan to update these periodically at the Web site for the book:
http://www.math.ust.hk/∼maqmshao/book-self/SNP.html.
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Chapter 1
Introduction

A prototypical example of a self-normalized process is Student’s t-statistic based
on a sample of normal i.i.d. observations X1, . . . ,Xn, dating back to 1908 when
William Gosset (“Student”) considered the problem of statistical inference on the
mean μ when the standard deviation σ of the underlying distribution is unknown.
Let X̄n = n−1∑n

i=1 Xi be the sample mean and s2
n = (n− 1)−1∑n

i=1(Xi − X̄n)2 be
the sample variance. Gosset (1908) derived the distribution of the t-statistic Tn =√

n(X̄n− μ)/sn for normal Xi; this is the t-distribution with n− 1 degrees of free-
dom. The t-distribution converges to the standard normal distribution, and in fact
Tn has a limiting standard normal distribution as n→ ∞ even when the Xi are non-
normal. When nonparametric methods were subsequently introduced, the t-test was
compared with the nonparametric tests (e.g., the sign test and rank tests), in particu-
lar for “fat-tailed” distributions with infinite second or even first absolute moments.
It has been found that the t-test of μ = μ0 is robust against non-normality in terms
of the Type I error probability but not the Type II error probability. Without loss of
generality, consider the case μ0 = 0 so that

Tn =
√

nX̄n

sn
=

Sn

Vn

{
n−1

n− (Sn/Vn)
2

}1/2

, (1.1)

where Sn = ∑n
i=1 Xi,V 2

n = ∑n
i=1 X2

i . Efron (1969) and Logan et al. (1973) have de-
rived limiting distributions of self-normalized sums Sn/Vn. In view of (1.1), if Tn or
Sn/Vn has a limiting distribution, then so does the other, and it is well known that
they coincide; see, e.g., Proposition 1 of Griffin (2002).

Active development of the probability theory of self-normalized processes be-
gan in the 1990s with the seminal work of Griffin and Kuelbs (1989, 1991) on laws
of the iterated logarithm for self-normalized sums of i.i.d. variables belonging to
the domain of attraction of a normal or stable law. Subsequently, Bentkus and Götze
(1996) derived a Berry–Esseen bound for Student’s t-statistic, and Giné et al. (1997)
proved that the t-statistic has a limiting standard normal distribution if and only if
Xi is in the domain of attraction of a normal law. Moreover, Csörgő et al. (2003a)

V.H. de la Peña et al., Self-Normalized Processes: Limit Theory and Statistical Applications, 1
Probability and its Applications,
c© Springer-Verlag Berlin Heidelberg 2009
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proved a self-normalized version of the weak invariance principle under the same
necessary and sufficient condition. Shao (1997) proved large deviation results for
Sn/Vn without moment conditions and moderate deviation results when Xi is the
domain of attraction of a normal or stable law. Subsequently Shao (1999) obtained
Cramér-type large deviation results when E|X1|3 < ∞. Jing et al. (2004) derived
saddlepoint approximations for Student’s t-statistic with no moment assumptions.
Bercu et al. (2002) obtained large and moderate deviation results for self-normalized
empirical processes. Self-normalized sums of independent but non-identically dis-
tributed Xi have been considered by Bentkus et al. (1996), Wang and Jing (1999),
Jing et al. (2003) and Csörgő et al. (2003a).

Part I of the book presents in Chaps. 3–7 the basic ideas and results in the prob-
ability theory of self-normalized sums of independent random variables described
above. It also extends in Chap. 8 the theory to self-normalized U-statistics based
on independent random variables. Part II considers self-normalized processes in the
case of dependent variables. Like Part I that begins by introducing some basic prob-
ability theory for sums of independent random variables in Chap. 2, Part II begins by
giving in Chap. 9 an overview of martingale inequalities and related results which
will be used in the subsequent chapters. Chapter 10 provides a general framework
for self-normalization, which links the approach of de la Peña et al. (2000, 2004) for
general self-normalized processes to that of Shao (1997) for large deviations of self-
normalized sums of i.i.d. random variables. This general framework is also applica-
ble to dependent random vectors that involve matrix normalization, as in Hotelling’s
T 2-statistic which generalizes Student’s t-statistic to the multivariate case. In partic-
ular, it is noted in Chap. 10 that a basic ingredient in Shao’s (1997) self-normalized
large deviations theory is eψ(θ ,ρ) := E exp{θX1−ρθ 2X2

1 }, which is always finite for
ρ > 0. This can be readily extended to the multivariate case by replacing θX1 with
θ ′X1, where θ and X1 are d-dimensional vectors. Under the assumptions EX1 = 0
and E‖X1‖2 < ∞, Taylor’s theorem yields

ψ(θ ,ρ) = log
(
E exp

{
θ ′X1−ρ(θ ′X1)2}) =

{(
1
2
−ρ +o(1)

)
θ ′E(X1X ′1)θ

}

as θ → 0. Let γ > 0,Cn = (1+γ)Σ n
i=1XiX ′i ,An = Σ n

i=1Xi. It then follows that ρ and ε
can be chosen sufficiently small so that{

exp(θ ′An−θ ′Cnθ/2), Fn,n≥ 1
}

is a supermartingale with mean ≤ 1, for ‖θ‖< ε.
(1.2)

Note that (1.2) implies that {
∫
‖θ‖<ε eθ

′An−θ ′Cnθ/2 f (θ)dθ , Fn,n ≥ 1} is also a su-
permartingale, for any probability density f on the ball {θ : ‖θ‖< ε}.

In Chap. 11 and its multivariate extension given in Chap. 14, we show that the
supermartingale property (1.2), its weaker version E{exp(θ ′An− θ ′Cnθ/2)} ≤ 1
for ‖θ‖< ε , and other variants given in Chap. 10 provide a general set of conditions
from which we can derive exponential bounds and moment inequalities for self-
normalized processes in dependent settings. A key tool is the pseudo-maximization
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method which involves Laplace’s method for evaluating integrals of the form∫
‖θ‖<ε eθ

′An−θ ′Cnθ/2 f (θ)dθ . If the random function exp{θ ′An−θ ′Cnθ/2} in (1.2)
could be maximized over θ inside the expectation E{exp(θ ′An − θ ′Cnθ/2)},
taking the maximizing value θ = C−1

n An would yield the expectation of the self-
normalized variable exp{AnC−1

n An/2}. Although this argument is not valid, in-
tegrating exp{θ ′An − θ ′Cnθ/2} with respect to f (θ)dθ and applying Laplace’s
method to evaluate the integral basically achieves the same effect as in the heuristic
argument. This method is used to derive exponential and Lp-bounds for self-
normalized processes in Chap. 12. The exponential bounds are used to derive laws
of the iterated logarithm for self-normalized processes in Chap. 13.

Student’s t-statistic
√

n(X̄n− μ)/sn has also undergone far-reaching generaliza-
tions in the statistics literature during the past century. Its generalization is the
Studentized statistic (θ̂n − θ)/ŝen, where θ is a functional g(F) of the underly-
ing distribution function F , θ̂n is usually chosen to be the corresponding functional
g(F̂n) of the empirical distribution, and ŝen is a consistent estimator of the stan-
dard error of θ̂n. Its multivariate generalization, which replaces 1/ŝen by Σ̂−1/2

n ,
where Σ̂n is a consistent estimator of the covariance matrix of the vector θ̂n or
its variant, is ubiquitous in statistical applications. Part III of the book, which is
on statistical applications of self-normalized processes, begins with an overview in
Chap. 15 of the distribution theory of the t-statistic and its multivariate extensions,
for samples first from normal distributions and then from general distributions that
may have infinite second moments. Chapter 15 also considers the asymptotic the-
ory of general Studentized statistics in time series and control systems and relates
this theory to that of self-normalized martingales. An alternative to inference based
on asymptotic distributions of Studentized statistics is to make use of bootstrap-
ping. Chapter 16 describes the role of self-normalization in deriving approximate
pivots for the construction of bootstrap confidence intervals, whose accuracy and
correctness are analyzed by Edgeworth and Cornish–Fisher expansions. Chapter 17
introduces generalized likelihood ratio statistics as another class of self-normalized
statistics. It also relates the pseudo-maximization approach and the method of mix-
tures in Part II to the close connections between likelihood and Bayesian inference.
Whereas the framework of Part I covers the classical setting of independent obser-
vations sampled from a population, that of Part II is applicable to time series models
and stochastic dynamic systems, and examples are given in Chaps. 15, 17 and 18.
Moreover, the probability theory in Parts I and II is related not only to samples
of fixed size, but also to sequentially generated samples that are associated with
asymptotically optimal stopping rules. Part III concludes with Chap. 18 which con-
siders self-normalized processes in sequential analysis and the associated boundary
crossing problems.
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Chapter 2
Classical Limit Theorems, Inequalities
and Other Tools

This chapter summarizes some classical limit theorems, basic probability inequali-
ties and other tools that are used in subsequent chapters. Throughout this book, all
random variables are assumed to be defined on the same probability space (Ω ,F ,P)
unless otherwise specified.

2.1 Classical Limit Theorems

The law of large numbers, the central limit theorem and the law of the iterated
logarithm form a trilogy of the asymptotic behavior of sums of independent random
variables. They are closely related to moment conditions and deal with three modes
of convergence of a sequence of random variables Yn to a random variable Y . We
say that Yn converges to Y in probability, denoted by Yn

P−→ Y , if, for any ε > 0,
P(|Yn−Y | > ε)→ 0 as n→ ∞. We say that Yn converges almost surely to Y (or Yn

converges to Y with probability 1), denoted by Yn
a.s.−→ Y , if P(limn→∞Yn = Y ) = 1.

Note that almost sure convergence is equivalent to P(maxk≥n |Yk−Y | > ε)→ 0 as
n→∞ for any given ε > 0. We say that Yn converges in distribution (or weakly) to Y ,
and write Yn

D−→ Y or Yn ⇒ Y , if P(Yn ≤ x)→ P(Y ≤ x), at every continuity point
of the cumulative distribution function of Y . If the cumulative distribution P(Y ≤ x)
is continuous, then Yn

D−→ Y not only means P(Yn ≤ x)→ P(Y ≤ x) for every x, but
also implies that the convergence is uniform in x, i.e.,

sup
x
|P(Yn ≤ x)−P(Y ≤ x)| → 0 as n→ ∞.

The three modes of convergence are related by

Yn
a.s.−→ Y =⇒ Yn

P−→ Y =⇒ Yn
D−→ Y.

V.H. de la Peña et al., Self-Normalized Processes: Limit Theory and Statistical Applications, 7
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The reverse relations are not true in general. However, Yn
D−→ c is equivalent to

Yn
P−→ c when c is a constant. Another relationship is provided by Slutsky’s theorem:

If Yn
D−→ Y and ξn

P−→ c, then Yn +ξn
D−→ Y + c and ξnYn

D−→ cY .

2.1.1 The Weak Law, Strong Law and Law of the Iterated
Logarithm

Let X1,X2, . . . be independent and identically distributed (i.i.d.) random variables
and let Sn = ∑n

i=1 Xi. Then we have Kolmogorov’s strong law of large numbers and
Feller’s weak law of large numbers.

Theorem 2.1. n−1Sn
a.s.−→ c <∞ if and only if E(|X1|) <∞, in which case c = E(X1).

Theorem 2.2. In order that there exist constants cn such that n−1Sn − cn
P−→ 0,

it is necessary and sufficient that limx→∞ xP(|X1| ≥ x) = 0. In this case, cn =
EX1I(|X1| ≤ n).

The Marcinkiewicz–Zygmund law of large numbers gives the rate of conver-
gence in Theorem 2.1.

Theorem 2.3. Let 1 < p < 2. If E(|X1|) < ∞, then

n1−1/p (n−1Sn−E(X1)
) a.s.−→ 0 (2.1)

if and only if E(|X1|p) < ∞.

When p = 2, (2.1) is no longer valid. Instead, we have the Hartman–Wintner law
of the iterated logarithm (LIL), the converse of which is established by Strassen
(1966).

Theorem 2.4. If EX2
1 < ∞ and EX1 = μ , Var(X1) = σ2, then

limsup
n→∞

Sn−nμ√
2n log logn

= σ a.s.,

liminf
n→∞

Sn−nμ√
2n log logn

=−σ a.s.,

limsup
n→∞

max1≤k≤n |Sk− kμ |√
2n log logn

= σ a.s.

Conversely, if there exist finite constants a and τ such that

limsup
n→∞

Sn−na√
2n log logn

= τ a.s.,

then a = E(X1) and τ2 = Var(X1).
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The following is an important tool for proving Theorems 2.1, 2.3 and 2.4.

Lemma 2.5 (Borel–Cantelli Lemma).

(1) Let A1,A2, . . . be an arbitrary sequence of events on (Ω ,F ,P). Then
∑∞

i=1 P(Ai) < ∞ implies P(An i.o.) = 0, where {An i.o.} denotes the event
∩k≥1∪n≥k An, i.e., An occurs infinitely often.

(2) Let A1,A2, . . . , be a sequence of independent events on (Ω ,F ,P). Then
∑∞

i=1 P(Ai) = ∞ implies P(An i.o.) = 1.

The strong law of large numbers and LIL have also been shown to hold for inde-
pendent but not necessarily identically distributed random variables X1,X2, . . . .

Theorem 2.6.

(1) If bn ↑ ∞ and ∑∞
i=1 Var(Xi)/b2

i < ∞, then (Sn−ESn)/bn
a.s.−→ 0.

(2) If bn ↑ ∞, ∑∞
i=1 P(|Xi| ≥ bi) < ∞ and ∑∞

i=1 b−2
i EX2

i I(|Xi| ≤ bi) < ∞, then (Sn−
an)/bn

a.s.−→ 0, where an = ∑n
i=1 EXiI(|Xi| ≤ bi).

The “if” part in Theorems 2.1 and 2.3 can be derived from Theorem 2.6, which
can be proved by making use Kolmogorov’s three-series theorem and the Kronecker
lemma in the following.

Theorem 2.7 (Three-series Theorem). The series ∑∞
i=1 Xi converges a.s. if and only

if the three series

∞

∑
i=1

P(|Xi| ≥ c),
∞

∑
i=1

EXiI(|Xi| ≤ c),
∞

∑
i=1

Var{XiI(|Xi| ≤ c)}

converge for some c > 0.

Lemma 2.8 (Kronecker’s Lemma). If ∑∞
i=1 xi converges and bn ↑ ∞, then

b−1
n ∑n

i=1 bixi → 0.

We end this subsection with Kolmogorov’s LIL for independent but not nec-
essarily identically distributed random variables; see Chow and Teicher (1988,
Sect. 10.2). Assume that EXi = 0 and EX2

i < ∞ and put B2
n = ∑n

i=1 EX2
i . If Bn → ∞

and Xn = o(Bn(log logBn)−1/2) a.s., then

limsup
n→∞

Sn

Bn
√

2loglogBn
= 1 a.s. (2.2)

2.1.2 The Central Limit Theorem

For any sequence of random variables Xi with finite means, the sequence Xi−E(Xi)
has zero means and therefore we can assume, without loss of generality, that the
mean of Xi is 0. For i.i.d. Xi, we have the classical central limit theorem (CLT).
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Theorem 2.9. If X1, . . . ,Xn are i.i.d. with E(X1) = 0 and Var(X1) = σ2 < ∞, then

Sn√
nσ

D−→ N(0,1).

The Berry–Esseen inequality provides the convergence rate in the CLT.

Theorem 2.10. Let Φ denote the standard normal distribution function and Wn =
Sn/(

√
nσ). Then

sup
x
|P(Wn ≤ x)−Φ(x)| (2.3)

≤ 4.1
{
σ−2EX2

1 I
(
|X1|>

√
nσ

)
+n−1/2σ−3E|X1|3I

(
|X1| ≤

√
nσ

)}
.

In particular, if E|X1|3 < ∞, then

sup
x
|P(Wn ≤ x)−Φ(x)| ≤ 0.79E|X1|3√

nσ3 . (2.4)

For general independent not necessarily identically distributed random variables,
the CLT holds under the Lindeberg condition, under which a non-uniform Berry–
Esseen inequality of the type in (2.3) still holds.

Theorem 2.11 (Lindberg–Feller CLT). Let Xn be independent random variables
with E(Xi) = 0 and E(X2

i ) < ∞. Let Wn = Sn/Bn, where B2
n = ∑n

i=1 E(X2
i ). If the

Lindberg condition

B−2
n

n

∑
i=1

EX2
i I(|Xi| ≥ εBn)−→ 0 for all ε > 0 (2.5)

holds, then Wn
D−→ N(0,1). Conversely, if max1≤i≤n EX2

i = o(B2
n) and Wn

D−→ N
(0,1), then the Lindberg condition (2.5) is satisfied.

Theorem 2.12. With the same notations as in Theorem 2.11,

sup
x
|P(Wn ≤ x)−Φ(x)| (2.6)

≤ 4.1

(
B−2

n

n

∑
i=1

EX2
i I {|Xi|> Bn}+B−3

n

n

∑
i=1

E|Xi|3I {|Xi| ≤ Bn}
)

and

|P(Wn ≤ x)−Φ(x)| (2.7)

≤ C

(
n

∑
i=1

EX2
i I {|Xi|> (1+ |x|)Bn}

(1+ |x|)2 B2
n

+
n

∑
i=1

E|Xi|3I {|Xi| ≤ (1+ |x|)Bn}
(1+ |x|)3 B3

n

)
,

where C is an absolute constant.
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2.1.3 Cramér’s Moderate Deviation Theorem

The Berry–Esseen inequality gives a bound on the absolute error in approximating
the distribution of Wn by the standard normal distribution. The usefulness of the
bound may be limited when Φ(x) is close to 0 or 1. Cramér’s theory of moderate
deviations provides the relative errors. Petrov (1975, pp. 219–228) gives a compre-
hensive treatment of the theory and introduces the Cramér series, which is a power
series whose coefficients can be expressed in terms of the cumulants of the under-
lying distribution and which is used in part (a) of the following theorem.
Theorem 2.13.
(a) Let X1,X2, . . . be i.i.d. random variables with E(X1) = 0 and Eet0|X1| < ∞ for

some t0 > 0. Then for x≥ 0 and x = o(n1/2),

P(Wn ≥ x)
1−Φ(x)

= exp
{

x2λ
(

x√
n

)}(
1+O

(
1+ x√

n

))
, (2.8)

where λ (t) is the Cramér series.

(b) If Eet0
√
|X1| < ∞ for some t0 > 0, then

P(Wn ≥ x)
1−Φ(x)

→ 1 as n→ ∞ uniformly in x ∈
[
0,o(n1/6)

)
. (2.9)

(c) The converse of (b) is also true; that is, if (2.9) holds, then Eet0
√
|X1| < ∞ for

some t0 > 0.

In parts (a) and (b) of Theorem 2.13, P(Wn ≥ x)/(1−Φ(x)) can clearly be
replaced by P(Wn ≤ −x)/Φ(−x). Moreover, similar results are also available for
standardized sums Sn/Bn of independent but not necessarily identically distributed
random variables with bounded moment generating functions in some neighborhood
of the origin; see Petrov (1975). In Chap. 7, we establish Cramér-type moderate de-
viation results for self-normalized (rather than standardized) sums of independent
random variables under much weaker conditions.

2.2 Exponential Inequalities for Sample Sums

2.2.1 Self-Normalized Sums

We begin by considering independent Rademacher random variables.
Theorem 2.14. Assume that εi are independent and P(εi = 1) = P(εi =−1) = 1/2.
Then

P

(
∑n

i=1 aiεi(
∑n

i=1 a2
i

)1/2 ≥ x

)
≤ e−x2/2 (2.10)

for x > 0 and real numbers {ai}.
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Proof. Without loss of generality, assume ∑n
i=1 a2

i = 1. Observe that

1
2
(e−t + et)≤ et2/2

for t ∈ R. We have

P

(
n

∑
i=1

aiεi ≥ x

)
≤ e−x2

Eex∑n
i=1 aiεi

= e−x2
n

∏
i=1

1
2
(e−aix + eaix)

≤ e−x2
n

∏
i=1

ea2
i x2/2 = e−x2/2.

��
Let Xn be independent random variables and let V 2

n = ∑n
i=1 X2

i . If we further
assume that Xi is symmetric, then Xi and εiXi have the same distribution, where
{εi} are i.i.d. Rademacher random variables independent of {Xi}. Hence the self-
normalized sum Sn/Vn has the same distribution as (∑n

i=1 Xiεi)/Vn. Given {Xi,1 ≤
i≤ n}, applying (2.10) to ai = Xi yields the following.

Theorem 2.15. If Xi is symmetric, then for x > 0,

P(Sn ≥ xVn)≤ e−x2/2. (2.11)

The next result extends the above “sub-Gaussian” property of the self-normalized
sum Sn/Vn to general (not necessarily symmetric) independent random variables.

Theorem 2.16. Assume that there exist b > 0 and a such that

P(Sn ≥ a)≤ 1/4 and P(V 2
n ≥ b2)≤ 1/4. (2.12)

Then for x > 0,
P{Sn ≥ x(a+b+Vn)} ≤ 2e−x2/2. (2.13)

In particular, if E(Xi) = 0 and E(X2
i ) < ∞, then

P{|Sn| ≥ x(4Bn +Vn)} ≤ 4e−x2/2 for x > 0, (2.14)

where Bn = (∑n
i=1 EX2

i )1/2.

Proof. When x≤ 1, (2.13) is trivial. When x > 1, let {Yi,1≤ i≤ n} be an indepen-
dent copy of {Xi,1≤ i≤ n}. Then

P

(
n

∑
i=1

Yi ≤ a,
n

∑
i=1

Y 2
i ≤ b2

)
≥ 1−P

(
n

∑
i=1

Yi > a

)
−P

(
n

∑
i=1

Y 2
i > b2

)

≥ 1−1/4−1/4 = 1/2.
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Noting that{
Sn ≥ x(a+b+Vn),

n

∑
i=1

Yi ≤ a,
n

∑
i=1

Y 2
i ≤ b2

}

⊂

⎧⎨
⎩

n

∑
i=1

(Xi−Yi)≥ x

⎛
⎝a+b+

(
n

∑
i=1

(Xi−Yi)2

)1/2

−
(

n

∑
i=1

Y 2
i

)1/2
⎞
⎠−a,

n

∑
i=1

Y 2
i ≤ b2

⎫⎬
⎭

⊂

⎧⎨
⎩

n

∑
i=1

(Xi−Yi)≥ x

(
n

∑
i=1

(Xi−Yi)2

)1/2
⎫⎬
⎭

and that {Xi−Yi,1 ≤ i ≤ n} is a sequence of independent symmetric random vari-
ables, we have

P(Sn ≥ x(a+b+Vn)) =
P
(
Sn ≥ x(a+b+Vn),∑n

i=1 Yi ≤ a,∑n
i=1 Y 2

i ≤ b2
)

P
(
∑n

i=1 Yi ≤ a,∑n
i=1 Y 2

i ≤ b2
)

≤ 2P
(
∑n

i=1(Xi−Yi)≥ x
(
∑n

i=1(Xi−Yi)2
)1/2

)
≤ 2e−x2/2

by (2.11). This proves (2.13), and (2.14) follows from (2.13) with a = b = 2Bn. ��

2.2.2 Tail Probabilities for Partial Sums

Let Xn be independent random variables and let Sn =∑n
i=1 Xi. The following theorem

gives the Bennett–Hoeffding inequalities.

Theorem 2.17. Assume that EXi ≤ 0 , Xi ≤ a (a > 0) for each 1 ≤ i ≤ n, and
∑n

i=1 EX2
i ≤ B2

n. Then

EetSn ≤ exp
(
a−2(eta−1− ta)B2

n
)

for t > 0, (2.15)

P(Sn ≥ x)≤ exp
(
−B2

n

a2

{(
1+

ax
B2

n

)
log

(
1+

ax
B2

n

)
− ax

B2
n

})
(2.16)

and

P(Sn ≥ x)≤ exp
(
− x2

2(B2
n +ax)

)
for x > 0. (2.17)

Proof. It is easy to see that (es−1− s)/s2 is an increasing function of s. Therefore

ets ≤ 1+ ts+(ts)2(eta−1− ta)/(ta)2 (2.18)
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for s≤ a, and hence

EetSn =
n

∏
i=1

EetXi ≤
n

∏
i=1

(
1+ tEXi +a−2(eta−1− ta)EX2

i
)

≤
n

∏
i=1

(
1+a−2(eta−1− ta)EX2

i
)
≤ exp

(
a−2(eta−1− ta)B2

n
)
.

This proves (2.15). To prove (2.16), let t = a−1 log(1+ax/B2
n). Then, by (2.15),

P(Sn ≥ x) ≤ e−txEetSn

≤ exp
(
−tx+a−2(eta−1− ta)B2

n
)

= exp
(
−B2

n

a2

{(
1+

ax
B2

n

)
log

(
1+

ax
B2

n

)
− ax

B2
n

})
,

proving (2.16). To prove (2.17), use (2.16) and

(1+ s) log(1+ s)− s≥ s2

2(1+ s)
for s > 0.

��
The inequality (2.17) is often called Bernstein’s inequality. From the Taylor ex-

pansion of ex, it follows that

ex ≤ 1+ x+ x2/2+ |x|3ex/6. (2.19)

Let βn = ∑n
i=1 E|Xi|3. Using (2.19) instead of (2.18) in the above proof, we have

EetSn ≤ exp
(

1
2

t2B2
n +

1
6

t3βneta
)

, (2.20)

P(Sn ≥ x)≤ exp
(
−tx+

1
2

t2B2
n +

1
6

t3βneta
)

(2.21)

for all t > 0, and in particular

P(Sn ≥ x)≤ exp
(
− x2

2B2
n

+
x3

6B6
n
βneax/B2

n

)
. (2.22)

When Xi is not bounded above, we can first truncate it and then apply
Theorem 2.17 to prove the following inequality.

Theorem 2.18. Assume that EXi ≤ 0 for 1≤ i≤ n and that ∑n
i=1 EX2

i ≤ B2
n. Then

P(Sn ≥ x) ≤ P
(

max
1≤i≤n

Xi ≥ b
)

+ exp
(
−B2

n

a2

{(
1+

ax
B2

n

)
log

(
1+

ax
B2

n

)
− ax

B2
n

})
+∑n

i=1 P(a < Xi < b)P(Sn−Xi > x−b) (2.23)
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for x > 0 and b≥ a > 0. In particular,

P(Sn ≥ x)≤ P
(

max
1≤i≤n

Xi > δx
)

+
(

3B2
n

B2
n +δx2

)1/δ

(2.24)

for x > 0 and δ > 0.

Proof. Let X̄i = XiI(Xi ≤ a) and S̄n = ∑n
i=1 X̄i. Then

P(Sn ≥ x) ≤ P
(

max
1≤i≤n

Xi ≥ b
)

+P
(

Sn ≥ x, max
1≤i≤n

Xi ≤ a
)

+P
(

Sn ≥ x, max
1≤i≤n

Xi > a, max
1≤i≤n

Xi < b
)

≤ P
(

max
1≤i≤n

Xi ≥ b
)

+P(S̄n ≥ x)

+∑n
i=1 P(Sn ≥ x,a < Xi < b) (2.25)

≤ P
(

max
1≤i≤n

Xi ≥ b
)

+P(S̄n ≥ x)

+∑n
i=1 P(Sn−Xi ≥ x−b,a < Xi < b)

= P
(

max
1≤i≤n

Xi ≥ b
)

+P(S̄n ≥ x)

+∑n
i=1 P(a < Xi < b)P(Sn−Xi ≥ x−b).

Applying (2.16) to S̄n gives

P(S̄n ≥ x)≤ exp
(
−B2

n

a2

[(
1+

ax
B2

n

)
log

(
1+

ax
B2

n

)
− ax

B2
n

])
,

which together with (2.26) yields (2.23). From (2.23) with a = b = δx, (2.24)
follows. ��

The following two results are about nonnegative random variables.
Theorem 2.19. Assume that Xi ≥ 0 with E(X2

i ) < ∞. Let μn = ∑n
i=1 EXi and B2

n =
∑n

i=1 EX2
i . Then for 0 < x < μn,

P(Sn ≤ x)≤ exp
(
− (μn− x)2

2B2
n

)
. (2.26)

Proof. Note that e−a ≤ 1−a+a2/2 for a≥ 0. For any t ≥ 0 and x≤ μn, we have

P(Sn ≤ x) ≤ etxEe−tSn = etx
n

∏
i=1

Ee−tXi

≤ etx
n

∏
i=1

E(1− tXi + t2X2
i /2)

≤ exp
(
−t(μn− x)+ t2B2

n/2
)
.

Letting t = (μn− x)/B2
n yields (2.26). ��
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Theorem 2.20. Assume that P(Xi = 1) = pi and P(Xi = 0) = 1− pi. Then for x > 0,

P(Sn ≥ x)≤
(μ e

x

)x
, (2.27)

where μ = ∑n
i=1 pi.

Proof. Let t > 0. Then

P(Sn ≥ x) ≤ e−tx
n

∏
i=1

EetXi = e−tx
n

∏
i=1

(
1+ pi(et −1)

)
≤ exp

(
−tx+(et −1)∑n

i=1 pi
)

= exp
(
−tx+(et −1)μ

)
.

Since the case x ≤ μ is trivial, we assume that x > μ . Then letting t = log(x/μ)
yields

exp
(
−tx+(et −1)μ

)
= exp(−x log(x/μ)+ x−μ)≤ (μ e/x)x.

��
We end this section with the Ottaviani maximal inequality.

Theorem 2.21. Assume that there exists a such that max1≤k≤n P(Sk−Sn≥ a)≤ 1/2.
Then

P
(

max
1≤k≤n

Sk ≥ x
)
≤ 2P(Sn ≥ x−a). (2.28)

In particular, if E(Xi) = 0 and E(X2
i ) < ∞, then

P
(

max
1≤k≤n

Sk ≥ x
)
≤ 2P(Sn ≥ x−

√
2Bn), (2.29)

where Bn =
√

∑n
i=1 E(X2

i ).

Proof. Let A1 = {S1≥ x} and Ak = {Sk≥ x,max1≤i≤k−1 Si < x}. Then {max1≤k≤n Sk
≥ x}= ∪n

k=1Ak and

P
(

max
1≤k≤n

Sk ≥ x
)
≤ P(Sn ≥ x−a)+

n

∑
k=1

P(Ak,Sn < x−a)

≤ P(Sn ≥ x−a)+
n

∑
k=1

P(Ak,Sn−Sk <−a)

= P(Sn ≥ x−a)+
n

∑
k=1

P(Ak)P(Sn−Sk <−a)

≤ P(Sn ≥ x−a)+(1/2)
n

∑
k=1

P(Ak)

= P(Sn ≥ x−a)+(1/2)P
(

max
1≤k≤n

Sk ≥ x
)

,

which gives (2.28). (2.29) follows from (2.28) with a =
√

2Bn. ��



2.3 Characteristic Functions and Expansions Related to the CLT 17

The proof of Kolmogorov’s LIL (2.2) involves upper exponential bounds like
those in Theorem 2.17 and the following lower exponential bound, whose proof is
given in Chow and Teicher (1988, pp. 352–354) and uses the “conjugate method”
that will be described in Sect. 3.1.

Theorem 2.22. Assume that EXi = 0 and |Xi| ≤ ai a.s. for 1 ≤ i ≤ n and that
∑n

i=1 EX2
i = B2

n. Let cn ≥ c0 > 0 be such that limn→∞ ancn/Bn = 0. Then for every
0 < γ < 1, there exists 0 < δγ < 1/2 such that for all large n,

P
{

Sn ≥ (1− γ)2cnBn
}
≥ δγ exp

{
−(1− γ)(1− γ2)c2

n/2
}

.

2.3 Characteristic Functions and Expansions Related to the CLT

Let Y be a random variable with distribution function F . The characteristic function
of Y is defined by ϕ(t) = EeitY =

∫ ∞
−∞ eitydF(y) for t ∈R. In view of Lévy’s inversion

formula

lim
T→∞

1
2π

∫ T

−T

e−ita− e−itb

it
ϕ(t)dt = P(a < Y < b)+

1
2
{P(Y = a)+P(Y = b)}

(2.30)

for a < b (see Durrett, 2005, pp. 93–94), the characteristic function uniquely deter-
mines the distribution function. The characteristic function ϕ is continuous, with
ϕ(0) = 1, |ϕ(t)| ≤ 1 for all t ∈R. There are three possibilities concerning solutions
to the equation |ϕ(t)|= 1 (see Durrett, 2005, p. 129):

(a) |ϕ(t)|< 1 for all t �= 0.
(b) |ϕ(t)|= 1 for all t ∈ R. In this case, ϕ(t) = eita and Y puts all its mass at a.
(c) |ϕ(τ)| = 1 and |ϕ(t)| < 1 for 0 < t < τ . In this case |ϕ| has period τ and

there exists b ∈ R such that the support of Y is the lattice {b + 2π j/τ : j = 0,
±1,±2, . . .}, i.e., Y is lattice with span 2π/τ .

A random variable Y is called non-lattice if its support is not a lattice, which cor-
responds to case (a) above. It is said to be strongly non-lattice if it satisfies Cramér’s
condition

limsup
|t|→∞

|ϕ(t)|< 1. (2.31)

Note that (2.31), which is only concerned with the asymptotic behavior of |ϕ(t)| as
|t| → ∞, is stronger than (a) because it rules out (b) and (c).

If the characteristic function ϕ of Y is integrable, i.e.,
∫ ∞
−∞ |ϕ(t)|dt < ∞, then Y

has a bounded continuous density function f with respect to Lebesgue measure and

f (y) =
1

2π

∫ ∞

−∞
e−ityϕ(t)dt. (2.32)
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This is the Fourier inversion formula; see Durrett (2005, p. 95). In this case, since
ϕ(t) =

∫ ∞
−∞ eity f (y)dy and f is integrable,

lim
|t|→∞

ϕ(t) = 0 (2.33)

by the Riemann–Lebesgue lemma; see Durrett (2005, p. 459). Hence, if Y has an
integrable characteristic function, then Y satisfies Cramér’s condition (2.31).

In the case of lattice distributions with support {b + hk : k = 0,±1,±2, . . .}, let
pk = P(Y = b + hk). Then the characteristic function is a Fourier series ϕ(t) =
∑∞

k=−∞ pkeit(b+hk), with

pk =
h

2π

∫ π/h

−π/h
e−it(b+hk)ϕ(t)dt, (2.34)

noting that the span h corresponds to 2π/τ (or τ = 2π/h) in (b).

2.3.1 Continuity Theorem and Weak Convergence

Theorem 2.23. Let ϕn be the characteristic function of Yn.

(a) If ϕn(t) converges, as n→ ∞, to a limit ϕ(t) for every t and if ϕ is continuous
at 0, then ϕ is the characteristic function of a random variable Y and Yn ⇒ Y .

(b) If Yn ⇒ Y and ϕ is the characteristic function of Y , then limn→∞ϕn(t) = ϕ(t)
for all t ∈ R.

For independent random variables X1, . . . ,Xn, the characteristic function of the
sum Sn =∑n

k=1 Xk is the product of their characteristic functions ϕ1, . . . ,ϕn. If Xi has
mean 0 and variance σ2

i , quadratic approximation of ϕi(t) in a neighborhood of the
origin by Taylor’s theorem leads to the central limit theorem under the Lindeberg
condition (2.5). When the Xk have infinite second moments, the limiting distribution
of (Sn− bn)/an, if it exists for suitably chosen centering and scaling constants, is
an infinitely divisible distribution, which is characterized by the property that its
characteristic function is the nth power of a characteristic function for every integer
n ≥ 1. Equivalently, Y is infinitely divisible if for every n ≥ 1, Y D= Xn1 + · · ·+ Xnn,
where Xni are i.i.d. random variables and D= denotes equality in distribution (i.e., both
sides having the same distribution). Another equivalent characterization of infinite
divisibility is the Lévy–Khintchine representation of the characteristic function ϕ
of Y :

ϕ(t) = exp
{

iγt +
∫ ∞

−∞

(
eitu−1− itu

1+u2

)(
1+u2

u2

)
dG(u)

}
, (2.35)

where γ ∈ R and G is nondecreasing, left continuous with G(−∞) = 0 and
G(∞) < ∞. Examples of infinitely divisible distributions include the normal,


