Probability and Its Applications

Published in association with the Applied Probability Trust Editors: J. Gani, C.C. Heyde, P. Jagers, T.G. Kurtz

Probability and Its Applications

Azencott et al.: Series of Irregular Observations. Forecasting and Model Building, 1986 Bass: Diffusions and Elliptic Operators. 1997 Bass: Probabilistic Techniques in Analysis. 1995 Berglund/Gentz: Noise-Induced Phenomena in Slow-Fast Dynamical Systems: A Sample-Paths Approach. 2006 Biagini/Hu/Øksendal/Zhang: Stochastic Calculus for Fractional Brownian Motion and Applications. 2008 Chen: Eigenvalues, Inequalities and Ergodic Theory. 2005 Costa/Fragoso/Margues: Discrete-Time Markov Jump Linear Systems, 2005 Daley/Vere-Jones: An Introduction to the Theory of Point Processes I: Elementary Theory and Methods. 2nd ed. 2003, corr. 2nd printing 2005 Daley/Vere-Jones: An Introduction to the Theory of Point Processes II: General Theory and Structure. 2nd ed. 2008 de la Peña/Gine: Decoupling: From Dependence to Independence, Randomly Stopped Processes U-Statistics and Processes Martingales and Beyond. 1999 de la Peña/Lai/Shao: Self-Normalized Processes. 2009 Del Moral: Feynman-Kac Formulae. Genealogical and Interacting Particle Systems with Applications. 2004 Durrett: Probability Models for DNA Sequence Evolution. 2002, 2nd ed. 2008 Galambos/Simonelli: Bonferroni-Type Inequalities with Equations. 1996 Gani (ed.): The Craft of Probabilistic Modelling. A Collection of Personal Accounts, 1986 *Gut:* Stopped Random Walks. Limit Theorems and Applications. 1987 Guyon: Random Fields on a Network. Modeling, Statistics and Applications. 1995 Kallenberg: Foundations of Modern Probability. 1997, 2nd ed. 2002 Kallenberg: Probabilistic Symmetries and Invariance Principles. 2005 Last/Brandt: Marked Point Processes on the Real Line, 1995 Molchanov: Theory of Random Sets. 2005 Nualart: The Malliavin Calculus and Related Topics, 1995, 2nd ed. 2006 Schmidli: Stochastic Control in Insurance. 2008 Schneider/Weil: Stochastic and Integral Geometry. 2008 Shedler: Regeneration and Networks of Queues. 1986 Silvestrov: Limit Theorems for Randomly Stopped Stochastic Processes. 2004 Rachev/Rueschendorf: Mass Transportation Problems. Volume I: Theory and Volume II: Applications. 1998 Resnick: Extreme Values, Regular Variation and Point Processes. 1987 Thorisson: Coupling, Stationarity and Regeneration. 2000

Self-Normalized Processes

Limit Theory and Statistical Applications

Victor H. de la Peña Department of Statistics Columbia University Mail Code 4403 New York, NY 10027 USA vp@stat.columbia.edu

Qi-Man Shao Department of Mathematics Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong People's Republic of China magmshao@ust.hk

Series Editors:

Joe Gani Chris Heyde Centre for Mathematics and its Applications Mathematical Sciences Institute Australian National University Canberra, ACT 0200 Australia gani@maths.anu.edu.au

gan @maths.anu.edu.au Peter Jagers Mathematical Statistics Chalmers University of Technology and Göteborg (Gothenburg) University 412 96 Göteborg Sweden Department of Mathematics University of Wisconsin - Madison 480 Lincoln Drive Madison, WI 53706-1388 USA kurtz@math.wisc.edu

Thomas G. Kurtz

ISBN: 978-3-540-85635-1

jagers@chalmers.se

e-ISBN: 978-3-540-85636-8

Probability and Its Applications ISSN print edition: 1431-7028

Library of Congress Control Number: 2008938080

Mathematics Subject Classification (2000): Primary: 60F10, 60F15, 60G50, 62E20; Secondary: 60E15, 60G42, 60G44, 60G40, 62L10

© 2009 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Cover design: WMXDesign GmbH, Heidelberg

Printed on acid-free paper

987654321

springer.com

Tze Leung Lai Department of Statistics Sequoia Hall, 390 Serra Mall Stanford University Stanford, CA 94305-4065 USA lait@stat.stanford.edu To our families

for V.H.P., Colleen, Victor, Mary-Margaret and Patrick

for T.L.L., Letitia, Peter and David

for Q.-M.S., Jiena and Wenqi

Preface

This year marks the centennial of Student's seminal 1908 paper, "On the probable error of a mean," in which the *t*-statistic and the *t*-distribution were introduced. During the past century, the *t*-statistic has evolved into much more general Studentized statistics and self-normalized processes, and the *t*-distribution generalized to the multivariate case, leading to multivariate processes with matrix self-normalization and bootstrap-*t* methods for tests and confidence intervals. The past two decades have also witnessed the active development of a rich probability theory of self-normalized processes, beginning with laws of the iterated logarithm, weak convergence, large and moderate deviations for self-normalized sums of independent random variables, and culminating in exponential and moment bounds and a universal law of the iterated logarithm for self-normalized processes in the case of dependent random variables. An important goal of this book is to present the main techniques and results of these developments in probability and to relate them to the asymptotic theory of Studentized statistics and to other statistical applications.

Another objective of writing this book is to use it as course material for a Ph.D. level course on selected topics in probability theory and its applications. Lai and Shao co-taught such a course for Ph.D. students in the Department of Statistics at Stanford University in the summer of 2007. These students had taken the Ph.D. core courses in probability (at the level of Durrett's *Probability: Theory and Examples*) and in theoretical statistics (at the level of Lehmann's Testing Statistical Hypotheses and Theory of Point Estimation). They found the theory of self-normalized processes an attractive topic, supplementing and integrating what they had learned from their core courses in probability and theoretical statistics and also exposing them to new techniques and research topics in both areas. The success of the experimental course STATS 300 (Advanced Topics in Statistics and Probability) prompted Lai and Shao to continue offering it periodically at Stanford and Hong Kong University of Science and Technology. A similar course is being planned at Columbia University by de la Peña. With these courses in mind, we have included exercises and supplements for the reader to explore related concepts and methods not covered in introductory Ph.D.-level courses, besides providing basic references related to these topics. We also plan to update these periodically at the Web site for the book: http://www.math.ust.hk/~magmshao/book-self/SNP.html.

We acknowledge grant support for our research projects related to this book from the National Science Foundation (DMS-0505949 and 0305749) and the Hong Kong Research Grants Council (CERG-602206 and 602608). We thank three anonymous reviewers for their valuable suggestions, and all the students who took STATS 300 for their interest in the subject and comments on an earlier draft of certain chapters of the book that were used as lecture notes. We also thank our collaborators Hock Peng Chan, Bing-Yi Jing, Michael Klass, David Siegmund, Qiying Wang and Wang Zhou for working with us on related projects and for their helpful comments. We are particularly grateful to Cindy Kirby who helped us to coordinate our writing efforts and put together the separate chapters in an efficient and timely fashion. Without her help, this book would not have been completed in 2008 to commemorate Student's centennial.

Department of Statistics, Columbia University Department of Statistics, Stanford University Department of Mathematics, Hong Kong University of Science & Technology Victor H. de la Peña Tze Leung Lai Qi-Man Shao

Contents

1	Intro	oductio	n	1
Par	t I In	depend	lent Random Variables	
2	Clas	sical Li	imit Theorems, Inequalities and Other Tools	7
	2.1	Classic	cal Limit Theorems	7
		2.1.1	The Weak Law, Strong Law and Law of the Iterated	
			Logarithm	8
		2.1.2	The Central Limit Theorem	9
		2.1.3	Cramér's Moderate Deviation Theorem	11
	2.2	Expon	ential Inequalities for Sample Sums	11
		2.2.1	Self-Normalized Sums	11
		2.2.2	Tail Probabilities for Partial Sums	13
	2.3	Charac	cteristic Functions and Expansions Related to the CLT	17
		2.3.1	Continuity Theorem and Weak Convergence	18
		2.3.2	Smoothing, Local Limit Theorems and Expansions	19
	2.4	Supple	ementary Results and Problems	21
3	Self	Norma	lized Large Deviations	25
	3.1	A Clas	ssical Large Deviation Theorem for Sample Sums	25
	3.2	A Larg	ge Deviation Theorem for Self-Normalized Sums	27
		3.2.1	Representation by Supremum over Linear Functions	
			of (S_n, V_n^2)	27
		3.2.2	Proof of Theorem 3.1	28
	3.3	Supple	ementary Results and Problems	31
4	Wea	k Conv	ergence of Self-Normalized Sums	33
	4.1	Self-N	ormalized Central Limit Theorem	33
	4.2	Non-N	Iormal Limiting Distributions for Self-Normalized Sums	37
	4.3	Supple	ementary Results and Problems	38

5	Stein	n's Met	hod and Self-Normalized Berry–Esseen Inequality	. 41
	5.1	Stein's	Method	. 41
		5.1.1	The Stein Equation	. 41
		5.1.2	Stein's Method: Illustration of Main Ideas	. 44
		5.1.3	Normal Approximation for Smooth Functions	. 46
	5.2	Conce	ntration Inequality and Classical Berry–Esseen Bound	. 49
	5.3	A Self	-Normalized Berry–Esseen Inequality	. 52
		5.3.1	Proof: Outline of Main Ideas	. 53
		5.3.2	Proof: Details	. 55
	5.4	Supple	ementary Results and Problems	. 60
6	Self-	Norma	lized Moderate Deviations and Laws of the Iterated	
	Loga	arithm		. 63
	6.1	Self-N	formalized Moderate Deviations: Normal Case	. 63
		6.1.1	Proof of the Upper Bound	. 64
		6.1.2	Proof of the Lower Bound	. 66
	6.2	Self-N	formalized Moderate Deviations: Stable Case	. 69
		6.2.1	Preliminary Lemmas	. 70
		6.2.2	Proof of Theorem 6.6	. 76
	6.3	Self-N	ormalized Laws of the Iterated Logarithm	. 81
	6.4	Supple	ementary Results and Problems	. 84
7	Crai	mér-Ty	pe Moderate Deviations for Self-Normalized Sums	. 87
	7.1	Self-N	formalized Cramér-Type Moderate Deviations	. 87
	7.2	Proof	of Theorems	. 90
		7.2.1	Proof of Theorems 7.2, 7.4 and Corollaries	. 90
		7.2.2	Proof of Theorem 7.1	. 91
		7.2.3	Proof of Propositions	. 94
	7.3	Applic	cation to Self-Normalized LIL	. 96
	7.4	Cramé	r-Type Moderate Deviations for Two-Sample <i>t</i> -Statistics	. 104
	7.5	Supple	ementary Results and Problems	. 106
8	Self-	Norma	lized Empirical Processes and U-Statistics	. 107
	8.1	Self-N	formalized Empirical Processes	. 107
	8.2	Self-N	formalized U-Statistics	. 108
		8.2.1	The Hoeffding Decomposition and Central	
			Limit Theorem	. 109
		8.2.2	Self-Normalized U-Statistics and Berry-Esseen Bounds	. 109
		8.2.3	Moderate Deviations for Self-Normalized U-Statistics	. 110
	8.3	Proofs	of Theorems 8.5 and 8.6	. 111
		8.3.1	Main Ideas of the Proof	. 111
		8.3.2	Proof of Theorem 8.6	. 112
		8.3.3	Proof of Theorem 8.5	. 113
		8.3.4	Proof of Proposition 8.7	. 113
	8.4	Supple	ementary Results and Problems	. 119

Part II Martingales and Dependent Random Vectors

9	Mar	tingale Inequalities and Related Tools	123
	9.1	Basic Martingale Theory	123
		9.1.1 Conditional Expectations and Martingales	123
		9.1.2 Martingale Convergence and Inequalities	125
	9.2	Tangent Sequences and Decoupling Inequalities	125
		9.2.1 Construction of Decoupled Tangent Sequences	126
		9.2.2 Exponential Decoupling Inequalities	126
	9.3	Exponential Inequalities for Martingales	128
		9.3.1 Exponential Inequalities via Decoupling	128
		9.3.2 Conditionally Symmetric Random Variables	132
		9.3.3 Exponential Supermartingales and Associated Inequalities	134
	9.4	Supplementary Results and Problems	135
10	A G	eneral Framework for Self-Normalization	137
	10.1	An Exponential Family of Supermartingales Associated	
		with Self-Normalization	137
		10.1.1 The I.I.D. Case and Another Derivation of (3.8)	137
		10.1.2 A Representation of Self-Normalized Processes	
		and Associated Exponential Supermartingales	138
	10.2	Canonical Assumptions and Related Stochastic Models	139
	10.3	Continuous-Time Martingale Theory	140
		10.3.1 Doob–Meyer Decomposition and Locally	
		Square-Integrable Martingales	141
		10.3.2 Inequalities and Stochastic Integrals	143
	10.4	Supplementary Results and Problems	146
11	Pseu	Ido-Maximization via Method of Mixtures	149
	11.1	Pseudo-Maximization and Laplace's Method	149
	11.2	A Class of Mixing Densities	150
	11.3	Application of Method of Mixtures to Boundary Crossing	
		Probabilities	152
		11.3.1 The Robbins–Siegmund Boundaries for Brownian Motion	152
		11.3.2 Extensions to General Self-Normalized Processes	154
	11.4	Supplementary Results and Problems	157
12	Mon	nent and Exponential Inequalities for Self-Normalized	
	Proc	resses	161
	12.1	Inequalities of Caballero, Fernandez and Nualart, Graversen	101
		and Peskir, and Kikuchi	161
	12.2	Moment Bounds via the Method of Mixtures	164
	12,2	12.2.1 Gaussian Mixing Densities	165
		12.2.2. The Mixing Density Functions in Sect 11.2.	167
	123	Applications and Examples	174
	12.3	12.3.1 Proof of Lemma 8.11	174
		12.3.2 Generalizations of Theorems 12.1.12.2 and 12.3	175
		12.0.2 Constantizations of Theorems 12.1, 12.2 and 12.3,	115

	12.3.3 Moment Inequalities Under Canonical Assumption	170
	for a Restricted Range	1/6
	12.4 Supplementary Results and Problems	177
13	Laws of the Iterated Logarithm for Self-Normalized Processes	179
	13.1 Stout's LIL for Self-Normalized Martingales	179
	13.2 A Universal Upper LIL	182
	13.3 Compact LIL for Self-Normalized Martingales	186
	13.4 Supplementary Results and Problems	190
14	Multivariate Self-Normalized Processes with Matrix Normalization .	193
	14.1 Multivariate Extension of Canonical Assumptions	193
	14.1.1 Matrix Sequence Roots for Self-Normalization	193
	14.1.2 Canonical Assumptions for Matrix-Normalized Processes .	194
	14.2 Moment and Exponential Inequalities via Pseudo-Maximization	196
	14.3 LIL and Boundary Crossing Probabilities for Multivariate	
	Self-Normalized Processes	201
	14.4 Supplementary Results and Problems	202
Par	rt III Statistical Applications	
15	The <i>t</i> -Statistic and Studentized Statistics	207
	15.1 Distribution Theory of Student's <i>t</i> -Statistics	207
	15.1.1 Case of Infinite Second Moment	208
	15.1.2 Saddlepoint Approximations	210
	15.1.3 The <i>t</i> -Test and a Sequential Extension	212
		010

		13.1.3	The <i>t</i> -rest and a Sequential Extension
	15.2	Multiva	ariate Extension and Hotelling's T^2 -Statistic
		15.2.1	Sample Covariance Matrix and Wishart Distribution 213
		15.2.2	The Multivariate <i>t</i> -Distribution and Hotelling's
			<i>T</i> ² -Statistic
		15.2.3	Asymptotic Theory in the Case of Non-Normal Y _i 215
	15.3	Genera	1 Studentized Statistics
		15.3.1	Martingale Central Limit Theorems and Asymptotic
			Normality
		15.3.2	Non-Normal Limiting Distributions in Unit-Root
			Nonstationary Autoregressive Models
		15.3.3	Studentized Statistics in Stochastic Regression Models 218
	15.4	Supple	mentary Results and Problems
16	Self-	Norma	lization for Approximate Pivots in Bootstrapping
	16.1	Approx	kimate Pivots and Bootstrap-t Confidence Intervals
	16.2	Edgew	orth Expansions and Second-Order Accuracy
		16.2.1	Edgeworth Expansions for Smooth Functions
			of Sample Means
		16.2.2	Edgeworth and Cornish-Fisher Expansions: Applications
			to Bootstrap-t and Percentile Intervals

	16.3	Asymptotic U-Statistics and Their Bootstrap Distributions
	16.4	Application of Cramér-Type Moderate Deviations
	16.5	Supplementary Results and Problems
17	Pseu	do-Maximization in Likelihood and Bayesian Inference
	17.1	Generalized Likelihood Ratio Statistics
		17.1.1 The Wilks and Wald Statistics
		17.1.2 Score Statistics and Their Martingale Properties
	17.2	Penalized Likelihood and Bayesian Inference
		17.2.1 Schwarz's Bayesian Selection Criterion
		17.2.2 Pseudo-Maximization and Frequentist Properties
		of Bayes Procedures
	17.3	Supplementary Results and Problems
18	Sequ	ential Analysis and Boundary Crossing Probabilities
	for S	elf-Normalized Statistics
	18.1	Information Bounds and Asymptotic Optimality of Sequential
		GLR Tests
		18.1.1 Likelihood Ratio Identities, the Wald-Hoeffding Lower
		Bounds and their Asymptotic Generalizations
		18.1.2 Asymptotic Optimality of 2-SPRTs and Sequential GLR
		Tests
	18.2	Asymptotic Approximations via Method of Mixtures
		and Geometric Integration
		18.2.1 Boundary Crossing Probabilities for GLR Statistics
		via Method of Mixtures
		18.2.2 A More General Approach Using Saddlepoint
		Approximations and Geometric Integration
		18.2.3 Applications and Examples
	18.3	Efficient Monte Carlo Evaluation of Boundary
		Crossing Probabilities
	18.4	Supplementary Results and Problems
Ref	erenc	es
Ind	ex	

Chapter 1 Introduction

A prototypical example of a self-normalized process is Student's *t*-statistic based on a sample of normal i.i.d. observations X_1, \ldots, X_n , dating back to 1908 when William Gosset ("Student") considered the problem of statistical inference on the mean μ when the standard deviation σ of the underlying distribution is unknown. Let $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$ be the sample mean and $s_n^2 = (n-1)^{-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$ be the sample variance. Gosset (1908) derived the distribution of the *t*-statistic $T_n = \sqrt{n}(\bar{X}_n - \mu)/s_n$ for normal X_i ; this is the *t*-distribution with n-1 degrees of freedom. The *t*-distribution converges to the standard normal distribution, and in fact T_n has a limiting standard normal distribution as $n \to \infty$ even when the X_i are nonnormal. When nonparametric methods were subsequently introduced, the *t*-test was compared with the nonparametric tests (e.g., the sign test and rank tests), in particular for "fat-tailed" distributions with infinite second or even first absolute moments. It has been found that the *t*-test of $\mu = \mu_0$ is robust against non-normality in terms of the Type I error probability but not the Type II error probability. Without loss of generality, consider the case $\mu_0 = 0$ so that

$$T_n = \frac{\sqrt{n}\bar{X}_n}{s_n} = \frac{S_n}{V_n} \left\{ \frac{n-1}{n - (S_n/V_n)^2} \right\}^{1/2},$$
(1.1)

where $S_n = \sum_{i=1}^n X_i, V_n^2 = \sum_{i=1}^n X_i^2$. Efron (1969) and Logan et al. (1973) have derived limiting distributions of self-normalized sums S_n/V_n . In view of (1.1), if T_n or S_n/V_n has a limiting distribution, then so does the other, and it is well known that they coincide; see, e.g., Proposition 1 of Griffin (2002).

Active development of the probability theory of self-normalized processes began in the 1990s with the seminal work of Griffin and Kuelbs (1989, 1991) on laws of the iterated logarithm for self-normalized sums of i.i.d. variables belonging to the domain of attraction of a normal or stable law. Subsequently, Bentkus and Götze (1996) derived a Berry–Esseen bound for Student's *t*-statistic, and Giné et al. (1997) proved that the *t*-statistic has a limiting standard normal distribution if and only if X_i is in the domain of attraction of a normal law. Moreover, Csörgő et al. (2003a)

V.H. de la Peña et al., *Self-Normalized Processes: Limit Theory and Statistical Applications*, 1 Probability and its Applications,

[©] Springer-Verlag Berlin Heidelberg 2009

proved a self-normalized version of the weak invariance principle under the same necessary and sufficient condition. Shao (1997) proved large deviation results for S_n/V_n without moment conditions and moderate deviation results when X_i is the domain of attraction of a normal or stable law. Subsequently Shao (1999) obtained Cramér-type large deviation results when $E|X_1|^3 < \infty$. Jing et al. (2004) derived saddlepoint approximations for Student's *t*-statistic with no moment assumptions. Bercu et al. (2002) obtained large and moderate deviation results for self-normalized empirical processes. Self-normalized sums of independent but non-identically distributed X_i have been considered by Bentkus et al. (1996), Wang and Jing (1999), Jing et al. (2003) and Csörgő et al. (2003a).

Part I of the book presents in Chaps. 3-7 the basic ideas and results in the probability theory of self-normalized sums of independent random variables described above. It also extends in Chap. 8 the theory to self-normalized U-statistics based on independent random variables. Part II considers self-normalized processes in the case of dependent variables. Like Part I that begins by introducing some basic probability theory for sums of independent random variables in Chap. 2, Part II begins by giving in Chap. 9 an overview of martingale inequalities and related results which will be used in the subsequent chapters. Chapter 10 provides a general framework for self-normalization, which links the approach of de la Peña et al. (2000, 2004) for general self-normalized processes to that of Shao (1997) for large deviations of selfnormalized sums of i.i.d. random variables. This general framework is also applicable to dependent random vectors that involve matrix normalization, as in Hotelling's T^2 -statistic which generalizes Student's *t*-statistic to the multivariate case. In particular, it is noted in Chap. 10 that a basic ingredient in Shao's (1997) self-normalized large deviations theory is $e^{\psi(\theta,\rho)} := E \exp\{\theta X_1 - \rho \theta^2 X_1^2\}$, which is always finite for $\rho > 0$. This can be readily extended to the multivariate case by replacing θX_1 with $\theta' X_1$, where θ and X_1 are *d*-dimensional vectors. Under the assumptions $EX_1 = 0$ and $E||X_1||^2 < \infty$, Taylor's theorem yields

$$\psi(\theta,\rho) = \log\left(E\exp\left\{\theta'X_1 - \rho(\theta'X_1)^2\right\}\right) = \left\{\left(\frac{1}{2} - \rho + o(1)\right)\theta'E(X_1X_1')\theta\right\}$$

as $\theta \to 0$. Let $\gamma > 0$, $C_n = (1 + \gamma)\Sigma_{i=1}^n X_i X_i'$, $A_n = \Sigma_{i=1}^n X_i$. It then follows that ρ and ε can be chosen sufficiently small so that

$$\{\exp(\theta' A_n - \theta' C_n \theta/2), \ \mathscr{F}_n, n \ge 1\}$$

is a supermartingale with mean ≤ 1 , for $\|\theta\| < \varepsilon$. (1.2)

Note that (1.2) implies that $\{\int_{\|\theta\| < \varepsilon} e^{\theta' A_n - \theta' C_n \theta/2} f(\theta) d\theta, \mathcal{F}_n, n \ge 1\}$ is also a supermartingale, for any probability density *f* on the ball $\{\theta : \|\theta\| < \varepsilon\}$.

In Chap. 11 and its multivariate extension given in Chap. 14, we show that the supermartingale property (1.2), its weaker version $E\{\exp(\theta'A_n - \theta'C_n\theta/2)\} \le 1$ for $\|\theta\| < \varepsilon$, and other variants given in Chap. 10 provide a general set of conditions from which we can derive exponential bounds and moment inequalities for self-normalized processes in dependent settings. A key tool is the *pseudo-maximization*

method which involves Laplace's method for evaluating integrals of the form $\int_{\|\theta\| < \varepsilon} e^{\theta' A_n - \theta' C_n \theta/2} f(\theta) d\theta$. If the random function $\exp\{\theta' A_n - \theta' C_n \theta/2\}$ in (1.2) could be maximized over θ inside the expectation $E\{\exp(\theta' A_n - \theta' C_n \theta/2)\}$, taking the maximizing value $\theta = C_n^{-1} A_n$ would yield the expectation of the self-normalized variable $\exp\{A_n C_n^{-1} A_n/2\}$. Although this argument is not valid, integrating $\exp\{\theta' A_n - \theta' C_n \theta/2\}$ with respect to $f(\theta) d\theta$ and applying Laplace's method to evaluate the integral basically achieves the same effect as in the heuristic argument. This method is used to derive exponential and L_p -bounds for self-normalized processes in Chap. 12. The exponential bounds are used to derive laws of the iterated logarithm for self-normalized processes in Chap. 13.

Student's *t*-statistic $\sqrt{n}(\bar{X}_n - \mu)/s_n$ has also undergone far-reaching generalizations in the statistics literature during the past century. Its generalization is the Studentized statistic $(\hat{\theta}_n - \theta)/\hat{se}_n$, where θ is a functional g(F) of the underlying distribution function F, $\hat{\theta}_n$ is usually chosen to be the corresponding functional $g(\hat{F}_n)$ of the empirical distribution, and \hat{se}_n is a consistent estimator of the standard error of $\hat{\theta}_n$. Its multivariate generalization, which replaces $1/\hat{se}_n$ by $\hat{\Sigma}_n^{-1/2}$, where $\hat{\Sigma}_n$ is a consistent estimator of the covariance matrix of the vector $\hat{\theta}_n$ or its variant, is ubiquitous in statistical applications. Part III of the book, which is on statistical applications of self-normalized processes, begins with an overview in Chap. 15 of the distribution theory of the *t*-statistic and its multivariate extensions, for samples first from normal distributions and then from general distributions that may have infinite second moments. Chapter 15 also considers the asymptotic theory of general Studentized statistics in time series and control systems and relates this theory to that of self-normalized martingales. An alternative to inference based on asymptotic distributions of Studentized statistics is to make use of bootstrapping. Chapter 16 describes the role of self-normalization in deriving approximate pivots for the construction of bootstrap confidence intervals, whose accuracy and correctness are analyzed by Edgeworth and Cornish-Fisher expansions. Chapter 17 introduces generalized likelihood ratio statistics as another class of self-normalized statistics. It also relates the pseudo-maximization approach and the method of mixtures in Part II to the close connections between likelihood and Bayesian inference. Whereas the framework of Part I covers the classical setting of independent observations sampled from a population, that of Part II is applicable to time series models and stochastic dynamic systems, and examples are given in Chaps. 15, 17 and 18. Moreover, the probability theory in Parts I and II is related not only to samples of fixed size, but also to sequentially generated samples that are associated with asymptotically optimal stopping rules. Part III concludes with Chap. 18 which considers self-normalized processes in sequential analysis and the associated boundary crossing problems.

Part I Independent Random Variables

Chapter 2 Classical Limit Theorems, Inequalities and Other Tools

This chapter summarizes some classical limit theorems, basic probability inequalities and other tools that are used in subsequent chapters. Throughout this book, all random variables are assumed to be defined on the same probability space (Ω, \mathcal{F}, P) unless otherwise specified.

2.1 Classical Limit Theorems

The law of large numbers, the central limit theorem and the law of the iterated logarithm form a trilogy of the asymptotic behavior of sums of independent random variables. They are closely related to moment conditions and deal with three modes of convergence of a sequence of random variables Y_n to a random variable Y. We say that Y_n converges to Y *in probability*, denoted by $Y_n \xrightarrow{P} Y$, if, for any $\varepsilon > 0$, $P(|Y_n - Y| > \varepsilon) \to 0$ as $n \to \infty$. We say that Y_n converges *almost surely* to Y (or Y_n converges to Y with probability 1), denoted by $Y_n \xrightarrow{a.s.} Y$, if $P(\lim_{n\to\infty} Y_n = Y) = 1$. Note that almost sure convergence is equivalent to $P(\max_{k\geq n} |Y_k - Y| > \varepsilon) \to 0$ as $n \to \infty$ for any given $\varepsilon > 0$. We say that Y_n converges *in distribution* (or *weakly*) to Y, and write $Y_n \xrightarrow{D} Y$ or $Y_n \Rightarrow Y$, if $P(Y_n \le x) \to P(Y \le x)$, at every continuity point of the cumulative distribution function of Y. If the cumulative distribution $P(Y \le x)$ is continuous, then $Y_n \xrightarrow{D} Y$ not only means $P(Y_n \le x) \to P(Y \le x)$ for every x, but also implies that the convergence is uniform in x, i.e.,

$$\sup_{x} |P(Y_n \le x) - P(Y \le x)| \to 0 \qquad \text{as } n \to \infty.$$

The three modes of convergence are related by

$$Y_n \xrightarrow{a.s.} Y \Longrightarrow Y_n \xrightarrow{P} Y \Longrightarrow Y_n \xrightarrow{D} Y.$$

© Springer-Verlag Berlin Heidelberg 2009

The reverse relations are not true in general. However, $Y_n \xrightarrow{D} c$ is equivalent to $Y_n \xrightarrow{P} c$ when *c* is a constant. Another relationship is provided by Slutsky's theorem: If $Y_n \xrightarrow{D} Y$ and $\xi_n \xrightarrow{P} c$, then $Y_n + \xi_n \xrightarrow{D} Y + c$ and $\xi_n Y_n \xrightarrow{D} cY$.

2.1.1 The Weak Law, Strong Law and Law of the Iterated Logarithm

Let $X_1, X_2, ...$ be *independent and identically distributed* (i.i.d.) random variables and let $S_n = \sum_{i=1}^n X_i$. Then we have Kolmogorov's strong law of large numbers and Feller's weak law of large numbers.

Theorem 2.1. $n^{-1}S_n \xrightarrow{a.s.} c < \infty$ if and only if $E(|X_1|) < \infty$, in which case $c = E(X_1)$.

Theorem 2.2. In order that there exist constants c_n such that $n^{-1}S_n - c_n \xrightarrow{P} 0$, it is necessary and sufficient that $\lim_{x\to\infty} xP(|X_1| \ge x) = 0$. In this case, $c_n = EX_1I(|X_1| \le n)$.

The Marcinkiewicz–Zygmund law of large numbers gives the rate of convergence in Theorem 2.1.

Theorem 2.3. *Let* 1 .*If* $<math>E(|X_1|) < \infty$ *, then*

$$n^{1-1/p} \left(n^{-1} S_n - E(X_1) \right) \xrightarrow{a.s.} 0 \tag{2.1}$$

if and only if $E(|X_1|^p) < \infty$.

When p = 2, (2.1) is no longer valid. Instead, we have the Hartman–Wintner *law* of the iterated logarithm (LIL), the converse of which is established by Strassen (1966).

Theorem 2.4. If $EX_1^2 < \infty$ and $EX_1 = \mu$, $Var(X_1) = \sigma^2$, then

$$\limsup_{n \to \infty} \frac{S_n - n\mu}{\sqrt{2n \log \log n}} = \sigma \quad a.s.,$$
$$\liminf_{n \to \infty} \frac{S_n - n\mu}{\sqrt{2n \log \log n}} = -\sigma \quad a.s.,$$
$$\limsup_{n \to \infty} \frac{\max_{1 \le k \le n} |S_k - k\mu|}{\sqrt{2n \log \log n}} = \sigma \quad a.s$$

Conversely, if there exist finite constants a and τ such that

$$\limsup_{n\to\infty}\frac{S_n-na}{\sqrt{2n\log\log n}}=\tau \ a.s.,$$

then $a = E(X_1)$ and $\tau^2 = Var(X_1)$.

The following is an important tool for proving Theorems 2.1, 2.3 and 2.4.

Lemma 2.5 (Borel-Cantelli Lemma).

- (1) Let A_1, A_2, \ldots be an arbitrary sequence of events on (Ω, \mathscr{F}, P) . Then $\sum_{i=1}^{\infty} P(A_i) < \infty$ implies $P(A_n \ i.o.) = 0$, where $\{A_n \ i.o.\}$ denotes the event $\bigcap_{k>1} \bigcup_{n>k} A_n$, i.e., A_n occurs infinitely often.
- (2) Let A_1, A_2, \ldots , be a sequence of independent events on (Ω, \mathscr{F}, P) . Then $\sum_{i=1}^{\infty} P(A_i) = \infty$ implies $P(A_n \ i.o.) = 1$.

The strong law of large numbers and LIL have also been shown to hold for independent but not necessarily identically distributed random variables X_1, X_2, \ldots

Theorem 2.6.

(1) If $b_n \uparrow \infty$ and $\sum_{i=1}^{\infty} \operatorname{Var}(X_i)/b_i^2 < \infty$, then $(S_n - ES_n)/b_n \xrightarrow{a.s.} 0$. (2) If $b_n \uparrow \infty$, $\sum_{i=1}^{\infty} P(|X_i| \ge b_i) < \infty$ and $\sum_{i=1}^{\infty} b_i^{-2} EX_i^2 I(|X_i| \le b_i) < \infty$, then $(S_n - a_n)/b_n \xrightarrow{a.s.} 0$, where $a_n = \sum_{i=1}^n EX_i I(|X_i| \le b_i)$.

The "if" part in Theorems 2.1 and 2.3 can be derived from Theorem 2.6, which can be proved by making use Kolmogorov's three-series theorem and the Kronecker lemma in the following.

Theorem 2.7 (Three-series Theorem). The series $\sum_{i=1}^{\infty} X_i$ converges a.s. if and only if the three series

$$\sum_{i=1}^{\infty} P(|X_i| \ge c), \quad \sum_{i=1}^{\infty} EX_i I(|X_i| \le c), \quad \sum_{i=1}^{\infty} \operatorname{Var}\{X_i I(|X_i| \le c)\}$$

converge for some c > 0*.*

Lemma 2.8 (Kronecker's Lemma). If $\sum_{i=1}^{\infty} x_i$ converges and $b_n \uparrow \infty$, then $b_n^{-1} \sum_{i=1}^{n} b_i x_i \to 0$.

We end this subsection with Kolmogorov's LIL for independent but not necessarily identically distributed random variables; see Chow and Teicher (1988, Sect. 10.2). Assume that $EX_i = 0$ and $EX_i^2 < \infty$ and put $B_n^2 = \sum_{i=1}^n EX_i^2$. If $B_n \to \infty$ and $X_n = o(B_n(\log \log B_n)^{-1/2})$ a.s., then

$$\limsup_{n \to \infty} \frac{S_n}{B_n \sqrt{2\log \log B_n}} = 1 \quad a.s.$$
(2.2)

2.1.2 The Central Limit Theorem

For any sequence of random variables X_i with finite means, the sequence $X_i - E(X_i)$ has zero means and therefore we can assume, without loss of generality, that the mean of X_i is 0. For i.i.d. X_i , we have the classical central limit theorem (CLT).

Theorem 2.9. If X_1, \ldots, X_n are *i.i.d.* with $E(X_1) = 0$ and $Var(X_1) = \sigma^2 < \infty$, then

$$\frac{S_n}{\sqrt{n}\,\sigma} \xrightarrow{D} N(0,1).$$

The Berry-Esseen inequality provides the convergence rate in the CLT.

Theorem 2.10. Let Φ denote the standard normal distribution function and $W_n = S_n/(\sqrt{n\sigma})$. Then

$$\sup_{x} |P(W_{n} \le x) - \Phi(x)|$$

$$\leq 4.1 \left\{ \sigma^{-2} E X_{1}^{2} I\left(|X_{1}| > \sqrt{n}\sigma\right) + n^{-1/2} \sigma^{-3} E |X_{1}|^{3} I\left(|X_{1}| \le \sqrt{n}\sigma\right) \right\}.$$
(2.3)

In particular, if $E|X_1|^3 < \infty$, then

$$\sup_{x} |P(W_n \le x) - \Phi(x)| \le \frac{0.79E|X_1|^3}{\sqrt{n\sigma^3}}.$$
(2.4)

For general independent not necessarily identically distributed random variables, the CLT holds under the Lindeberg condition, under which a non-uniform Berry–Esseen inequality of the type in (2.3) still holds.

Theorem 2.11 (Lindberg–Feller CLT). Let X_n be independent random variables with $E(X_i) = 0$ and $E(X_i^2) < \infty$. Let $W_n = S_n/B_n$, where $B_n^2 = \sum_{i=1}^n E(X_i^2)$. If the Lindberg condition

$$B_n^{-2} \sum_{i=1}^n E X_i^2 I(|X_i| \ge \varepsilon B_n) \longrightarrow 0 \quad \text{for all } \varepsilon > 0 \tag{2.5}$$

holds, then $W_n \xrightarrow{D} N(0,1)$. Conversely, if $\max_{1 \le i \le n} EX_i^2 = o(B_n^2)$ and $W_n \xrightarrow{D} N(0,1)$, then the Lindberg condition (2.5) is satisfied.

Theorem 2.12. With the same notations as in Theorem 2.11,

$$\sup_{x} |P(W_{n} \le x) - \Phi(x)|$$

$$\le 4.1 \left(B_{n}^{-2} \sum_{i=1}^{n} EX_{i}^{2}I\{|X_{i}| > B_{n}\} + B_{n}^{-3} \sum_{i=1}^{n} E|X_{i}|^{3}I\{|X_{i}| \le B_{n}\} \right)$$
(2.6)

and

$$|P(W_n \le x) - \Phi(x)|$$

$$\le C\left(\sum_{i=1}^n \frac{EX_i^2 I\{|X_i| > (1+|x|)B_n\}}{(1+|x|)^2 B_n^2} + \sum_{i=1}^n \frac{E|X_i|^3 I\{|X_i| \le (1+|x|)B_n\}}{(1+|x|)^3 B_n^3}\right),$$
(2.7)

where C is an absolute constant.

2.1.3 Cramér's Moderate Deviation Theorem

The Berry–Esseen inequality gives a bound on the absolute error in approximating the distribution of W_n by the standard normal distribution. The usefulness of the bound may be limited when $\Phi(x)$ is close to 0 or 1. Cramér's theory of moderate deviations provides the relative errors. Petrov (1975, pp. 219–228) gives a comprehensive treatment of the theory and introduces the *Cramér series*, which is a power series whose coefficients can be expressed in terms of the cumulants of the underlying distribution and which is used in part (a) of the following theorem.

Theorem 2.13.

(a) Let X_1, X_2, \ldots be i.i.d. random variables with $E(X_1) = 0$ and $Ee^{t_0|X_1|} < \infty$ for some $t_0 > 0$. Then for $x \ge 0$ and $x = o(n^{1/2})$,

$$\frac{P(W_n \ge x)}{1 - \Phi(x)} = \exp\left\{x^2 \lambda\left(\frac{x}{\sqrt{n}}\right)\right\} \left(1 + O\left(\frac{1 + x}{\sqrt{n}}\right)\right), \quad (2.8)$$

where $\lambda(t)$ is the Cramér series. (b) If $Ee^{t_0\sqrt{|X_1|}} < \infty$ for some $t_0 > 0$, then

$$\frac{P(W_n \ge x)}{1 - \Phi(x)} \to 1 \quad \text{as } n \to \infty \text{ uniformly in } x \in \left[0, o(n^{1/6})\right).$$
(2.9)

(c) The converse of (b) is also true; that is, if (2.9) holds, then $Ee^{t_0\sqrt{|X_1|}} < \infty$ for some $t_0 > 0$.

In parts (a) and (b) of Theorem 2.13, $P(W_n \ge x)/(1 - \Phi(x))$ can clearly be replaced by $P(W_n \le -x)/\Phi(-x)$. Moreover, similar results are also available for standardized sums S_n/B_n of independent but not necessarily identically distributed random variables with bounded moment generating functions in some neighborhood of the origin; see Petrov (1975). In Chap. 7, we establish Cramér-type moderate deviation results for *self-normalized* (rather than standardized) sums of independent random variables under much weaker conditions.

2.2 Exponential Inequalities for Sample Sums

2.2.1 Self-Normalized Sums

We begin by considering independent Rademacher random variables.

Theorem 2.14. Assume that ε_i are independent and $P(\varepsilon_i = 1) = P(\varepsilon_i = -1) = 1/2$. *Then*

$$P\left(\frac{\sum_{i=1}^{n} a_i \varepsilon_i}{\left(\sum_{i=1}^{n} a_i^2\right)^{1/2}} \ge x\right) \le e^{-x^2/2}$$
(2.10)

for x > 0 and real numbers $\{a_i\}$.

Proof. Without loss of generality, assume $\sum_{i=1}^{n} a_i^2 = 1$. Observe that

$$\frac{1}{2}(e^{-t} + e^t) \le e^{t^2/2}$$

for $t \in \mathbb{R}$. We have

$$P\left(\sum_{i=1}^{n} a_{i}\varepsilon_{i} \ge x\right) \le e^{-x^{2}} E e^{x \sum_{i=1}^{n} a_{i}\varepsilon_{i}}$$
$$= e^{-x^{2}} \prod_{i=1}^{n} \frac{1}{2} (e^{-a_{i}x} + e^{a_{i}x})$$
$$\le e^{-x^{2}} \prod_{i=1}^{n} e^{a_{i}^{2}x^{2}/2} = e^{-x^{2}/2}.$$

Let X_n be independent random variables and let $V_n^2 = \sum_{i=1}^n X_i^2$. If we further assume that X_i is symmetric, then X_i and $\varepsilon_i X_i$ have the same distribution, where $\{\varepsilon_i\}$ are i.i.d. Rademacher random variables independent of $\{X_i\}$. Hence the selfnormalized sum S_n/V_n has the same distribution as $(\sum_{i=1}^n X_i \varepsilon_i)/V_n$. Given $\{X_i, 1 \leq i \leq n \}$ $i \leq n$, applying (2.10) to $a_i = X_i$ yields the following.

Theorem 2.15. If X_i is symmetric, then for x > 0,

$$P(S_n \ge xV_n) \le e^{-x^2/2}.$$
 (2.11)

The next result extends the above "sub-Gaussian" property of the self-normalized sum S_n/V_n to general (not necessarily symmetric) independent random variables.

Theorem 2.16. Assume that there exist b > 0 and a such that

$$P(S_n \ge a) \le 1/4$$
 and $P(V_n^2 \ge b^2) \le 1/4.$ (2.12)

Then for x > 0,

$$P\{S_n \ge x(a+b+V_n)\} \le 2e^{-x^2/2}.$$
(2.13)

In particular, if $E(X_i) = 0$ and $E(X_i^2) < \infty$, then

$$P\{|S_n| \ge x(4B_n + V_n)\} \le 4e^{-x^2/2} \quad for \ x > 0,$$
(2.14)

where $B_n = (\sum_{i=1}^n EX_i^2)^{1/2}$.

Proof. When $x \le 1$, (2.13) is trivial. When x > 1, let $\{Y_i, 1 \le i \le n\}$ be an independent copy of $\{X_i, 1 \le i \le n\}$. Then

$$P\left(\sum_{i=1}^{n} Y_i \le a, \sum_{i=1}^{n} Y_i^2 \le b^2\right) \ge 1 - P\left(\sum_{i=1}^{n} Y_i > a\right) - P\left(\sum_{i=1}^{n} Y_i^2 > b^2\right)$$
$$\ge 1 - 1/4 - 1/4 = 1/2.$$

2.2 Exponential Inequalities for Sample Sums

Noting that

$$\begin{cases} S_n \ge x(a+b+V_n), \ \sum_{i=1}^n Y_i \le a, \sum_{i=1}^n Y_i^2 \le b^2 \\ \\ \subset \left\{ \sum_{i=1}^n (X_i - Y_i) \ge x \left(a+b + \left(\sum_{i=1}^n (X_i - Y_i)^2 \right)^{1/2} - \left(\sum_{i=1}^n Y_i^2 \right)^{1/2} \right) - a, \sum_{i=1}^n Y_i^2 \le b^2 \\ \\ \\ \subset \left\{ \sum_{i=1}^n (X_i - Y_i) \ge x \left(\sum_{i=1}^n (X_i - Y_i)^2 \right)^{1/2} \right\} \end{cases}$$

and that $\{X_i - Y_i, 1 \le i \le n\}$ is a sequence of independent symmetric random variables, we have

$$P(S_n \ge x(a+b+V_n)) = \frac{P(S_n \ge x(a+b+V_n), \sum_{i=1}^n Y_i \le a, \sum_{i=1}^n Y_i^2 \le b^2)}{P(\sum_{i=1}^n Y_i \le a, \sum_{i=1}^n Y_i^2 \le b^2)} \le 2P(\sum_{i=1}^n (X_i - Y_i) \ge x(\sum_{i=1}^n (X_i - Y_i)^2)^{1/2}) \le 2e^{-x^2/2}$$

by (2.11). This proves (2.13), and (2.14) follows from (2.13) with $a = b = 2B_n$. \Box

2.2.2 Tail Probabilities for Partial Sums

Let X_n be independent random variables and let $S_n = \sum_{i=1}^n X_i$. The following theorem gives the *Bennett–Hoeffding inequalities*.

Theorem 2.17. Assume that $EX_i \leq 0$, $X_i \leq a$ (a > 0) for each $1 \leq i \leq n$, and $\sum_{i=1}^{n} EX_i^2 \leq B_n^2$. Then

$$Ee^{tS_n} \le \exp\left(a^{-2}(e^{ta}-1-ta)B_n^2\right) \quad for \ t>0,$$
 (2.15)

$$P(S_n \ge x) \le \exp\left(-\frac{B_n^2}{a^2} \left\{ \left(1 + \frac{ax}{B_n^2}\right) \log\left(1 + \frac{ax}{B_n^2}\right) - \frac{ax}{B_n^2} \right\} \right)$$
(2.16)

and

$$P(S_n \ge x) \le \exp\left(-\frac{x^2}{2(B_n^2 + ax)}\right) \qquad \text{for } x > 0.$$
(2.17)

Proof. It is easy to see that $(e^s - 1 - s)/s^2$ is an increasing function of *s*. Therefore

$$e^{ts} \le 1 + ts + (ts)^2 (e^{ta} - 1 - ta)/(ta)^2$$
 (2.18)

for $s \le a$, and hence

$$Ee^{tS_n} = \prod_{i=1}^n Ee^{tX_i} \le \prod_{i=1}^n \left(1 + tEX_i + a^{-2}(e^{ta} - 1 - ta)EX_i^2 \right)$$

$$\le \prod_{i=1}^n \left(1 + a^{-2}(e^{ta} - 1 - ta)EX_i^2 \right) \le \exp\left(a^{-2}(e^{ta} - 1 - ta)B_n^2\right).$$

This proves (2.15). To prove (2.16), let $t = a^{-1} \log(1 + ax/B_n^2)$. Then, by (2.15),

$$P(S_n \ge x) \le e^{-tx} E e^{tS_n}$$

$$\le \exp\left(-tx + a^{-2}(e^{ta} - 1 - ta)B_n^2\right)$$

$$= \exp\left(-\frac{B_n^2}{a^2} \left\{ \left(1 + \frac{ax}{B_n^2}\right) \log\left(1 + \frac{ax}{B_n^2}\right) - \frac{ax}{B_n^2} \right\} \right),$$

proving (2.16). To prove (2.17), use (2.16) and

$$(1+s)\log(1+s) - s \ge \frac{s^2}{2(1+s)}$$
 for $s > 0$.

The inequality (2.17) is often called *Bernstein's inequality*. From the Taylor expansion of e^x , it follows that

$$e^{x} \le 1 + x + x^{2}/2 + |x|^{3}e^{x}/6.$$
 (2.19)

Let $\beta_n = \sum_{i=1}^n E|X_i|^3$. Using (2.19) instead of (2.18) in the above proof, we have

$$Ee^{tS_n} \le \exp\left(\frac{1}{2}t^2B_n^2 + \frac{1}{6}t^3\beta_n e^{ta}\right),$$
 (2.20)

$$P(S_n \ge x) \le \exp\left(-tx + \frac{1}{2}t^2B_n^2 + \frac{1}{6}t^3\beta_n e^{ta}\right)$$
(2.21)

for all t > 0, and in particular

$$P(S_n \ge x) \le \exp\left(-\frac{x^2}{2B_n^2} + \frac{x^3}{6B_n^6}\beta_n e^{ax/B_n^2}\right).$$
 (2.22)

When X_i is not bounded above, we can first truncate it and then apply Theorem 2.17 to prove the following inequality.

Theorem 2.18. Assume that $EX_i \leq 0$ for $1 \leq i \leq n$ and that $\sum_{i=1}^n EX_i^2 \leq B_n^2$. Then

$$P(S_n \ge x) \le P\left(\max_{1 \le i \le n} X_i \ge b\right) + \exp\left(-\frac{B_n^2}{a^2} \left\{ \left(1 + \frac{ax}{B_n^2}\right) \log\left(1 + \frac{ax}{B_n^2}\right) - \frac{ax}{B_n^2} \right\} \right)$$
$$+ \sum_{i=1}^n P(a < X_i < b) P(S_n - X_i > x - b)$$
(2.23)

2.2 Exponential Inequalities for Sample Sums

for x > 0 and $b \ge a > 0$. In particular,

$$P(S_n \ge x) \le P\left(\max_{1 \le i \le n} X_i > \delta x\right) + \left(\frac{3B_n^2}{B_n^2 + \delta x^2}\right)^{1/\delta}$$
(2.24)

for x > 0 and $\delta > 0$.

Proof. Let $\bar{X}_i = X_i I(X_i \le a)$ and $\bar{S}_n = \sum_{i=1}^n \bar{X}_i$. Then

$$P(S_n \ge x) \le P\left(\max_{1 \le i \le n} X_i \ge b\right) + P\left(S_n \ge x, \max_{1 \le i \le n} X_i \le a\right)$$
$$+ P\left(S_n \ge x, \max_{1 \le i \le n} X_i > a, \max_{1 \le i \le n} X_i < b\right)$$
$$\le P\left(\max_{1 \le i \le n} X_i \ge b\right) + P(\bar{S}_n \ge x)$$
$$+ \sum_{i=1}^n P(S_n \ge x, a < X_i < b)$$
$$\le P\left(\max_{1 \le i \le n} X_i \ge b\right) + P(\bar{S}_n \ge x)$$
$$+ \sum_{i=1}^n P(S_n - X_i \ge x - b, a < X_i < b)$$
$$= P\left(\max_{1 \le i \le n} X_i \ge b\right) + P(\bar{S}_n \ge x)$$
$$+ \sum_{i=1}^n P(a < X_i < b)P(S_n - X_i \ge x - b).$$

Applying (2.16) to \bar{S}_n gives

$$P(\bar{S}_n \ge x) \le \exp\left(-\frac{B_n^2}{a^2}\left[\left(1 + \frac{ax}{B_n^2}\right)\log\left(1 + \frac{ax}{B_n^2}\right) - \frac{ax}{B_n^2}\right]\right),$$

which together with (2.26) yields (2.23). From (2.23) with $a = b = \delta x$, (2.24) follows.

The following two results are about nonnegative random variables.

Theorem 2.19. Assume that $X_i \ge 0$ with $E(X_i^2) < \infty$. Let $\mu_n = \sum_{i=1}^n EX_i$ and $B_n^2 = \sum_{i=1}^n EX_i^2$. Then for $0 < x < \mu_n$,

$$P(S_n \le x) \le \exp\left(-\frac{(\mu_n - x)^2}{2B_n^2}\right).$$
(2.26)

Proof. Note that $e^{-a} \le 1 - a + a^2/2$ for $a \ge 0$. For any $t \ge 0$ and $x \le \mu_n$, we have

$$P(S_n \le x) \le e^{tx} E e^{-tS_n} = e^{tx} \prod_{i=1}^n E e^{-tX_i}$$

$$\le e^{tx} \prod_{i=1}^n E(1 - tX_i + t^2 X_i^2/2)$$

$$\le \exp(-t(\mu_n - x) + t^2 B_n^2/2)$$

Letting $t = (\mu_n - x)/B_n^2$ yields (2.26).

Theorem 2.20. *Assume that* $P(X_i = 1) = p_i$ *and* $P(X_i = 0) = 1 - p_i$. *Then for* x > 0*,*

$$P(S_n \ge x) \le \left(\frac{\mu e}{x}\right)^x,\tag{2.27}$$

where $\mu = \sum_{i=1}^{n} p_i$.

Proof. Let t > 0. Then

$$P(S_n \ge x) \le e^{-tx} \prod_{i=1}^n E e^{tX_i} = e^{-tx} \prod_{i=1}^n (1 + p_i(e^t - 1))$$

$$\le \exp(-tx + (e^t - 1)\sum_{i=1}^n p_i) = \exp(-tx + (e^t - 1)\mu).$$

Since the case $x \le \mu$ is trivial, we assume that $x > \mu$. Then letting $t = \log(x/\mu)$ yields

$$\exp\left(-tx+(e^t-1)\mu\right)=\exp\left(-x\log(x/\mu)+x-\mu\right)\leq(\mu\,e/x)^x.$$

We end this section with the Ottaviani maximal inequality.

Theorem 2.21. Assume that there exists a such that $\max_{1 \le k \le n} P(S_k - S_n \ge a) \le 1/2$. Then

$$P\left(\max_{1\le k\le n} S_k \ge x\right) \le 2P(S_n \ge x-a).$$
(2.28)

In particular, if $E(X_i) = 0$ and $E(X_i^2) < \infty$, then

$$P\left(\max_{1\le k\le n} S_k \ge x\right) \le 2P(S_n \ge x - \sqrt{2}B_n), \tag{2.29}$$

where $B_n = \sqrt{\sum_{i=1}^n E(X_i^2)}$.

Proof. Let $A_1 = \{S_1 \ge x\}$ and $A_k = \{S_k \ge x, \max_{1 \le i \le k-1} S_i < x\}$. Then $\{\max_{1 \le k \le n} S_k \ge x\} = \bigcup_{k=1}^n A_k$ and

$$\begin{split} P\left(\max_{1 \le k \le n} S_k \ge x\right) &\leq P(S_n \ge x - a) + \sum_{k=1}^n P(A_k, S_n < x - a) \\ &\leq P(S_n \ge x - a) + \sum_{k=1}^n P(A_k, S_n - S_k < -a) \\ &= P(S_n \ge x - a) + \sum_{k=1}^n P(A_k) P(S_n - S_k < -a) \\ &\leq P(S_n \ge x - a) + (1/2) \sum_{k=1}^n P(A_k) \\ &= P(S_n \ge x - a) + (1/2) P\left(\max_{1 \le k \le n} S_k \ge x\right), \end{split}$$

which gives (2.28). (2.29) follows from (2.28) with $a = \sqrt{2}B_n$.

The proof of Kolmogorov's LIL (2.2) involves upper exponential bounds like those in Theorem 2.17 and the following lower exponential bound, whose proof is given in Chow and Teicher (1988, pp. 352–354) and uses the "conjugate method" that will be described in Sect. 3.1.

Theorem 2.22. Assume that $EX_i = 0$ and $|X_i| \le a_i$ a.s. for $1 \le i \le n$ and that $\sum_{i=1}^n EX_i^2 = B_n^2$. Let $c_n \ge c_0 > 0$ be such that $\lim_{n\to\infty} a_n c_n/B_n = 0$. Then for every $0 < \gamma < 1$, there exists $0 < \delta_{\gamma} < 1/2$ such that for all large n,

$$P\left\{S_n \ge (1-\gamma)^2 c_n B_n\right\} \ge \delta_{\gamma} \exp\left\{-(1-\gamma)(1-\gamma^2)c_n^2/2\right\}.$$

2.3 Characteristic Functions and Expansions Related to the CLT

Let *Y* be a random variable with distribution function *F*. The *characteristic function* of *Y* is defined by $\varphi(t) = Ee^{itY} = \int_{-\infty}^{\infty} e^{ity} dF(y)$ for $t \in \mathbb{R}$. In view of *Lévy's inversion formula*

$$\lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \varphi(t) dt = P(a < Y < b) + \frac{1}{2} \{ P(Y = a) + P(Y = b) \}$$
(2.30)

for a < b (see Durrett, 2005, pp. 93–94), the characteristic function uniquely determines the distribution function. The characteristic function φ is continuous, with $\varphi(0) = 1$, $|\varphi(t)| \le 1$ for all $t \in \mathbb{R}$. There are three possibilities concerning solutions to the equation $|\varphi(t)| = 1$ (see Durrett, 2005, p. 129):

- (a) $|\varphi(t)| < 1$ for all $t \neq 0$.
- (b) $|\varphi(t)| = 1$ for all $t \in \mathbb{R}$. In this case, $\varphi(t) = e^{ita}$ and Y puts all its mass at a.
- (c) |φ(τ)| = 1 and |φ(t)| < 1 for 0 < t < τ. In this case |φ| has period τ and there exists b ∈ ℝ such that the support of Y is the lattice {b+2πj/τ: j = 0, ±1,±2,...}, i.e., Y is *lattice with span* 2π/τ.

A random variable Y is called *non-lattice* if its support is not a lattice, which corresponds to case (a) above. It is said to be *strongly non-lattice* if it satisfies *Cramér's condition*

$$\limsup_{|t| \to \infty} |\varphi(t)| < 1.$$
(2.31)

Note that (2.31), which is only concerned with the asymptotic behavior of $|\varphi(t)|$ as $|t| \rightarrow \infty$, is stronger than (*a*) because it rules out (*b*) and (*c*).

If the characteristic function φ of Y is integrable, i.e., $\int_{-\infty}^{\infty} |\varphi(t)| dt < \infty$, then Y has a bounded continuous density function f with respect to Lebesgue measure and

$$f(y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ity} \varphi(t) dt.$$
 (2.32)

This is the *Fourier inversion formula*; see Durrett (2005, p. 95). In this case, since $\varphi(t) = \int_{-\infty}^{\infty} e^{ity} f(y) dy$ and f is integrable,

$$\lim_{|t| \to \infty} \varphi(t) = 0 \tag{2.33}$$

by the Riemann–Lebesgue lemma; see Durrett (2005, p. 459). Hence, if *Y* has an integrable characteristic function, then *Y* satisfies Cramér's condition (2.31).

In the case of lattice distributions with support $\{b+hk: k=0,\pm 1,\pm 2,\ldots\}$, let $p_k = P(Y = b + hk)$. Then the characteristic function is a Fourier series $\varphi(t) = \sum_{k=-\infty}^{\infty} p_k e^{it(b+hk)}$, with

$$p_k = \frac{h}{2\pi} \int_{-\pi/h}^{\pi/h} e^{-it(b+hk)} \varphi(t) dt, \qquad (2.34)$$

noting that the span h corresponds to $2\pi/\tau$ (or $\tau = 2\pi/h$) in (b).

2.3.1 Continuity Theorem and Weak Convergence

Theorem 2.23. Let φ_n be the characteristic function of Y_n .

- (a) If $\varphi_n(t)$ converges, as $n \to \infty$, to a limit $\varphi(t)$ for every t and if φ is continuous at 0, then φ is the characteristic function of a random variable Y and $Y_n \Rightarrow Y$.
- (b) If $Y_n \Rightarrow Y$ and φ is the characteristic function of Y, then $\lim_{n\to\infty} \varphi_n(t) = \varphi(t)$ for all $t \in \mathbb{R}$.

For independent random variables X_1, \ldots, X_n , the characteristic function of the sum $S_n = \sum_{k=1}^n X_k$ is the product of their characteristic functions $\varphi_1, \ldots, \varphi_n$. If X_i has mean 0 and variance σ_i^2 , quadratic approximation of $\varphi_i(t)$ in a neighborhood of the origin by Taylor's theorem leads to the central limit theorem under the Lindeberg condition (2.5). When the X_k have infinite second moments, the limiting distribution of $(S_n - b_n)/a_n$, if it exists for suitably chosen centering and scaling constants, is an *infinitely divisible* distribution, which is characterized by the property that its characteristic function is the *n*th power of a characteristic function for every integer $n \ge 1$. Equivalently, *Y* is infinitely divisible if for every $n \ge 1$, $Y \stackrel{D}{=} X_{n1} + \cdots + X_{nn}$, where X_{ni} are i.i.d. random variables and $\stackrel{D}{=}$ denotes equality in distribution (i.e., both sides having the same distribution). Another equivalent characteristic function φ infinite divisibility is the Lévy–Khintchine representation of the characteristic function φ of *Y*:

$$\varphi(t) = \exp\left\{i\gamma t + \int_{-\infty}^{\infty} \left(e^{itu} - 1 - \frac{itu}{1+u^2}\right) \left(\frac{1+u^2}{u^2}\right) dG(u)\right\},\tag{2.35}$$

where $\gamma \in \mathbb{R}$ and G is nondecreasing, left continuous with $G(-\infty) = 0$ and $G(\infty) < \infty$. Examples of infinitely divisible distributions include the normal,