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Preface

The science of sonar performance modeling is traditionally separated into a ““wet end”
comprising the disciplines of acoustics and oceanography and a “dry end” of signal
processing and detection theory. This book is my attempt to bring both aspects
together to serve as a modern reference for today’s sonar performance modeler,
whether for research, design, or analysis, as Urick’s Principles of Underwater Sound
did for sonar engineers of his day. The similarity in the title is no accident.

During the process I made some valuable discoveries that I now share with the
reader. The radar literature provides a deep mine of resources, with applicable results
from the theories of wave propagation, signal processing, and (an especially rich vein,
largely unexploited in the sonar literature) statistical detection. From oceanography
we learn that each of the world’s oceans has its own unique physical, chemical, and
biological signature, with sometimes profound consequences for sonar.

Marine mammals have evolved a sonar of their own, the remarkable properties of
which we are only beginning to unravel, as reported in the increasingly sophisticated
bioacoustics literature. Governments and industry around the world have begun to
take seriously the environmental consequences of man’s use, whether deliberate or
incidental, of sound in the sea. I have done my best to provide a representative
snapshot of this rapidly developing field.

Some readers will treat this book as a repository of facts, figures, and formulas,
while others will seek in it explanations and clarity. It has been my intention to satisfy
the needs of both types of reader by including mathematical derivations and worked
examples, supplemented with measurements or estimates of relevant input param-
eters. Of all readers I request the patience to overlook the flaws that undoubtedly
remain, despite my best attempts to weed them out.

Michael A. Ainslie
TNO, The Hague, The Netherlands, March 2010



Foreword

Underwater acoustics is largely a branch of physics, perhaps merging with geophysics
and oceanography, but as soon as one attempts to assess a sonar’s performance under
realistic conditions, a host of other engineering factors come into play. Is the desired
target signal louder than all the other natural noise from wind, waves, ship engines,
strumming cables? Is it louder than sound scattered from other distant objects? How
do the standard signal-processing techniques such as beamforming, spectral analysis,
and statistical analysis influence the probability of achieving a target detection and the
probability of a false alarm?

The author, Dr. Mike Ainslie, is a physicist with a considerable academic
publication record and many years’ hands-on experience in sonar assessment for
the U.K.’s MOD and for TNO in The Netherlands. Through a firm foundation in
physics, always taking great care over the physical units, Principles of Sonar Per-
formance Modeling introduces rigor and clarity into the traditional sonar equation
while still answering the fundamental engineering questions. As well as dealing with
the more pure disciplines of sound generation, propagation, and reverberation, it
tackles sound sources, targets, signal processing, and detection theory for man-made
and biological sonar.

Underlying all this is a desire “to see the wood for the trees”. For instance, it is
often the case with propagation that, despite all the complexities of refraction,
reflection, diffraction, scattering, and so on, some simple mechanism dominates,
and sometimes one can express the entire transmission loss, ambient noise level,
or reverberation level by a simple formula. This insight, or even revelation, is an
important bonus and check if one is to have faith in numerical assessment of
complicated search scenarios. It can also become a useful shortcut when a particular
scenario is to be investigated under many different acoustic, or processing, conditions.
Examples of such insights will be found throughout.

The cornerstone is the derivation of the sonar equations—too often presented as
indisputable fact—from simple physical principles. The derivation is presented



xvi Foreword

initially in terms of ratios of simple physical quantities, and converted to decibels only
at the end. Such an approach provides both clarity and a systematic rationale for
determining how to evaluate each sonar equation term, and occasionally throws up
unexpected new corrections.

The book will provide a useful reference for acousticians, engineers, physicists,
mathematicians, sonar designers, and naval sonar operators whether working in
research labs, the defense industry, or universities.

Chris Harrison
NATO Undersea Research Centre (NURC), Italy, March 2010
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Part 1

Foundations



1

Introduction

Wee represent Small Sounds as Great and Deepe,; Likewise
Great Sounds, Extenuate and Sharpe; Wee make diverse
Tremblings and Warblings of Sounds, which in their Originall
are Entire. Wee represent and imitate all Articulate Sounds and
Letters, and the Voices and Notes of Beasts and Birds. Wee have
certaine Helps, which sett to the Eare doe further the Hearing
greatly. Wee have also diverse Strange and Artificiall Eccho’s,
Reflecting the Voice many times, and as it were Tossing it; And
some that give back the Voice Lowder then it came, some
Shriller, and Some Deeper; Yea some rendring the Voice,
Differing in the Letters or Articulate Sound, from that they
receyve. Wee have also meanes to convey Sounds in Trunks and
Pipes in strange Lines, and Distances.

Francis Bacon (1624)

1.1 WHAT IS SONAR?

Sonar can be thought of as a kind of underwater radar, using sound instead of radio
waves to interrogate its surroundings. But what is special about sound in the sea?
Radio waves travel unhindered in air, whereas sound energy is absorbed relatively
quickly. In water, the opposite is the case: low absorption and the presence of natural
oceanic waveguides combine to permit propagation of sound over thousands of
kilometers, whereas the sea is opaque to most of the electromagnetic spectrum.
The word sonar is an acronym for sound navigation and ranging. The primary
purpose of sonar is the detection or characterization (estimation of position, velocity,
and identity) of submerged, floating, or buried objects. Electronic systems capable of
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underwater detection and localization were developed in the 20th century, motivated
initially by the sinking of RMS Titanic in 1912 and the First World War (WW1), and
spurred on later by the Second World War (WW2) and the Cold War. Nevertheless,
by comparison with marine fauna, man remains a novice user of underwater sound.
Deprived of light in their natural habitat, dolphins have evolved a sophisticated form
of sonar over millions of years, without which they would be almost blind. They
transmit bursts of ultrasound, and sense the world around them by interpreting the
echoes. Many fish and other aquatic animals are also capable of both producing and
hearing sounds.

1.2 PURPOSE, SCOPE, AND INTENDED READERSHIP

This book is aimed at anyone, novice and experienced practitioner alike, with an
interest in estimating the performance of sonar, or understanding the conditions for
which a particular existing or hypothetical system is likely to make a successful
detection. This includes sonar analysts and designers, whether for oceanographic
research, navigation, or search sonar. It also includes those studying the use of sound
by marine mammals and the impact of exposure of these animals to sound. Regard-
less of application, the objective of sonar performance modeling is usually to support
a decision-making process. In the case of man-made sonar, the decision is likely to
involve the optimization of some aspect of the design, procurement, or use of sonar.
(What frequency or bandwidth is appropriate? How many sonars are needed to
complete the task in the time available?) For bio-sonar there is increasing interest
in the assessment (and mitigation) of the risk of damage to marine life due to
anthropogenic sources of underwater sound. (What level of sound might disrupt a
dolphin’s ability to locate and capture its prey? How can the risk of hearing damage
be prevented or minimized?)

The nature of the sought object, known as the sonar target, depends on the
application. Examples include man-made objects of military interest (a mine or
submarine), shipwrecks (as a navigation hazard or archeological artifact), and fish
(the target of interest to a whale or fisherman).

In general, sonar can be grouped into two main categories. These are active sonar
and passive sonar, which are distinguished by the presence and absence, respectively,
of a sound transmitter as a component of the sonar system.

e An active sonar system comprises a transmitter and a receiver and works on the
principle of echolocation. If a signal (in this case an echo from the target) is
detected, the position of the target can be estimated from the time delay and
direction of the echo. The echolocation principle is also used by radar, and by the
biological sonar of bats and dolphins.

e A passive sonar includes a receiver but no transmitter. The signal to be detected is
then the sound emitted by the target.

Examples of man-made sonar include
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e Echo sounder: perhaps the most common of all man-made sonars, an echo
sounder is a device for measuring water depth by timing the delay of an echo
from the seabed. The strength and character of the echo can also provide an
indication of bottom type.

e  Fisheries sonar: sonar equipment used by the fisheries industry exploits the same
principle as the echo sounder, except that the purpose is to detect fish instead of
the sea floor.

e  Military sonar: modern navies deploy a wide variety of sonar systems, designed to
detect and track potential military threats such as surface ships, submarines,
mines, or torpedoes. The diverse nature of these threats and of the platforms
on which the sonar systems are mounted means that military sonars are them-
selves diverse, with each specialized system dedicated to a particular task.

e  Oceanographic sensor: scientific work aimed at understanding and surveying the
sea (acoustical oceanography) makes extensive use of a variety of different kinds
of sonar, many of which are variants of the echo sounder.

e Shadow sensor: in exceptional cases, the sonar “‘signal”, instead of being the
sound emitted or scattered by the target, might actually be some perturbation
to the expected background. For example, the shadow of an object lying on the
seabed might be detectable when the object itself is not.

Many readers will be familiar with Urick’s classic Principles of Underwater Sound for
Engineers," which provided its readers with the tools they needed to carry out sonar
design and assessment studies. These tools come in the form of a set of equations
relating the predicted signal-to-noise ratio to known parameters such as the radiated
power of the sonar transmitter, or the size and shape of the target. This set of
equations is known as the “sonar equations’. The same basic requirement remains
today, but the modeling methods have increased in sophistication during the 25 years
that have elapsed since Urick’s third and final edition, with a bewildering array of
computer models to choose from (Etter, 2003). The present objective is to meet the
needs of the modern user or developer of such models by documenting established
methods and relevant research results, using internally consistent definitions and
notation throughout. The discipline of sonar performance modeling is perceived
sometimes as a black art. The purpose of this book is, above all, to demystify this
art by explaining the jargon and deriving the sonar equations from physical princi-
ples.

The book’s scope includes underwater sound, the properties of the sea relevant
to the generation and propagation of sound, and the processing that occurs after
an acoustic signal has been converted to an electrical one? and then digitized.
The estimation of sonar performance is taken as far as the detection (and false
alarm) probability, but no further than that. While the scope excludes localization,

I'See Urick (1967) and two later editions (Urick, 1975, 1983).

2 Conversion between electrical and acoustical energy (known as transduction), whether on
transmission or reception, is excluded from the scope. The interested reader is referred to Hunt
(1954) and Stansfield (1991).



