Principles of Sonar Performance Modeling

Published in association with **Praxis Publishing** Chichester, UK

Dr Michael A. Ainslie TNO, Sonar Department The Hague The Netherlands

SPRINGER-PRAXIS BOOKS IN GEOPHYSICAL SCIENCES SUBJECT ADVISORY EDITOR: Philippe Blondel, C.Geol., F.G.S., Ph.D., M.Sc., F.I.O.A., Senior Scientist, Department of Physics, University of Bath, Bath, UK

ISBN 978-3-540-87661-8 e-ISBN 978-3-540-87662-5 DOI 10.1007/978-3-540-87662-5

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2010921914

© Springer-Verlag Berlin Heidelberg 2010

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Cover design: María Pilar Ainslie and Jim Wilkie Project management: OPS Ltd, Gt Yarmouth, Norfolk, UK

Printed on acid-free paper

Springer is part of Springer Science + Business Media (www.springer.com)

Contents

Pre	face.	х	iii					
For	oreword							
Acl	cknowledgments							
Lis								
Lis	t of ta	ables	xv					
PA	RT I	FOUNDATIONS	1					
1	Intro	duction	3					
	1.1	What is sonar?	3					
	1.2	Purpose, scope, and intended readership	4					
	1.3	Structure	6					
		1.3.1 Part I: Foundations (Chapters 1–3)	6					
		1.3.2 Part II: The four pillars (Chapters 4–7)	6					
		1.3.3 Part III: Towards applications (Chapters 8–11)	7					
		1.3.4 Appendices	7					
	1.4	A brief history of sonar	7					
		1.4.1 Conception and birth of sonar (-1918)	8					
		1.4.2 Sonar in its infancy (1918–1939)	15					
		1.4.3 Sonar comes of age (1939–)	17					
		1.4.4 Swords to ploughshares	22					
	1.5	References	23					
2	Essei	ntial background	27					
	2.1	Essentials of sonar oceanography	27					
		2.1.1 Acoustical properties of seawater	28 30					

vi Contents

2.2	Essentials of underwater acoustics.	30
	2.2.1 What is sound?	30
	2.2.2 Radiation of sound	31
	2.2.3 Scattering of sound	40
2.3	Essentials of sonar signal processing	42
	2.3.1 Temporal filter	42
	2.3.2 Spatial filter (beamformer)	44
2.4	Essentials of detection theory	47
	2.4.1 Gaussian distribution	47
	2.4.2 Other distributions	51
2.5	References	52

The	sonar eq	quations	
3.1	Introd	uction	
	3.1.1	Objectives of sonar performance modeling	
	3.1.2	Concepts of "signal" and "noise"	
	3.1.3	Generic deep-water scenario	
	3.1.4	Chapter organization	
3.2	Passive	e sonar	
	3.2.1	Overview	
	3.2.2	Definition of standard terms (passive sonar)	
	3.2.3	Coherent processing: narrowband passive sonar	
	3.2.4	Incoherent processing: broadband passive sonar	
3.3	Active	sonar	
	3.3.1	Overview	
	3.3.2	Definition of standard terms (active sonar)	
	3.3.3	Coherent processing: CW pulse + Doppler filter	
	3.3.4	Incoherent processing: CW pulse + energy detector	
2 1	Refere	nces	

PA		IHE	FOUR PILLARS	123
4	Sona	r ocean	ography	125
	4.1	Proper	ties of the ocean volume	126
		4.1.1	Terrestrial and universal constants	126
		4.1.2	Bathymetry	126
		4.1.3	Factors affecting sound speed and attenuation in pure	
			seawater	126
		4.1.4	Speed of sound in pure seawater	139
		4.1.5	Attenuation of sound in pure seawater	146
	4.2	Proper	ties of bubbles and marine life	148
		4.2.1	Properties of air bubbles in water	148
		4.2.2	Properties of marine life	152

	4.3	Proper 4.3.1	rties of the sea surface	159 159
		4.3.2	Surface roughness	166
		4.3.3	Wind-generated bubbles	169
	4.4	Proper	rties of the seabed	171
		4.4.1	Unconsolidated sediments	172
		4.4.2	Rocks	180
		4.4.3	Geoacoustic models	183
	4.5	Refere	ences	184
5	Und	erwater	acoustics	191
	5.1	Introd	luction	191
	5.2	The w	vave equations for fluid and solid media	192
		5.2.1	Compressional waves in a fluid medium	192
		5.2.2	Compressional waves and shear waves in a solid medium	194
	5.3	Reflec	tion of plane waves	197
		5.3.1	Reflection from and transmission through a simple fluid-	
			fluid or fluid-solid boundary	198
		5.3.2	Reflection from a layered fluid boundary	201
		5.3.3	Reflection from a layered solid boundary	204
		5.3.4	Reflection from a perfectly reflecting rough surface	205
		5.3.5	Reflection from a partially reflecting rough surface	208
	5.4	Scatte	ring of plane waves	209
		5.4.1	Scattering cross-sections and the far field	209
		5.4.2	Backscattering from solid objects	210
		5.4.3	Backscattering from fluid objects	214
		5.4.4	Scattering from rough boundaries	223
	5.5	Disper	rsion in the presence of impurities	225
		5.5.1	Wood's model for sediments in dilute suspension	225
		5.5.2	Buckingham's model for saturated sediments with inter-	226
			granular contact	226
		5.5.3	Effect of bubbles or bladdered fish	227
	5.6	Refere	ences	247
6	Sona	ar signal	l processing	251
	6.1	Proces	ssing gain for passive sonar	252
		6.1.1	Beam patterns	252
		6.1.2	Directivity index	266
		6.1.3	Array gain	271
		6.1.4	BB application	278
		6.1.5	Time domain processing	279
	6.2	Proces	ssing gain for active sonar	279
		6.2.1	Signal carrier and envelope	280
		6.2.2	Simple envelopes and their spectra	282

		6.2.3	Autocorrelation and cross-correlation functions and the matched filter	296
		6.2.4	Ambiguity function	300
		6.2.5	Matched filter gain for perfect replica	306
		6.2.6	Matched filter gain for imperfect replica (coherence loss)	307
		6.2.7	Array gain and total processing gain (active sonar)	308
	6.3	Referen	nces	309
7	Statis	stical de	tection theory	311
	7.1	Single	known pulse in Gaussian noise, coherent processing	312
		7.1.1	False alarm probability for Gaussian-distributed noise .	312
		7.1.2	Detection probability for signal with random phase	313
		7.1.3	Detection threshold	326
		7.1.4	Application to other waveforms	327
	7.2	Multip	le known pulses in Gaussian noise, incoherent processing	327
		7.2.1	False alarm probability for Rayleigh-distributed noise	220
		7 2 2		328
		1.2.2	Detection probability for incoherently processed pulse	220
	72	Applia	$\begin{array}{c} \text{uall} & \dots & \dots & \dots \\ \text{stign} \ \text{to} \ \text{songr} \end{array}$	211
	1.5	Applica 7 2 1		244
		7.3.1		244
		1.3.2	Passive solial	244
	7 /	1.5.5 Multin	Lecks	240
	/.4	7 / 1	Introduction	340
		7.4.1	AND and OP expertions	250
		7.4.2	Multiple OR operations	254
		7.4.5	$\begin{array}{c} \text{Multiple OK operations} \\ \text{``M out of } N^{2} \text{ operations} \end{array}$	254
	75	7.4.4 Referei		350
	1.5	Keletel	nees	557
PA	RT III	TOW	ARDS APPLICATIONS	359
8	Sourc	ces and	scatterers of sound	361
	8.1	Reflect	ion and scattering from ocean boundaries	361
		8.1.1	Reflection from the sea surface	362
		8.1.2	Scattering from the sea surface	369
		8.1.3	Reflection from the seabed	375
		8.1.4	Scattering from the seabed	391
	8.2	Target	strength, volume backscattering strength, and volume	
		attenua	ation coefficient	399
		8.2.1	Target strength of point-like scatterers	400
		8.2.2	Volume backscattering strength and attenuation coeffi-	
			cient of distributed scatterers	409
		8.2.3	Column strength and wake strength of extended volume	
			scatterers	412

	8.3	Sources of underwater sound	414
		8.3.1 Shipping source spectrum level measurements	417
		8.3.2 Distributed sources on the sea surface	424
		8.3.3 Distributed sources on the seabed (crustacea)	429
	8.4	References	431
-			
9	Prop	agation of underwater sound	439
	9.1	Propagation loss	440
		9.1.1 Effect of the seabed in isovelocity water	440
		9.1.2 Effect of a sound speed profile	459
	9.2	Noise level	483
		9.2.1 Deep water	484
		9.2.2 Shallow water	489
		9.2.3 Noise maps	490
	9.3	Signal level (active sonar)	491
		9.3.1 The reciprocity principle	492
		9.3.2 Calculation of echo level	493
		9.3.3 V-duct propagation (isovelocity case)	494
		9.3.4 U-duct propagation (linear profile)	494
	9.4	Reverberation level	495
		9.4.1 Isovelocity water	497
		9.4.2 Effect of refraction	500
	9.5	Signal-to-reverberation ratio (active sonar)	508
		9.5.1 V-duct (isovelocity case)	508
		9.5.2 U-duct (linear profile)	509
	9.6	References	510
10	T		512
10	1 ran	Transmitten characteristics	514
	10.1	10.1.1 Of many much surfaces	514
		10.1.1 Of man-made systems	515
	10.2	10.1.2 Of marine mammals	542
	10.2		545
		10.2.1 Of man-made sonar	545
	10.2	10.2.2 Of marine mammals, amphibians, human divers, and fish	549
	10.3	References	202
11	The	sonar equations revisited	573
	11.1	Introduction	573
	11.2	Passive sonar with coherent processing: tonal detector	574
		11.2.1 Sonar equation	574
		11.2.2 Source level (SL)	575
		11.2.3 Narrowband propagation loss (PL)	576
		11.2.4 Noise spectrum level (NL c)	578
		11.2.5 Bandwidth (BW)	579
		11.2.6 Array gain (AG) and directivity index (DI)	580
		$11.2.0$ $111ay$ gain (1.0) and uncertainly index $(D1)$ \dots \dots	500

		11.2.7	Detection threshold (DT)	581
		11.2.8	Worked example	583
	11.3	Passive	sonar with incoherent processing: energy detector	591
		11.3.1	Sonar equation	591
		11.3.2	Source level (SL)	592
		11.3.3	Broadband propagation loss (PL)	592
		11.3.4	Broadband noise level (NL)	593
		11.3.5	Processing gain (PG)	593
		11.3.6	Broadband detection threshold (DT)	597
		11.3.7	Worked example	599
	11.4	Active s	sonar with coherent processing: matched filter	606
		11.4.1	Sonar equation	606
		11.4.2	Echo level (EL), target strength (TS), and equivalent	
			target strength (TS _{eq})	607
		11.4.3	Background level (BL)	610
		11.4.4	Processing gain (PG)	610
		11.4.5	Detection threshold (DT)	612
		11.4.6	Worked example	613
	11.5	The fut	ure of sonar performance modeling	630
		11.5.1	Advances in signal processing and oceanographic model-	
			ing	630
		11.5.2	Autonomous platforms	631
		11.5.3	Environmental impact of anthropogenic sound	631
	11.6	Referen	lces	632
ΔΡΙ	PFNDI	CES		635
				055
Α	Speci	al functi	ons and mathematical operations	635
	A.I	Definiti	ons and basic properties of special functions	635
		A.I.I	Heaviside step function, sign function, and rectangle	<i></i>
				635
		A.1.2	Sine cardinal and sinh cardinal functions	636
		A.1.3	Dirac delta function	636
		A.1.4	Fresnel integrals	636
		A.1.5	Error function, complementary error function, and right-	(27
		A 1 C		63/
		A.1.0	Exponential integrals and related functions	639
		A.I./	Gamma function and incomplete gamma functions	640
		A.1.8	Marcum Q functions	644
		A.I.9	Elliptic integrals	644
		A.1.10	Bessel and related functions	645
		A.I.II	Hypergeometric functions	648
	A.2	Fourier	transforms and related integrals	649
		A.2.1	Forward and inverse Fourier transforms	649
		A.2.2	Cross-correlation	650

Contents xi

		A.2.3	Convolution	651				
		A.2.4	Discrete Fourier transform	651				
		A.2.5	Plancherel's theorem	652				
	A.3	Station	nary phase method for evaluation of integrals	652				
		A.3.1	Stationary phase approximation	652				
		A.3.2	Derivation	653				
	A.4	Solutio	on to quadratic, cubic, and quartic equations	655				
		A.4.1	Quadratic equation	655				
		A.4.2	Cubic equation	655				
		A.4.3	Quartic and higher order equations	656				
	A.5	Refere	nces	656				
B	Units and nomenclature							
	B .1	Units		659				
		B .1.1	SI units	659				
		B.1.2	Non-SI units	659				
		B.1.3	Logarithmic units	659				
	B.2	Nome	nclature	665				
		B.2.1	Notation	665				
		B.2.3	Names of fish and marine mammals	666				
	B.3	Refere	nces	671				
С	Fish	and the	ir swimbladders	673				
	C.1	Tables	of fish and bladder types	673				
	C.2	Refere	nces	694				
Ind	ex			695				

To Anna

Preface

The science of sonar performance modeling is traditionally separated into a "wet end" comprising the disciplines of acoustics and oceanography and a "dry end" of signal processing and detection theory. This book is my attempt to bring both aspects together to serve as a modern reference for today's sonar performance modeler, whether for research, design, or analysis, as Urick's *Principles of Underwater Sound* did for sonar engineers of his day. The similarity in the title is no accident.

During the process I made some valuable discoveries that I now share with the reader. The radar literature provides a deep mine of resources, with applicable results from the theories of wave propagation, signal processing, and (an especially rich vein, largely unexploited in the sonar literature) statistical detection. From oceanography we learn that each of the world's oceans has its own unique physical, chemical, and biological signature, with sometimes profound consequences for sonar.

Marine mammals have evolved a sonar of their own, the remarkable properties of which we are only beginning to unravel, as reported in the increasingly sophisticated bioacoustics literature. Governments and industry around the world have begun to take seriously the environmental consequences of man's use, whether deliberate or incidental, of sound in the sea. I have done my best to provide a representative snapshot of this rapidly developing field.

Some readers will treat this book as a repository of facts, figures, and formulas, while others will seek in it explanations and clarity. It has been my intention to satisfy the needs of both types of reader by including mathematical derivations and worked examples, supplemented with measurements or estimates of relevant input parameters. Of all readers I request the patience to overlook the flaws that undoubtedly remain, despite my best attempts to weed them out.

Michael A. Ainslie TNO, The Hague, The Netherlands, March 2010

Foreword

Underwater acoustics is largely a branch of physics, perhaps merging with geophysics and oceanography, but as soon as one attempts to assess a sonar's performance under realistic conditions, a host of other engineering factors come into play. Is the desired target signal louder than all the other natural noise from wind, waves, ship engines, strumming cables? Is it louder than sound scattered from other distant objects? How do the standard signal-processing techniques such as beamforming, spectral analysis, and statistical analysis influence the probability of achieving a target detection and the probability of a false alarm?

The author, Dr. Mike Ainslie, is a physicist with a considerable academic publication record and many years' hands-on experience in sonar assessment for the U.K.'s MOD and for TNO in The Netherlands. Through a firm foundation in physics, always taking great care over the physical units, *Principles of Sonar Performance Modeling* introduces rigor and clarity into the traditional sonar equation while still answering the fundamental engineering questions. As well as dealing with the more pure disciplines of sound generation, propagation, and reverberation, it tackles sound sources, targets, signal processing, and detection theory for man-made and biological sonar.

Underlying all this is a desire "to see the wood for the trees". For instance, it is often the case with propagation that, despite all the complexities of refraction, reflection, diffraction, scattering, and so on, some simple mechanism dominates, and sometimes one can express the entire transmission loss, ambient noise level, or reverberation level by a simple formula. This insight, or even revelation, is an important bonus and check if one is to have faith in numerical assessment of complicated search scenarios. It can also become a useful shortcut when a particular scenario is to be investigated under many different acoustic, or processing, conditions. Examples of such insights will be found throughout.

The cornerstone is the derivation of the sonar equations—too often presented as indisputable fact—from simple physical principles. The derivation is presented

initially in terms of ratios of simple physical quantities, and converted to decibels only at the end. Such an approach provides both clarity and a systematic rationale for determining how to evaluate each sonar equation term, and occasionally throws up unexpected new corrections.

The book will provide a useful reference for acousticians, engineers, physicists, mathematicians, sonar designers, and naval sonar operators whether working in research labs, the defense industry, or universities.

Chris Harrison NATO Undersea Research Centre (NURC), Italy, March 2010

Acknowledgments

The eight years it has taken me to write this book were spent working at TNO in The Hague. It has been a pleasure and a privilege to do so. The Sonar Department, despite two changes of name and two changes of leadership in that time, has provided constant support and understanding for the necessary extra-curricular activities. I wish to thank all at TNO—too many to mention all by name—who helped to make it possible.

I thank D. A. Abraham, P. Blondel, D. M. F. Chapman, P. H. Dahl, C. A. F. de Jong, P. A. M. de Theije, D. D. Ellis, R. M. Hamson, C. H. Harrison, J. A. Harrison, R. A. Hazelwood, D. V. Holliday, T. G. Leighton, A. J. Robins, S. P. Robinson, C. A. M. van Moll, K. L. Williams, M. Zampolli, and two anonymous referees, all of whom reviewed at least one complete chapter and helped to improve the quality of the final product. Any remaining errors that find their way into print are entirely mine and not of the reviewers.

Through his written publications, David Weston is an eternal inspiration—I have lost count of the number of times his name is cited. I also benefited from discussions with Chris Harrison, Chris Morfey, Christ de Jong, Dale Ellis, Frans-Peter Lam, Mario Zampolli, Peter Dahl, and Tim Leighton.

Data or artwork were made available to me by Pascal de Theije (Figure 7.6), Peter Dahl (Figure 8.3), Alvin Robins (Figure 8.5), Vincent van Leijen (Figure 8.13), Peter van Holstein (Figure 8.14), Henry Dol (Figures 9.24 and 9.25), Mathieu Colin (all figures in Chapter 9 making use of either BELLHOP or SCOOTER), Robbert van Vossen (Figures 9.28 and 9.29), Wim Verboom (miscellaneous seal and porpoise audiograms), Garth Mix (thumbnail images of marine mammals), and Paul Wensveen (Figure 11.20).

The computer model INSIGHT (version 1.4.2) was used, with permission of CORDA Ltd., to illustrate many of the sonar performance calculations. Also used were the acoustic propagation models SCOOTER and BELLHOP from the Ocean Acoustics Library (*http://oalib.hlsresearch.com*). Other valuable Internet resources

include FishBase (*www.fishbase.org*), the Ocean Biogeographic Information System (*www.iobis.org*), Mathworld (*http://mathworld.wolfram.com*) and Wikipedia (*www.wikipedia.org*).

Phillipe Blondel and Clive Horwood were always available when needed for advice. Neil Shuttlewood is responsible for a professional end-product.

Last but not least, none of this would have been possible without the unquestioning love and support from my wife Pilar and patience of my daughter Anna, whose teenage years are forever tinted with shades of sonar performance.

Michael A. Ainslie TNO, The Hague, The Netherlands, March 2010

Figures

1.1	Sketch of Beudant's experiment of <i>ca</i> . 1816	8
1.2	Sketch of the Colladon–Sturm experiment of 1826	9
1.3	Inventor Reginald Fessenden and physicist Jean Daniel Colladon	9
1.4	Physicists Paul Langevin and Robert William Boyle	11
1.5	French statesman and mathematician Paul Painlevé	13
1.6	Installation of early U.S. passive-ranging sonar with two towed eels	15
1.7	Sound absorption vs. frequency in seawater	19
2.1	Attenuation coefficient and audibility vs. frequency in seawater	30
2.2	Radiation from a point source of power W in free space	33
2.3	Radiation from a point source in the presence of a reflecting boundary	35
2.4	Radiation from a sheet source element of width δr	38
2.5	Beam patterns for $L/\lambda = 5$ and steering angles 0, 45 deg	46
2.6	Probability density functions of noise and signal-plus-noise observables	50
3.1	Principles of passive detection	56
3.2	Spectral density level of the radiated power at the source and intensity at the receiver.	57
3.3	Spectral density level of the transmitter source factor and mean square pressure	
	at the receiver	65
3.4	Coherent propagation loss vs. range and target depth	66
3.5	Spectral density level of background noise	67
3.6	Spectral density level of signal and noise	68
3.7	ROC curves for a Rayleigh-distributed signal in Rayleigh noise	72
3.8	Propagation loss and figure of merit vs. target range	76
3.9	Signal level vs. target range, and in-beam noise level	77
3.10	Linear signal excess and twice detection probability vs. range for NB passive	
	sonar	78
3.11	Signal excess vs. target range and depth	79
3.12	Spectral density level of the transmitter source factor and mean square pressure	0.1
	at the receiver	81
3.13	Propagation loss vs. frequency and target range	- 83

xx Figures

3.14	Spectral density level of signal and noise	34
3.15	ROC curves for a BB signal in Rayleigh noise	36
3.16	Propagation loss and figure of merit <i>vs.</i> range) 1
3.17	Signal spectrum level vs. range, and in-beam noise spectrum level) 2
3.18	Linear signal excess and twice detection probability vs. range for BB passive sonar 9) 3
3.19	Propagation loss vs. range and depth for the BB passive worked example 9) 4
3.20	Principles of active detection) 5
3.21	Propagation loss and figure of merit <i>vs.</i> target range at fixed array depth and <i>vs.</i> array depth for fixed range)8
3.22	Signal level and in-beam noise level vs. target range at fixed array depth and vs.array depth for fixed range.10)9
3.23	Linear signal excess and twice detection probability for coherent CW active sonar	10
3.24	Signal excess vs. target range and array depth 11	11
3.25	Signal and (in-beam) background levels <i>vs.</i> target range at fixed array depth and <i>vs.</i> array depth for fixed range	18
3.26	Total background, background components, and in-beam background level <i>vs.</i> target range at fixed array depth and <i>vs.</i> array depth for fixed range 11	19
3.27	Propagation loss and figure of merit <i>vs.</i> target range at fixed array depth and <i>vs.</i> array depth for fixed range	20
3.28	Linear signal excess and twice detection probability for incoherent CW active sonar	21
4.1	Global bathymetry map derived from satellite measurements of the gravity field 12	27
4.2	Annual average temperature map at depth 3 km 12	29
4.3	Geographical variations in surface temperature for northern winter and northern summer	30
4.4	Temperature profiles for locations in the northwest Pacific Ocean and northeast Atlantic 13	31
4.5	Bathymetry map for the northwest Pacific Ocean	32
4.6	Bathymetry map for the north Atlantic Ocean	32
4.7	Annual average salinity map at depth 3 km 13	33
4.8	Temperature salinity diagram for the World Ocean	34
4.9	Seasonal variations in surface salinity	35
4.10	Salinity profiles for locations in the northwest Pacific Ocean and northeast Atlantic 13	36
4.11	Density profiles for locations in the northwest Pacific Ocean and northeast Atlantic	37
4.12	Global acidity (<i>K</i>) contours at sea surface and at depth 1 km	10
4.13	Arctic acidity (K) contours at the sea surface and at depth 1 km	12
4.14	Acidity (<i>K</i>) profiles for major oceans	14
4.15	Sound speed profiles for locations in the northwest Pacific Ocean and northeast Atlantic	15
4.16	Seawater attenuation coefficient vs. frequency	19
4.17	Fractional sensitivity of seawater attenuation to temperature, salinity, acidity, and depth	50
4.18	Geographical distribution of herring and Norway pout in the North Sea 16	50
4.19	Wind speed scaling factors to convert from a 20m reference height to the standard reference height of 10m	54

4.20	Near-surface bubble population density spectra	170
4.21	Compressional and shear speed vs. density of rocks	181
4.22	Compressional and shear speeds vs. density for all rocks and for basalts	183
5.1	Illustration of compressional and shear wave propagation.	195
5.2	Fluid sediment layer between two uniform half-spaces	202
5.3	Form function $ f(ka) $ vs. ka for a rigid sphere, a tungsten carbide sphere, and	
	spheres made of various metals.	211
5.4	Resonance frequency vs. bubble radius for air bubbles in water	238
5.5	Resonant bubble radius vs. frequency for air bubbles in water.	241
6.1	Sinc beam patterns for steering angles 0, 30, 60, and 90 deg	254
6.2	Beam patterns for continuous line array: cosine and Hann shading	258
6.3	Beam patterns for continuous line array: raised cosine shading	260
6.4	Hamming family shading patterns and beam patterns	262
6.5	Beam pattern of unshaded circular array	265
6.6	Directivity index for an unsteered continuous line array vs. normalized array	
	length	268
6.7	Directivity index vs. steering angle	269
6.8	Shading factor vs. steering angle	270
6.9	Power spectrum for a Gaussian LFM pulse	288
6.10	Power spectrum for a rectangular LFM pulse	289
6.11	Generic ambiguity surface for Gaussian CW pulse	302
6.12	Ambiguity surfaces for Gaussian CW pulses of duration 0.5 s and 2.0 s	303
6.13	Generic ambiguity surfaces for Gaussian LFM pulse	305
7.1	ROC curves for non-fluctuating amplitude signal in Rayleigh noise	315
7.2	Rayleigh, one-dominant-plus-Rayleigh, Dirac, and Rice probability distribu-	
	tion functions	318
7.3	ROC curves for Rayleigh-fading signal in Rayleigh noise	319
7.4	ROC curves for Rician fading signal in Rayleigh noise	321
7.5	Rice probability density functions	323
7.6	ROC curves for $1D + R$ signal in Rayleigh noise	324
7.7	Graph of $x(M)$ vs. M	331
7.8	ROC curves (Albersheim approximation) for a non-fluctuating amplitude	
	signal: variation of detection threshold with M for fixed p_{fa}	332
7.9	ROC curves (Albersheim approximation) for a non-fluctuating amplitude	
= 10	signal: variation of detection threshold with p_{fa} for fixed M	333
7.10	ROC curves for a non-fluctuating amplitude signal: incoherent addition with	225
7 11	M = 30	335
7.11	ROC curves for a non-fluctuating amplitude signal: incoherent addition with	226
7 10	M = 1 to $M = 300$	330
/.12	ROC curves for a broadband signal: limit of large <i>M</i>	338
7.13	Supplementary KOC curves for a broadband non-including signal	241
7.14	ROC curves for a 1D + P signal; incoherent addition with $M = 30$.	241
7.15	Fusion goin vs. n_2 for OP operation (fixed n_1)	257
7.10	Fusion gain vs. p_{fa} for OP operation (fixed p_d)	252
7.19	P usion gain vs. r for a non-fluctuating signal: effect of AND and OP fusion	251
7.10	ROC curves for a 1D \pm R signal: effect of AND and OR fusion	255
7 20	ROC curves for a Rayleigh-fading signal: effect of AND and OR fusion	355
8.1	Variation of surface reflection loss with wind speed $(1-4 \text{ kHz})$	366
0.1	τ unation of bullace reneeded 1000 with with speed (1 τ KHZ)	500

xxii Figures

8.2	Surface reflection loss in nepers calculated vs. angle and frequency	368
8.3	Surface reflection loss vs. wind speed (30 kHz)	369
8.4	Seabed reflection loss vs. grazing angle for uniform unconsolidated sediments	376
8.5	Seabed reflection loss vs. angle and frequency-sediment thickness product for a	
	layered unconsolidated sediment.	382
8.6	Seabed reflection loss vs. angle for rocks	385
8.7	Seabed reflection loss vs. angle and frequency-sediment thickness product for a	
	sand sediment overlying a granite basement and clay over basalt	387
8.8	Seabed reflection loss vs. angle and frequency-sediment thickness product for a	
	sand sediment of thickness 10 m overlying a granite basement and a clay	
	sediment of thickness 300 m over basalt	390
8.9	Seabed backscattering strength for a medium sand sediment and frequency	
	1–30 kHz	393
8.10	Comparison between predicted and measured seabed backscattering strength	
	for a fine sand sediment and frequency 35 kHz.	394
8.11	Seabed backscattering strength for a coarse clay sediment	395
8.12	Comparison between predicted and measured seabed backscattering strength	
	for a medium silt sediment and frequency 20 kHz.	396
8.13	Typical ambient noise spectra.	416
8.14	Typical values of sound pressure level and peak pressure level	418
8.15	Measured equivalent source spectral density levels: commercial and industrial	
	shipping	422
8.16	Estimated third-octave monopole source level: cargo ship Overseas Harriette	423
8.17	Areic dipole source spectrum: wind noise	426
8.18	Areic dipole source spectrum: rain noise	428
8.19	Measured waveform and frequency spectrum of a single shrimp snap	430
9.1	Geometry for bottom reflections in deep water	441
9.2	Propagation loss vs. range for reflecting seabed at $f = 250 \text{ Hz} \dots \dots \dots$	442
9.3	Bottom-refracted ray paths travel through the sediment and form a caustic in	
	the reflected field	445
9.4	Propagation loss vs. range for a reflecting and refracting seabed at $f = 250 \text{ Hz}$	446
9.5	Propagation loss vs. range for a reflecting and refracting seabed: sensitivity to	
	sediment properties	450
9.6	Reflection loss vs. angle for sand	455
9.7	Propagation loss vs. range, and reflection loss vs. angle for sand and mud in	
	shallow water at frequency 250 Hz	456
9.8	Sound speed profile in the northwest Pacific	460
9.9	Propagation loss vs. range for northwest Pacific summer and winter at	
	$f = 1500 \mathrm{Hz} \ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots$	463
9.10	Propagation loss vs. range and depth for northwest Pacific winter profile: effect	
	of upward refraction in surface duct	465
9.11	Depth factor vs. receiver depth in surface duct.	469
9.12	Ray trace illustrating formation of caustics and cusps in surface duct up to a	. – .
0.45	range of 40 km, for a source depth of 30 m, and for the same case as Figure 9.10	470
9.13	Propagation loss <i>vs.</i> frequency and range for a surface duct	473
9.14	Ray trace illustrating the formation of convergence zones at the sea surface	475
9.15	Propagation loss vs. range and depth: effect of downward refraction on Lloyd	
	mirror interference.	477

9.16	Propagation loss vs. range for shallow water with a mud bottom for two different sound smedles	470
0.17		4/9
9.17	Approximation to $\Delta\theta/\theta$ for fixed θ_{\min}	482
9.18	Sensitivity of down mater embient maior exects to min mate	484
9.19	Sensitivity of deep-water molent noise spectra to rain rate	480
9.20	Sensitivity of deep-water noise spectra to wind speed	48/
9.21	Predicted ambient noise spectral density level vs. frequency and depth	488
9.22	Effect of the seabed on the ambient noise spectrum in isovelocity water	489
9.23	Effect of the sound speed profile on the ambient noise spectrum for a clay seabed	490
9.24	Dredger noise map	491
9.25	Bathymetry used for Figure 9.24.	492
9.26	Reverberation for problem RMW11 and frequency 3.5 kHz	499
9.27	Reverberation depth factor.	503
9.28	Reverberation for problem RMW12 and frequency 3.5 kHz	504
9.29	Reverberation for problem RMW12 and frequency 3.5 kHz (close-up)	505
9.30	Ray trace illustrating formation of caustics and cusps in a bottom duct, and	
	propagation loss vs. range and depth at $f = 3.5 \text{ kHz}$	506
9.31	SRR depth factor	509
10.1	Maximum multibeam echo sounder and sidescan sonar source levels vs.	
	transmitter frequency	519
10.2	Unweighted and Gaussian-weighted cosine pulses from Table 10.16	530
10.3	Exponentially damped sine and decaying exponential pulses from Table 10.17	532
10.4	Mean square pressure vs. energy fraction	535
10.5	Comparison of echolocation pulses made by the harbor porpoise and killer	
	whale	548
10.6	Underwater audiograms for harbor porpoise	551
10.7	Underwater audiograms for killer whale	552
10.8	Underwater audiograms for harbor seal	554
10.9	Underwater audiograms for human divers	556
10.10	Underwater sound level weighting curves for three groups of cetaceans plus	
	pinnipeds	561
11.1	Directivity index $DI = 10 \log_{10} G_D$ for an unsteered continuous line array vs.	
	normalized array length	581
11.2	ROC curves for $1D + R$ amplitude signal in Rayleigh noise	582
11.3	Propagation loss vs. range for NWP winter case	584
11.4	In-beam signal and noise levels vs. range for NWP winter and Chapter 3 NBp	
	worked example	586
11.5	Input parameters for northwest Pacific (NWP) problem	588
11.6	Signal excess vs range and depth for NWP winter	589
11.7	Signal excess vs. range and depth for NWP winter: close-up of first convergence	005
11.7	zone	590
11.8	Albersheim's approximation for the detection threshold	598
11.0	Propagation loss vs range and denth for SWS and for the Chapter 3 BBn	570
11.7	worked example	600
11 10	Signal and noise spectra for SWS	601
11.10	In been signal and noise levels us range for SWS and DDr	602
11.11	Signal avages us range and doubt for SWS and BBp	002
11.12	Signal excess vs. faller and deput for SWS	003
11.13	Input parameters for snahow-water sand (SWS)	004
11.14	m-beam signal and noise spectra for SWS	005

11.15	Signal excess vs. range and rainfall rate for SWS	606
11.16	Geometry for worked example involving killer whale hunting salmon	614
11.17	Example measurements of orca pulse shapes and power spectra	615
11.18	Variation in orca source level with distance from target	617
11.19	Propagation loss vs. distance and broadband correction	618
11.20	Orca audiogram and individual hearing threshold measurements	620
11.21	Echo level and noise level vs. distance between orca and salmon: wind speed	
	2 m/s	621
11.22	Echo level and noise level vs. distance between orca and salmon: wind speed 2 to	
	10 m/s	624
11.23	Background level vs. distance between orca and salmon: wind speed 10 m/s.	628
11.24	Array gain vs. distance between orca and salmon: wind speed 10 m/s	629
11.25	Signal and background levels vs. distance between orca and salmon: wind speed	
	10 m/s	630
A.1	The complementary error function $erfc(x)$ and three approximations	638
A.2	The gamma function and four approximations.	643
A.3	The modified Bessel function and Levanon's approximation	647

Tables

2.1	Detection truth table	48
3.1	Sonar equation calculation for NB passive example	76
3.2	Sonar equation calculation for BB passive example	90
3.3	Sonar equation calculation for CW active sonar example with Doppler filter	107
3.4	Sonar equation calculation for CW active sonar example with incoherent	
	energy detector	122
4.1	Average salinity and potential temperature by major ocean basin	133
4.2	Seawater parameters used for evaluation of attenuation curves plotted in Figure	
	4.16	150
4.3	Mass, length, and aspect ratio of selected sea mammals	154
4.4	Volume and surface area of ellipsoids	155
4.5	Acoustical properties of fish flesh	155
4.6	Acoustical properties of whale tissue	156
4.7	Acoustical properties of euphausiids	157
4.8	Values of zooplankton density and sound speed ratios	157
4.9	North Sea fish population estimates by species	158
4.10	WMO Beaufort wind force scale and estimated wind speed	162
4.11	Comparison of wind speed estimates for Beaufort force 1-11 based on WMO	
	code 1100 and CMM-IV with those of da Silva	165
4.12	Definition of sea state	166
4.13	Beaufort wind force: relationship between wind speed and wave height	168
4.14	Sea state: relationship between wave height and wind speed	168
4.15	Sediment type vs. grain diameter.	172
4.16	Definition of sediment grain sizes and qualitative descriptions	174
4.17	Default HF geoacoustic parameters	176
4.18	Default MF geoacoustic parameters	178
4.19	Names of sedimentary rocks resulting from the lithification of different	
	sediment types	180
4.20	Geoacoustic parameters for sedimentary and igneous rocks	183

5.1	Compressional speed, shear speed, and density used to calculate the form	
	factors for the four metals shown in Figure 5.3	212
5.2	Backscattering cross-sections of large rigid objects	213
5.3	Backscattering cross-sections of large fluid objects	215
5.4	Water and solid grain sediment parameter values needed for Buckingham's grain-shearing model	228
5.5	Values of physical constants used for the evaluation of the bubble resonance	
	characteristics in Figures 5.4 and 5.5.	239
6.1	Summary of properties for various taper functions	264
6.2	Summary of beam properties for selected shading	265
6.3	Summary of frequency domain properties of simple pulse envelopes	284
6.4	Summary of time domain properties of simple pulse shapes (envelope)	285
6.5	Summary of time domain properties of simple pulse shapes (phase)	285
6.6	Summary of amplitude envelopes required to synthesize simple power spectra	291
6.7	Autocorrelation functions for CW and LFM pulses	296
6.8	Derivation of matched filter gain for pulse duration and sample interval	306
6.9	Effect of multipath on matched filter gain	308
7.1	Comparison table: moments of probability distribution functions	320
7.2	$DT + 5 \log_{10} M \text{ vs. } M$ and p_{fa} for three different p_d values	334
7.3	Application of the detection theory results of Section 7.1 to active sonar CW and FM pulses	345
7.4	Equations for the detection probability for different signal amplitude distribu-	515
	tions.	345
7.5	Application of detection theory results to NB and BB passive sonar	346
7.6	Detection threshold for various statistics	347
7.7	Detection threshold for a $1D + R$ amplitude distribution	348
7.8	ROC relationships and fusion gain for AND and OR operations for fixed SNR	353
8.1	Sediment properties at top and bottom of the transition layer	381
8.2	p and s critical angles for representative rock parameters	385
8.3	Parameters for uniform fluid sediment and rock half-space	388
8.4	Defining parameters for a layered solid medium.	389
8.5	Measurements of the Lambert parameter	397
8.6	Target strength measurements for bladdered fish	401
8.7	Target strength measurements for whales	403
8.8	Target strength measurements for euphausiids and bladder-less fish	404
8.9	Target strength measurements for jellyfish	407
8.10	Target strength measurements for siphonophores	407
8.11	Second World War measurements of the target strength of man-made objects	408
8.12	Predicted average night-time contribution to VBS, CS, and attenuation due to	
	pelagic fish in the North Sea	410
8.13	Default advice for VBS for sparse, intermediate, and dense marine life	411
8.14	Wake strength measurements for various WW2 surface ships	414
8.15	Wake strength for various WW2 submarines	414
8.16	Third-octave source levels of various commercial and industrial vessels	421
9.1	Characteristic properties from Chapter 4 of medium sand and mud	454
9.2	Sound speed profiles for the northwest Pacific location	461
9.3	Nomenclature used for shipping densities	484
9.4	Seabed parameters for problems RMW11 and RMW12	500

9.5	Caustic ranges and corresponding two-way travel arrival times for a source at	
	depth 30 m and receiver at depth 50 m	507
10.1	Source level of single-beam echo sounders	516
10.2	Source level of sidescan sonar.	517
10.3	Source level of multibeam echo sounders.	518
10.4	Source level of depth profilers	520
10.5	Source level of fisheries search sonar	520
10.6	Source level of hull-mounted search sonar	521
10.7	Source level of helicopter dipping sonar	521
10.8	Source level of active towed array sonar	522
10.9	Source level of miscellaneous search sonar (including coastguard and risk	
	mitigation sonar)	522
10.10	Source level of low-amplitude acoustic deterrents	524
10.11	Source level of high-amplitude acoustic deterrents	525
10.12	Source level of acoustic communications systems	526
10.13	Source level of selected acoustic transponders and alerts	527
10.14	Source level of acoustic cameras	527
10.15	Source level of miscellaneous oceanographic sonar	528
10.16	Relationships between different source level definitions for two symmetrical	
	wave forms	529
10.17	Relationships between different source level definitions for two asymmetrical	
	wave forms	531
10.18	Relative MSP, averaged over time window during which local average exceeds specified threshold	533
10.19	Relative MSP, averaged over time window during which pulse energy	
	accumulates to specified proportion of total.	534
10.20	Dipole source level of air guns and air gun arrays	536
10.21	Zero-to-peak source level of generator-injector air guns	537
10.22	Zero-to-peak source level of seismic survey sources other than air guns	538
10.23	Summary of peak pressure and pulse energy for three types of explosive	540
10.24	Specific pulse energy and apparent specific SL _E for pentolite	541
10.25	Echolocation pulse parameters for selected animals	543
10.26	Maximum peak-to-peak source levels of high-frequency marine mammal clicks	546
10.27	Peak equivalent RMS and peak-to-peak source levels of low-frequency marine mammal pulses	548
10.28	Hearing thresholds and sensitive frequency bands of selected cetaceans	553
10.29	MSP and EPWI hearing thresholds in air and water for four pinnipeds plus	000
10.27	human subjects	555
10.30	Hearing thresholds in water for 10 species of fish	557
10.31	Parameters of bandpass filter used in M-weighting	560
10.32	Genera represented by the functional hearing groups	561
10.33	Proposed thresholds of M-weighted sound exposure level for permanent and	201
	temporary auditory threshold shift in cetaceans and pinnipeds	562
10.34	Proposed thresholds of peak pressure for permanent and temporary auditory	
	threshold shift in cetaceans and pinnipeds	563
10.35	Outline of the severity scale from Southall <i>et al.</i> (2007)	564
10.36	Spread of sound pressure level values resulting in the specified behavioral	50 r
10:00	responses in cetaceans and pinnipeds for <i>nonpulses</i>	564

xxviii Tables

10.37	Spread of sound pressure level values resulting in the specified behavioral	
	responses in cetaceans and pinnipeds for multiple <i>pulses</i>	565
11.1	List of applications of man-made active and passive underwater acoustic	
	sensors	575
11.2	Error in DT incurred by assuming $1D + R$ statistics	582
11.3	Sonar equation calculation for NWP winter	587
11.4	Filter gain vs. bandwidth in octaves for a white signal and colored noise	596
11.5	Sonar equation calculation for shallow-water sand	604
11.6	Active sonar example, limited by hearing threshold	620
11.7	Active sonar example, limited by wind noise	624
A.1	Integrals of integer powers of the sine cardinal function	636
A.2	Selected values of the gamma function $\Gamma(x)$ for $0 < x \le 1$	640
A.3	Examples of Fourier transform pairs.	650
B.1	SI prefixes for indices equal to an integer multiple of 3	660
B.2	SI prefixes for indices equal to an integer between $+3$ and -3	661
B.3	Frequently encountered non-SI units.	662
B.4	List of abbreviations and acronyms, and their meanings	667
C.1	Bladder presence and type key used in Tables C.3, C.4, and C.7	674
C.2	Reference key	674
C.3	Bladder type by order for ray-finned fishes (Actinopterygii)	675
C.4	Bladder type by family.	676
C.5	"Catchability" key (Yang groups) used in Table C.7	677
C.6	Length key used in Table C.7.	677
C.7	Fish and their bladders, sorted by scientific name	678

Part I

Foundations

1

Introduction

Wee represent Small Sounds as Great and Deepe; Likewise Great Sounds, Extenuate and Sharpe; Wee make diverse Tremblings and Warblings of Sounds, which in their Originall are Entire. Wee represent and imitate all Articulate Sounds and Letters, and the Voices and Notes of Beasts and Birds. Wee have certaine Helps, which sett to the Eare doe further the Hearing greatly. Wee have also diverse Strange and Artificiall Eccho's, Reflecting the Voice many times, and as it were Tossing it; And some that give back the Voice Lowder then it came, some Shriller, and Some Deeper; Yea some rendring the Voice, Differing in the Letters or Articulate Sound, from that they receyve. Wee have also meanes to convey Sounds in Trunks and Pipes in strange Lines, and Distances. Francis Bacon (1624)

1.1 WHAT IS SONAR?

Sonar can be thought of as a kind of underwater radar, using sound instead of radio waves to interrogate its surroundings. But what is special about sound in the sea? Radio waves travel unhindered in air, whereas sound energy is absorbed relatively quickly. In water, the opposite is the case: low absorption and the presence of natural oceanic waveguides combine to permit propagation of sound over thousands of kilometers, whereas the sea is opaque to most of the electromagnetic spectrum.

The word *sonar* is an acronym for *so*und *na*vigation and *r*anging. The primary purpose of sonar is the detection or characterization (estimation of position, velocity, and identity) of submerged, floating, or buried objects. Electronic systems capable of

4 Introduction

underwater detection and localization were developed in the 20th century, motivated initially by the sinking of RMS *Titanic* in 1912 and the First World War (WW1), and spurred on later by the Second World War (WW2) and the Cold War. Nevertheless, by comparison with marine fauna, man remains a novice user of underwater sound. Deprived of light in their natural habitat, dolphins have evolved a sophisticated form of sonar over millions of years, without which they would be almost blind. They transmit bursts of ultrasound, and sense the world around them by interpreting the echoes. Many fish and other aquatic animals are also capable of both producing and hearing sounds.

1.2 PURPOSE, SCOPE, AND INTENDED READERSHIP

This book is aimed at anyone, novice and experienced practitioner alike, with an interest in estimating the performance of sonar, or understanding the conditions for which a particular existing or hypothetical system is likely to make a successful detection. This includes sonar analysts and designers, whether for oceanographic research, navigation, or search sonar. It also includes those studying the use of sound by marine mammals and the impact of exposure of these animals to sound. Regardless of application, the objective of sonar performance modeling is usually to support a decision-making process. In the case of man-made sonar, the decision is likely to involve the optimization of some aspect of the design, procurement, or use of sonar. (What frequency or bandwidth is appropriate? How many sonars are needed to complete the task in the time available?) For bio-sonar there is increasing interest in the assessment (and mitigation) of the risk of damage to marine life due to anthropogenic sources of underwater sound. (What level of sound might disrupt a dolphin's ability to locate and capture its prey? How can the risk of hearing damage be prevented or minimized?)

The nature of the sought object, known as the sonar *target*, depends on the application. Examples include man-made objects of military interest (a mine or submarine), shipwrecks (as a navigation hazard or archeological artifact), and fish (the target of interest to a whale or fisherman).

In general, sonar can be grouped into two main categories. These are *active sonar* and *passive sonar*, which are distinguished by the presence and absence, respectively, of a sound transmitter as a component of the sonar system.

- An *active sonar* system comprises a transmitter and a receiver and works on the principle of echolocation. If a signal (in this case an echo from the target) is detected, the position of the target can be estimated from the time delay and direction of the echo. The echolocation principle is also used by radar, and by the biological sonar of bats and dolphins.
- A *passive sonar* includes a receiver but no transmitter. The signal to be detected is then the sound emitted by the target.

Examples of man-made sonar include

- Sec. 1.2]
- *Echo sounder*: perhaps the most common of all man-made sonars, an echo sounder is a device for measuring water depth by timing the delay of an echo from the seabed. The strength and character of the echo can also provide an indication of bottom type.
- *Fisheries sonar*: sonar equipment used by the fisheries industry exploits the same principle as the echo sounder, except that the purpose is to detect fish instead of the sea floor.
- *Military sonar*: modern navies deploy a wide variety of sonar systems, designed to detect and track potential military threats such as surface ships, submarines, mines, or torpedoes. The diverse nature of these threats and of the *platforms* on which the sonar systems are mounted means that military sonars are themselves diverse, with each specialized system dedicated to a particular task.
- *Oceanographic sensor*: scientific work aimed at understanding and surveying the sea (*acoustical oceanography*) makes extensive use of a variety of different kinds of sonar, many of which are variants of the echo sounder.
- *Shadow sensor*: in exceptional cases, the sonar "signal", instead of being the sound emitted or scattered by the target, might actually be some perturbation to the expected *background*. For example, the shadow of an object lying on the seabed might be detectable when the object itself is not.

Many readers will be familiar with Urick's classic *Principles of Underwater Sound for Engineers*,¹ which provided its readers with the tools they needed to carry out sonar design and assessment studies. These tools come in the form of a set of equations relating the predicted signal-to-noise ratio to known parameters such as the radiated power of the sonar transmitter, or the size and shape of the target. This set of equations is known as the "sonar equations". The same basic requirement remains today, but the modeling methods have increased in sophistication during the 25 years that have elapsed since Urick's third and final edition, with a bewildering array of computer models to choose from (Etter, 2003). The present objective is to meet the needs of the modern user or developer of such models by documenting established methods and relevant research results, using internally consistent definitions and notation throughout. The discipline of sonar performance modeling is perceived sometimes as a black art. The purpose of this book is, above all, to demystify this art by explaining the jargon and deriving the sonar equations from physical principles.

The book's scope includes underwater sound, the properties of the sea relevant to the generation and propagation of sound, and the processing that occurs after an acoustic signal has been converted to an electrical one^2 and then digitized. The estimation of sonar performance is taken as far as the detection (and false alarm) probability, but no further than that. While the scope excludes localization,

¹ See Urick (1967) and two later editions (Urick, 1975, 1983).

 $^{^{2}}$ Conversion between electrical and acoustical energy (known as transduction), whether on transmission or reception, is excluded from the scope. The interested reader is referred to Hunt (1954) and Stansfield (1991).