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Preface

This book is the result of the 4th International ICSC Symposium on Infor-
mation Technologies in Environmental Engineering (ITEE-2009). Recent 
success stories in ecoinformatics, promising ideas and new challenges are 
discussed among computer scientists, environmental engineers, economists 
and social scientists, who showcase new computing paradigms for envi-
ronmental problem solving and decision making.

The Symposium was held in Thessaloniki, Greece, in May 28-29, 2009. 
Local arrangements provided by the members of the Information Process-
ing Laboratory of the Electrical and Computer Engineering Dept, at Aris-
totle University of Thessaloniki. Special thanks goes to Fani Tzima for her 
unreserved efforts towards the success of the Symposium. 

Editors would like to express their gratitude to DRAXIS SA, that spon-
sored the publication of the present book, and personally Dr. Evangelos 
Kosmidis for his wholehearted support. 

Finally, we would like to thank the personnel and the directors of the 
Macedonian Museum of Contemporary Art for their kind hospitality.

Ioannis N. Athanasiadis
Pericles A. Mitkas
Andrea E. Rizzoli
Jorge Marx Gómez

Thessaloniki, May 2009
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Keynotes



 

Ecological Informatics: Current Scope and Future 
Directions 

Friedrich Recknagel 

Ecology and Evolutionary Biology, University of Adelaide                   
Adelaide 5000, Australia 

Abstract 
Ecological informatics emerges as a new discipline that studies principles 
of information processing in ecosystems as well as data analysis and syn-
thesis for hind- and forecasting of ecosystems. It also focuses on integra-
tion and sharing of ecological data from genomic to landscape levels at 
different spatial scales by web-based data warehousing, GIS and remote 
sensing. Ecological informatics takes advantage of steadily advancing 
computational technology in order to better cope with extreme complexity 
and distinct nonlinearity of ecological data. It utilises cellular automata, 
neural, evolutionary and immunological computing to unravel ecological 
complexity as well as explain and forecast ecosystem responses to habitat 
and climate change. 

1 Introduction 

Ecological informatics (ecoinformatics) is an interdisciplinary framework 
for the management, analysis and synthesis of ecological data by advanced 
computational technology (Recknagel 2006). Management of ecological 
data aims at facilitating data standardization, retrieval and sharing by 
means of metadata and object-oriented programming (e.g. Eleveld, 
Schrimpf and Siegert 2003; Michener 2006). Analysis and synthesis of 
ecological data aim at elucidating principles of information processing, 
structuring and functioning of ecosystems, and forecasting of ecosystem 

I.N. Athanasiadis et al., Information Technologies in Environmental Engineering,  
Environmental Science and Engineering, DOI 10.1007/978-3-540-88351-7_1,  
© Springer-Verlag Berlin Heidelberg 2009 



4  F. Recknagel 

behaviours by means of bio-inspired computation and hybrid models (e.g. 
Fielding 1999; Recknagel 2006). 

 

 
 
Fig. 1: Ecological informatics versus bioinformatics (from Recknagel 2006) , a) 
Scope of bioinformatics, b) Scope of ecoinformatics  

 
Ecological informatics currently undergoes the process of consolidation 

as a discipline. It corresponds and partially overlaps with the well-
established disciplines bioinformatics and ecological modeling but is tak-
ing its distinct shape and scope. In Fig. 1 a comparison is made between 
ecological informatics and bioinformatics. Even though both are based on 
the same computational technology their focus is different. Bioinformatics 
focuses very much on determining gene function and interaction (e.g. Wolf 
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et al. 2001), protein structure and function (e.g. Henikoff et al. 1999) as 
well as phenotypes of organisms utilizing DNA microarray, genomic, 
physiological and metabolic data (e.g. Lockhardt and Winzeler 2000) (Fig. 
1a). By contrast ecological informatics focuses to determine genotypes of 
populations by utilizing genomic, phenotypic and environmental data (e.g. 
Doney 2004) as well as structure and functioning of ecosystems by utilizing 
community, environmental and climate data (e.g. Lek et al. 2005) (Fig. 1b). 

 
Fig. 2: Ecological informatics versus ecological modeling from Recknagel (2006) 

 
A comparison is made between ecological modeling and ecological in-

formatics in Fig. 2. Even though both rely on similar ecological data they 
adopt different approaches in utilizing the data. Whilst ecological model-
ing processes ecological data top down by ad hoc designed statistical or 
mathematical modeling methods (e.g. Jorgensen, Chon and Recknagel 
2009), ecological informatics infers ecological processes from ecological 
data patterns bottom up by computational techniques. The cross-sectional 
area between ecological modeling and ecological informatics reflects a 
new generation of hybrid models that enable to predict emergent ecosys-
tem structures and behaviours, and ecosystem evolution (e.g. Hraber and 
Milne 1997). Typically hybrid models integrate biologically-inspired com-
putation and deterministic ecological models. 
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2 Feature Areas 

Current research in ecological informatics focuses at four major feature 
areas: (1) understanding information processing and evolution in ecosys-
tems, (2) computational management of ecological data, 
(3) computational analysis and synthesis of ecological data, and (4) hybrid 
modelling of ecological data. 

Great efforts are undertaken to address feature area (1) by studying both 
intraspecific population adaptations to changing climate and habitat condi-
tions (e.g. Hairston et al. 1999) as well as interspecific population relation-
ships controlled by info chemicals and allelopathy (e.g. Voss et al. 2006; 
van Donk 2007).  

The feature area (2) aims at standardised archiving of highly complex 
and fragmented ecological data in order to allow ecological data sharing. 
The ecological metadata language EML  (http://knb.ecoinformatics.org 
/software/eml/) is an example for developing computational tools based on 
meta data concepts (e.g. Michener 2006) that will facilitate ecological data 
warehousing at global scale.  

The feature area (3) has been largely stimulated by both the availability 
of complex ecological data including genomic and phenotypic data, and 
the development of bio-inspired computational techniques. The study of 
population genomics in their natural habitats without the need for isolation 
and lab cultivation of individual species has led to the new research area of 
ecogenomics that promises to determine the impact of environmental and 
climate changes on biodiversity (e.g. Doney et al. 2004). Bio-inspired 
computational techniques prove to be superior in unravelling highly com-
plex ecological data, coping with distinct nonlinearities and inducing pre-
dictive models by learning from temporal and spatial patterns. Section 2.1. 
illustrates applications of artificial neural networks and evolutionary algo-
rithms for ecological informatics by. 

Research on hybrid modelling in the feature area (4) promises ecosys-
tem models with improved accuracy and generality. Cao and Recknagel 
(2009) provide a case study for multi-objective optimisation of process and 
parameter representations in process-based ecosystem models by the em-
bodiment of evolutionary algorithms in ordinary differential equations for 
food web dynamics and nutrient cycles in lakes. Chen and Mynett (2006) 
integrated cellular automata and fuzzy logic to simulate spatio-temporal 
dynamics of algal blooms in coastal waters, 
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3 Ecological informatics by computational analysis and 
synthesis of ecological data 

3.1 Artificial neural networks (ANN) 

Artificial neural networks are computer programs designed for inducing 
problem solutions (models, knowledge) from complex data by means of 
principles of information processing similar to biological neurons in the 
human brain. A biological neuron consists of three major component: the 
cell body, dendrites and the axon (Fig. 3a). Connections between neurons 
are formed at synapses. Information is represented and transmitted by 
chemically generated electrical activity within the cell. Both excitatory and 
inhibitory inputs to the neuron enter through synaptic connections with 
other neurons. Input potentials are summed up within the cell body. If the 
total input potential is sufficient (e.g. meets a certain threshold value) then 
the neuron acts. Ultimately an action potential is generated and propagated 
down the axon towards the synaptic junctions with other nerve cells. 
 

 
Fig. 3: Conceptual structures of biological and artificial neurons 
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The design of artificial neural networks (Fig. 3) has been inspired by the 
structure and functioning of biological neurons. The dendrites which are 
acting as input receptors were represented by input units. The cell body 
that acts as information accumulator was represented by activation units 
adjusting and summing up the weights of inputs, and the input-output 
transfer function. The axon that acts as the biological output channel was 
represented as the output.  

ANN gain there adaptive capability by undergoing training similar to 
neural learning where two basic training modes are distinguished: super-
vised and non-supervised training. The supervised training aims at the op-
timal approximation of the calculated output Yc to the observed (desired) 
output Yo. An iterative adjustment of input weights takes place in order to 
minimise the error (Yo - Yc).  

After training, the generalisation of the supervised ANN is as assessed 
by feeding it only with input values, not observed output values, and test-
ing how close calculated outputs match observed outputs. The two most 
common methods for assessing generalisation are the split-sample valida-
tion and the cross-validation. The split-sample validation means that part 
of the data is reserved as a test set, which must not be used in any way dur-
ing training. The test set must be representative for the problem to be mod-
elled by the ANN. After training, the ANN is run on the test set, and the 
error on the test set provides an estimate of the generalization error usually 
expressed by the root mean square error (RMSE) or the correlation coeffi-
cient r2. The disadvantage of split-sample validation is that it reduces the 
amount of data available for both training and validation (Weiss and Ku-
likowski 1991). By contrast cross-validation allows you to use all of the 
data for training. In k-fold cross-validation, the data is divided into k equal 
sized subsets. The net is trained k times, each time leaving out one of the 
subsets from training, but using only the omitted subset to compute the 
generalisation error. If k equals the sample size, this is called "leave-one-
out" cross-validation. The disadvantage of cross-validation is that the ANN 
need to be retrained many times. 

Depending on using external inputs only or feedback inputs as well, su-
pervised ANN are differentiated into feedforward or feedback ANN (see 
Fig. 4 a and b). By contrast non-supervised ANN process external inputs 
only without adjusting calculated outputs to known outputs (Fig. 4c).  
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Fig. 4: Basic types of artificial neural networks (ANN): a) Supervised feedforward 
ANN; b) Supervised feedback ANN; c) Non-supervised ANN 

3.1.1 Supervised feedforward ANN 

The supervised feedforward ANN proves to be a universal approximator of 
multivariate nonlinear functions and is usually implemented as multi-layer 
perceptron with back-propagation training.  The multi-layer perceptron 
(Minski and Pappert 1969) represents input units as input layer, adjusted 
and accumulated input weights as hidden layer(s) and outputs as output 
layer. The back-propagation algorithm (Rummelhardt et al. 1986) per-
forms the iterative adjustment of input weights (activation units) in order 
to minimise the approximation error (Yo - Yc).  

Supervised feedforward ANN are widely applied in ecology either using 
cross-sectional data to predict discrete ecosystem states or using time-
series data to predict continuous ecosystem behaviour. Successful applica-
tions by means of cross-sectional data have been demonstrated for fish 
communities in streams (e.g. Lek et al. 1996), macroinvertebrate commu-
nities in streams (e.g. Walley and Fontana 1998), river salinity (e.g. Huang 
and Foo 2002), primary productivity in estuaries (e.g. Scardi 1996), chlo-
rophyll a concentrations in lakes (e.g. Karul and Soyupak 2006), coastal 
vegetation (e.g. Foody 2000) and bird populations (e.g. Lusk et al. 2001).  

Successful applications by means of time-series data have been demon-
strated for marine fish and zooplankton communities (e.g. Aoki and Komatsu 
1997; Reick, Gruenewald and Page 2003), river hydrology (e.g. Poff, Tokar 
and Johnson 1996), macroinvertebrate communities in streams (e.g. Schleiter 
et al. 2006), freshwater phyto- and zooplankton communities (e.g. Recknagel 
1998). 

The majority of the supervised feedforward ANN documented in the 
above mentioned papers achieved forecasting results that were superior to 
conventional modelling techniques such as multiple linear regression (e.g. 
Lek et al. 1996;  Karul and Soyupak 2003). Even though supervised ANN 
don’t provide explicit mathematical representations of the underlying 
ANN model, most of the authors have conducted sensitivity analyses in 
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order to identify inputs as key driving forces of the predictive ANN. An 
example for revealing input-output relationships by both sensitivity and 
scenario analysis was documented in Recknagel and Wilson (2000).  

3.1.2 Supervised feedback ANN 

Supervised feedback or recurrent ANN (Pineda 1987) are designed to use 
not only external inputs for training but also activation levels of the previ-
ous training iteration which are constantly fed back (see Fig. 4b). Their 
functioning can be compared with ordinary differential equations that cal-
culate the current system state Z (t) by taking into account current external 
inputs Xe(t) and the system state Z(t-1) of the time step before: 

  dZ(t)/dt = f(Xe(t), Z(t-1), P) 
where P are constant parameters. 

Supervised feedback ANN prove to be very powerful for modelling 
time-series data where the fed back activation levels provide extra training 
information on the system state of the time step before. 

The Fig. 5 shows an example for a supervised feedback ANN that has 
successfully been trained and tested by split-sample validation for the 
forecasting of the algal populations Microcystis and Stephanodiscus in the 
River Nakdong in South Korea (Jeong, Recknagel and Joo 2006).  

The weekly measured limnological data of the river study site were in-
terpolated to daily values. The interpolated data from 1995 to 1998 were 
used as training set, and the interpolated data of 1994 were used as testing 
set. In order to achieve a 4-days-ahead forecasting a four days time lag was 
imposed between the measured inputs and the measured outputs of the 
training data set. The design of the feedback ANN considered the follow-
ing 18 external input variables: irradiance, precipitation, discharge, evapo-
ration, water temperature, Secchi depth, turbidity, pH, DO, nitrate, ammo-
nia, phosphate, silica, rotifera, cladocera, copepoda, 21 hidden activation 
units and the two output variables: Microcystis aeruginosa and Stephano-
discus hantzschii.  

After 2,100 training iterations a root mean square error (RMSE) of 
0.0017 was achieved and the generalization of the trained ANN was tested 
based on testing data of 1994. The Fig. 6 shows the visual comparison be-
tween the observed and the 4-days-ahead predicted data for Microcystis 
aeruginosa (r2= 0.68) and Stephanodiscus hantzschii (r2= 0.73). The results 
indicate a high degree of accuracy in the forecasting regarding both the 
timing and the magnitudes of populations dynamics of the two algal spe-
cies, which have their distinctive seasonal patterns. 
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Fig. 5: Supervised feedback ANN for four-days-ahead forecasting of population 
densities of Microcystis aeruginosa and Stephanodiscus hantzschii in the River 
Nakdong (South Korea) from Jeong, Recknagel and Joo (2006) 

   
Microcystis under warm and calm conditions in mid and late summer as 

observed in the River Nakdong in 1994 were well reflected by the pre-
dicted data in Fig. 6a. By contrast diatoms tend to be abundant at moderate 
temperatures and turbulent conditions. Both observed and predicted data 
for Stephanodiscus hantzschii in the River Nakdong correspond well by 
showing highest population densities in spring and autumn (Fig. 6b). 
Successful applications have been demonstrated for time-series modelling 
of macroinvertebrate communities in streams by e.g. Chon et al. (2006) 
and of phytoplankton communities in freshwater lakes and rivers by e.g. 
Recknagel et al. (2006). 



12  F. Recknagel 

 
Fig. 6: Four-days-ahead forecasting of population densities of Microcystis aerugi-
nosa and Stephanodiscus hantzschii in the River Nakdong (South Korea) by 
means of a supervised feedback ANN from Jeong, Recknagel and Joo (2006) 

3.1.3 Non-supervised ANN 

Non-supervised ANN are designed to identify unknown input patterns 
based on similarities between inputs. So-called self-organising maps de-
veloped by Kohonen (1989) are the most popular non-supervised ANN, 
which can be  applied to ordination, clustering and mapping of complex 
non-linear data. 
The principal approach of non-supervised ANN according to Kohonen 
(1989) is represented in a simplified manner in Fig. 7. It shows that the neu-
rons of the non-supervised ANN learn to distinguish between similar and 
dissimilar features of the normalised input data, which are mapped as clus-
tered inputs. The term non-supervised in this context means that the learning 
algorithm is not guided by known output patterns but learns the patterns 
from features of the inputs. Those features can be expressed by Euclidean 
distances, which are calculated between the inputs and weights. Similarities 
between inputs in terms of Euclidean distances can be visualised and parti-
tioned by the unified distance matrix (U-matrix) and the K-means map.  
In order to illustrate opportunities of applications of non-supervised ANN 
to ecological time-series data, Figs. 8 to 10 show results of a case study 
carried out for limnological data of Lake Kasumigaura in Japan (Reckna-
gel et al. 2006). The Fig. 8 represents seasonal clusters for Lake Kasumi-
gaura as mapped by the U-matrix and K-means partitioning using the SOM 
Toolbox of MATLAB 5.3 (Vesanto et al. 2000). The U-matrix map in Fig. 
8a visualises the relative distances between neighbouring data of the input 
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data space as shades of grey. The light areas in the U-matrix visualise 
neighbouring data with smallest distances belonging to a region or cluster. 
The black colours represent the biggest distances between neighbouring 
data and denote borders between clusters. The K-means algorithm parti-
tions the input data space into a specified number of clusters based on the 
U-matrix. Fig. 8b represents the corresponding partitioned map for five 
seasons. 

 

Fig. 7: Conceptual diagram of the structure and functioning of non-supervised 
ANN 

 

 

 

 

 

 

 

 

 
Fig. 8: Ordination and clustering of seasons of Lake Kasumigaura by means of 
non-supervised ANN visualised as unified distance matrix map (U-matrix) (a), 
and as partitioned map (K-means) (b); the seasons were defined as follows: winter 
from December 1st, spring from March 15th, early summer from June 1st, late 
summer from August 1st, autumn from October 1st 
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The Fig. 9 visualises seasonal distributions of abundances of the blue-
green algae Microcystis and Oscillatoria in Lake Kasumigaura based on 
data of the years 1984 to 86 (left column) and 1987 to 89 (right column). 
The Fig. 10 represents the seasonal distributions of concentrations of NO3-
N and PO4-P in Lake Kasumigaura in correspondence with the time peri-
ods differentiated in Fig. 8. Fig. 9 highlights that whilst Microcystis de-
clines in cell numbers by more than 50% between 1984 to 86 and 1987 to 
89, Oscillatoria doubles in cell numbers.  It also shows that seasonal domi-
nance of two algal populations for the early and the late 1980s shifted for 
Microcystis from late summer to autumn, and for Oscillatoria from early 
summer to late summer. Takamura et al. (1992) pointed at changes of 
NO3-N/PO4-P ratios as possible explanations for the succession of the two 
blue-green algal populations during the 1980s in Lake Kasumigaura, that 
are indicated by the component planes in Fig. 9. From the early 1980s to 
the late 1980s the NO3-N concentrations increase by 50% whilst PO4-P 
concentrations dropped to 50% causing a significant change of the NO3-
N/PO4-P ratios from 8.5 to 32.  

Successful applications of non-supervised ANN have been demon-
strated for cross-sectional data of macroinvertebrate communities in 
streams (e.g. Chon et al. 1996) and  vegetation types (e.g. Foody 2000).  

Successful applications of non-supervised ANN have been demon-
strated for time-series data of plankton communities in lakes and rivers 
(e.g. Recknagel, Talib and van der Molen 2006). 

 
 

 
Fig. 9: Component planes for seasonal abundances of Microcystis and Oscillatoria 
populations in Lake Kasumigaura for the years 1984 to 86 (left column) and 1987 
to 89 (right column) 
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Fig. 10: Component planes for seasonal concentrations of PO4-P and NO3-N in 
Lake Kasumigaura for the years 1984 to 86 (left column) and 1987 to 89 (right 
column) 

3.2 Evolutionary algorithms  

Evolutionary algorithms (EA) are adaptive methods for finding problem 
solutions (models, knowledge) based on principles of biological evolution 
by natural selection, genetic variation and “survival of the fittest”. Holland 
(1975) provided the theoretical framework for the development of genetic 
and evolutionary algorithms that are being widely used for pattern recogni-
tion, forecasting, knowledge discovery, optimum control and parallel proc-
essing.  Useful guides for history, current developments and applications 
of genetic and evolutionary algorithms are provided by Goldberg (1989). 

Successful implementations of EA as tools for solving complex eco-
nomic and engineering problems have stimulated their application to solv-
ing ecological problems, which exhibit highest complexity. They allow to 
induce predictive models from ecological data sets similar to supervised 
ANN but rather than lacking an explicit model representation as typical for 
ANN, EA are distinctively designed for assembling the explicit model rep-
resented as multivariate functions or rule sets. Therefore EA serve as pow-
erful tools for knowledge discovery as well.   
The hybrid evolutionary algorithms (HEA) (Cao et al. 2006) has been ad 
hoc designed as flexible tool for inducing predictive multivariate functions 
and rule-sets from ecological time-series data. The detailed algorithm for 
the rule discovery and parameter optimization by HEA is shown in Fig. 11. 
HEA uses genetic programming (GP) to generate and optimize the struc-
ture of rule sets and a genetic algorithm (GA) (e.g. Mitchell 1996) to opti-
mize the parameters of a rule set. GP (e.g. Banzhaf et al. 1997) is an exten-
sion of GA in which the genetic population consists of computer programs 
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of varying sizes and shapes. In standard GP, computer programs can be 
represented as parse trees, where a branch node represents an element from 
a function set (arithmetic operators, logic operators, elementary functions 
of at least one argument), and a leaf node represents an element from a 
terminal set (variables, constants and functions of no arguments). These 
symbolic programs are subsequently evaluated by means of “fitness 
cases”. Fitter programs are selected for recombination to create the next 
generation by using genetic operators, such as crossover and mutation. 
This step is iterated for consecutive generations until the termination crite-
rion of the run has been satisfied. A general genetic algorithm (GA) is used 
to optimize the random parameters in the rule set. More details on the de-
sign and functioning of HEA including a demo version can be found in 
Cao et al. (2006). 

 
Fig. 11: Flowchart of the hybrid evolutionary algorithm HEA for rule discovery 
from Cao et al. (2006) 
 

The Figs. 12 and 13 illustrate the structure, input sensitivity and k-fold 
cross-validation of a rule-based agent for 7-days-ahead forecasting of Mi-
crocystis biomass developed by HEA (Recknagel et.al. 2008). 

The rule in Fig. 12a is the result of using 42 years of merged limnologi-
cal data of the South African lakes Hartbeespoort, Roodeplaat and Rietvlei 
for the training of HEA. The sensitivity analysis in Fig. 12b indicates that 
both water temperature and Secchi depth are key driving variables for low 
biovolumes of Microcystis of up to 14 cm3/m3 reflected by the THEN 
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branch of the rule as well as for high biovolumes of up to 350 cm3/m3 re-
flected by the ELSE branch of the rule. As a result of k-fold cross-
validation the parameters p1 and p2 have been evolved to water temperature 
functions which provide the agent an extra mechanism for adaptation to 
lake specific seasonal conditions. 

 
Fig. 12: Structure and input sensitivity analysis of a rule-based agent for 7-days-
ahead forecasting of Microcystis biomass discovered in merged time-series data of 
the South African lakes Hartbeespoort, Roodeplaat and Rietvlei by HEA (from 
Recknagel et.al. 2008) 

 
Fig. 13: k-fold cross-validation of a rule-based agent for 7-days-ahead forecasting 
of Microcystis biomass by means of merged time-series data of the  South African 
lakes Hartbeespoort, Roodeplaat and Rietvlei (from Recknagel et.al. 2008) 



18  F. Recknagel 

The k-fold cross-validation of the rule-based agent for Microcystis 
achieved r2-values of 0.31 for Lake Hartbeespoort, 0.34 for Lake Roode-
plaat and 0.75 for Lake Rietvlei (Fig. 13).   

Successful applications of EA have been demonstrated for cross-
sectional data of fish populations (e.g. D’Angelo et al. 1995) as well as  
macroinvertebrate communities in streams (e.g. Horrigan et al. 2005), and 
for time-series data of plankton communities in lakes and rivers (e.g. Cao 
et al. 2006; Chan et al. 2007), and biological waste water treatment (Hong 
and Bhamidimarri 2003). 

4 Future directions 

Making informed decisions on conservation of  biodiversity and sustain-
able environmental management in spite of ongoing pollution, eutrophica-
tion and climate change is of vital importance for the habitat earth in the 
21st century. Ecological informatics is challenged to improve ecological 
understanding and provide tools for integrating, analysing and synthesising 
the wealth of ecological knowledge and data for informed decision making 
at local, regional and global scale.  

It is anticipated that at the next stage ecological informatics will focus in  
particular on: (1) integrated analysis of genomic, phenotypic and ecologi-
cal data in order to better understand biodiversity and ecosystem behaviour 
in response to environmental and climate changes; (2) facilitating data 
sharing by www-based generic data warehousing tailored for ecosystem 
categories at global scale, and (3) implementing hybrid model libraries 
generic for ecosystem categories at global scale by object-oriented pro-
gramming and interactive www-access. 
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