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Groundwater geophysics — a tool for
hydrogeology

Access to clean water is a human right and a basic requirement for eco-
nomic development. The safest kind of water supply is the use of ground-
water. Since groundwater normally has a natural protection against pollu-
tion by the covering layers, only minor water treatment is required.
Detailed knowledge on the extent, hydraulic properties, and vulnerability
of groundwater reservoirs is necessary to enable a sustainable use of the
resources.

This book addresses students and professionals in Geophysics and Hy-
drogeology. The aim of the authors is to demonstrate the application of
geophysical techniques to provide a database for hydrogeological deci-
sions like drillhole positioning or action plans for groundwater protection.

Physical fundamentals and technical aspects of modern geophysical re-
connaissance methods are discussed in the first part of the book. Beside
"classical" techniques like seismic, resistivity methods, radar, magnetic,
and gravity methods emphasis is on relatively new techniques like com-
plex geoelectric, radiomagnetotellurics, vertical groundwater flow deter-
mination, or nuclear magnetic resonance. An overview of direct push tech-
niques is given which can fill the gap between surface and borehole
geophysics.

The applications of these techniques for hydrogeological purposes are
illustrated in the second part of the book. The investigation of pore aqui-
fers is demonstrated by case histories from Denmark, Germany, and Egypt.
Examples for the mapping of fracture zone and karst aquifers as well as for
saltwater intrusions leading to reduced groundwater quality are shown.
The assessment of hydraulic conductivities of aquifers by geophysical
techniques is discussed with respect to the use of porosity — hydraulic con-
ductivity relations and to geophysical techniques like NMR or SIP which
are sensitive to the effective porosity of the material. The classification of
groundwater protective layers for vulnerability maps as required by the EU
water framework directive is a relatively new field of application for geo-
physical techniques. Finally, the geophysical mapping of organic and inor-
ganic contaminations of soil and groundwater is demonstrated.

I am indebted to Helga Wiederhold (GGA-Institut) for critically reading
and finalising the manuscripts, and to Anja Wolf and Christina Bruhn
(both LANU) for skilful graphical work.
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1 Petrophysical properties of permeable and low-
permeable rocks

Reinhard Kirsch

Groundwater conditions at a location are mainly described through the dis-
tribution of permeable layers (like sand, gravel, fractured rock) and im-
permeable or low-permeable layers (like clay, till, solid rock) in the sub-
surface. To achieve a geophysical image of these underground structures,
sufficient contrast of petrophysical properties is required. Seismic veloci-
ties (related to elastic properties and density), electrical conductivity, and
dielectric constant are the most relevant petrophysical properties for geo-
physical groundwater exploration.

In this chapter, the influence of porosity, water saturation, and clay con-
tent on these petrophysical properties shall be explained.

1.1 Seismic velocities

Seismic velocities for compressional (V,,) and shear waves (V) are related
to elastic constants like bulk modulus (k), Young’s modulus (E), and shear
modulus (p) by

v oo [Pkt _ E-(1-V) (1.1
Py 3 \p-(+v)-(1-2v)

and

v, = B
p

with p = density and v = Poisson’s ratio.

Since elastic properties of rocks are highly influenced by porosity, e.g.
highly porous material is more compressible than material of lower porosi-
ty, seismic velocities are also influenced by porosity.
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Fig. 1.1. Concept of critical porosity (after Nur et al. 1998)

The following seismic velocity — porosity relations are valid for porosi-
ties below the critical porosity threshold (Nur et al. 1998). For porosities
above this threshold no grain contacts exist (Fig. 1.1). In that case, mineral
grains or rock fragments and pore fluid form a suspension, in which the
elastic properties are similar to a fluid. Soil liquefaction associated with
earthquakes or landslides are such examples. The critical porosity for most
sedimentary rocks is about 40%. As a consequence, seismic velocity — po-
rosity relations are not always valid for structural aquifers formed by tec-
tonic stress.

1.1.1 Consolidated rock
In a simple form, the seismic velocity — porosity relation for consolidated

rocks is described by Wyllie et al. (1956) as “time average equation”

L__1-0 . ¢ (1.2)

v VMATRIX VPORE

with Vyatrix = seismic velocity of rock matrix or grains
Vrore = seismic velocity of pore fluid

¢ = porosity.
This equation has been modified by Raymer et al. (1980) to:
V=(1-9)* Vyarrix + ¢ Veore (1.3)

A very comprehensive compilation of elastic properties and seismic ve-
locities of porous material is given by Mavko et al. (1998).
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A large number of laboratory results on seismic velocities of porous ma-
terial have been published. Mostly porosity changes were obtained by
changes of confining pressure, whereas seismic velocities were measured
in the kHz frequency range. Examples of seismic velocity - porosity rela-
tions for saturated sandstones found by different authors are (C = volume-
tric clay content):

Han et al. (1986) V,=559-693-¢-2.18-C
V,=3.57-491-¢-1.89-C
Klimentos (1991) V,=587-633-¢-3.33-C

and for unsaturated sandstone:
Kowallis et al. (1984) V, =5.60-9.24-¢-5.70-C  [km/s]

Some velocity-porosity relations found by field or laboratory experi-
ments are shown in Fig. 1.2.

Vp [m/s]
5000
4000 -
3000 A
2000 +
1000 +
@
20 40 60 80 [%] 100

porosity

Fig. 1.2. Influence of porosity ¢ on p-wave velocities of sandstone, 1: Watkins et
al. (1972), unsaturated rock, refraction seismic measurements, 2: Raymer et al.
(1980), saturated rock, model calculations, 3: Klimentos (1991), saturated rock,
laboratory measurements, 4: Kowallis et al. (1984), unsaturated rock, laboratory
measurements; 1 and 2: clay free material, 3 and 4: clay content C =20%
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1.1.2 Unconsolidated rock

Seismic velocities of unconsolidated rocks (e.g. sand, gravel) are strongly
influenced by porosity and water saturation. Fig. 1.3 shows the influence
of the water saturation degree on p- and s-wave velocities. No influence of
water saturation degree on seismic velocities is observed below a critical
value of about 90% water saturation. A further saturation increase leads to
a strong increase of p-wave velocity and a slight decrease of s-wave ve-
locity.

Because the shear moduli of air and water are zero, increasing the satu-
ration degree shall have no influence on s-wave velocity. The observed de-
crease of s-wave velocity can be explained by the increase of density when
air is replaced by water as pore filling.

A mis
2000
1000 A
Vo
VS
—
T 1
50% 100%

saturation degree

Fig. 1.3. Schematic view on the influence of water saturation on seismic velocities

=

Fig. 1.4. Sketch of a partly saturated pore under compression
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The crucial parameter for the p-wave velocity is the bulk modulus re-
lated to the compressibility of the material. In Fig. 1.4 a partly saturated
pore has been sketched. Pore water is bound by adhesion on the grain sur-
face. If the pore is compressed, the air in the pore space is easily compress-
ible and the pore water cannot increase the bulk modulus of the material.
Saturation variations for the partly saturated case below the critical satura-
tion degree have no influence on the bulk modulus and, with the exception
of slight density changes, on the p-wave velocity.

Only few field experiments on the influence of porosity on seismic ve-
locities of dry unconsolidated material have been recorded. Watkins et al.
(1972) made refraction seismic measurements on outcropping unsaturated
hard rock as well as on unsaturated sands and found the following veloci-
ty-porosity relation:

0=-0.175-In(V, ) +1.56 (1.4)

As a consequence, p-wave velocities below sonic velocity (330 m/s) are
possible and have been often observed. Bachran et al. (2000) found p-wave
velocities as low as 150 m/s for dry beach sands with a velocity-depth in-
crease as shown in Fig. 1.5. This increase can be described by a power law
(depth to the power of 1/6). As a consequence, seismic ray paths in the
shallow sub-surface are strongly curved.

P-wave velocities for water saturated sands are in the range of 1500 —
2000 m/s (seismic velocity of water: 1500 m/s). Hamilton (1971) measured
p-wave velocities of marine sediments which are shown in Fig. 1.6. Mor-
gan (1969) found the following seismic velocity — porosity relation for ma-
rine sediments (in km/s):

V, =1.917-0.566- ¢ (1.5)
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Depth [m]
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Fig. 1.5. Increase of p-wave velocity with depth (observed and calculated) in the
shallow sub-surface (Bachran et al. 2000, with permission from SEG)

Vp [m/s]
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1500 S
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Fig. 1.6. P-wave velocities and porosities for marine sediments (after Hamilton
1971)
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Fig. 1.7. P-wave velocity and porosity for sand-clay mixtures (Marion et al. 1992,
with permission from SEG)

minimal porosity

0% clay content

Fig. 1.8. Sketch of sand-clay distribution with increasing clay-content (after Ma-
rion et al. 1992)

1.1.3 Clay and till

Clay and till have low hydraulic conductivities. Their hydrogeological im-
portance is that clay or till layers form hydraulic boundaries dividing aqui-
fers.

Till is a mixture of sand, clay, and partly chalk with a wide variety of
grain size distributions. The clay content influences the hydraulic conduc-
tivity significantly. To investigate the influence of porosity and clay con-
tent on seismic velocities, Marion et al. (1992) used artificial sand-clay
mixtures for laboratory experiments. A maximum of p-wave velocities was
found for clay contents of about 40% (Fig. 1.7).
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Fig. 1.9. P-wave velocities of tills in relation to porosity and clay content (Baer-
mann and Hiibner 1984, with permission from BGR)

An explanation is given in Fig. 1.8. Porosity of clay is about 60%, porosity
of sand is about 40%. Small clay content in sands reduce porosity because
clay particles fill the pore space. Increasing clay content reduces porosity,
until the entire pore space is finally filled with clay. If the clay content is
increased further, sand grains loose contact and are isolated in the clay ma-
trix. From that point on, increasing the clay content leads to an increased
porosity of the mixture due to the high porosity of clay. It must be taken
into account that these results were obtained by using sand and clay of uni-
form grain size.

Under real field conditions, where tills show a wide variety of grain size
distributions, results may not have been so clear. Field measurements on
till soils (borehole measurements as well as refraction seismic measure-
ments at steep coasts) by Baermann and Hiibner (1984) show decreasing p-
wave velocities with increasing porosity and clay content (Fig. 1.9). How-
ever, the obtained velocity/porosity or velocity/clay content relations are
very site specific and cannot be used in general for an interpretation of
seismic velocities.

1.2 Electrical resistivity

1.2.1 Archie’s law — conductive pore fluid and resistive rock
matrix

Since the electrical resistivity of most minerals is high (exception: clay,
metal ores, and graphite), the electrical current flows mainly through the
pore water. According to the famous Archie law, the resistivity of water-
saturated clay-free material can be described as
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P aquirrr = P warer F (16)

Paquirer = specific resistivity of water saturated sand
pwaTer = specific resistivity of pore water.
For partly saturated material, F can be replaced by F/Sw* (Sw = saturation
degree = fraction of water filled pore space).

The formation factor F combines all properties of the material influenc-
ing electrical current flow like porosity ¢, pore shape, and diagenetic ce-
mentation.

F=a-¢™" (1.7)

Different expressions for the material constant m are used like porosity
exponent, shape factor, or (misleading for deposits) cementation degree.
Factors influencing m are, e.g., the geometry of pores, the compaction, the
mineral composition, and the insolating properties of cementation (Ran-
som 1984).

The constant a reflects the influence of mineral grains on current flow.
If the mineral grains are perfect insulators (main condition for the validity
of Archie’s law), then a = 1. If the mineral grains contribute to the electri-
cal conductivity to a certain degree, the constant a is reduced accordingly.

Typical values for a and m are (after Schon 1996): loose sands, a = 1.0,
m = 1.3, and sandstones, a = 0.7, m = 1.9. Further examples for a and m
are given by Worthington (1993).

Fig. 1.10 shows the influence of the porosity and the porosity exponent
m on the formation factor F. For sandy aquifers with porosities ranging
from 20 — 30 % formation factors can be expected in the range of 4 - 8.
However, as the porosity exponent m is normally unknown, it is difficult
to predict the porosity from the measured resistivities of the aquifer, even
if the resistivity of the pore water is known. Some values for formation
factors in relation to grain size for loose sands are shown in Fig. 1.11.

As the constant m is influenced by pore geometry, the formation factor
F is related to tortuosity T. Tortuosity describes how crooked the way of
fluid flow through pore space is. Tortuosity depends on porosity, pore
shape, and the shape of channels connecting the pores. Assuming that the
electrical current flow follows the same path through the pore space as the
fluid flow, a relation between formation factor and tortuosity can be found
(TNO 1976).

F=T-¢™ (1.8)

m* = modified porosity exponent.
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A mean tortuosity of T=1.26 was found by TNO (1976) for dune sands
and deposits from the river Rhine. Since tortuosity is strongly related to the
hydraulic conductivity, Eq. 1.8 gives a link between geophysical and hy-
draulic properties of the aquifer.

formation factor
Y

T T T 1 porosity

20 40 60 [%]
Fig. 1.10. Archie’s law: formation factor F vs. porosity for different porosity ex-
ponents

F 9
formation \ | 1 /’
factor 8 F=1,26 xy 1,20
y=0,149 log M + 0,331
F
Sl
6 W
e 8
5 S ;ﬂ\c‘} > \("O
\" ?‘Ek/ /‘
4 EN\P\RQ\/ T
RE= A=
3 =
g——
2
! —_— M
J 111 uj(}l )
10 sl 102 l 5  10° 104
silt fine sand _ coarse sand gravel
medium

Fig. 1.11. Formation factor dependent on grain size for The Netherlands (TNO
1976, with permission from TNO) compared to results for California (Ecknis
1934), M(L) = grain size in micrometer
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Fig. 1.12. Resistivity and apparent formation factor for high resistive pore water
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Fig. 1.13. Field examples measured in the Chaco of Paraguay (Repsold 1976, with
permission from BGR) for formation factors depending on water resistivity
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1.2.2 Limitations of Archie’s law — conducting mineral grains

The validity of Archie’s law and related formulae is restricted to materials
with highly resistive mineral grains and conducting pore fluid. A minor
contribution of the mineral grains to electrical conductivity can be taken
into account by the constant a. However, when the resistivity of the pore
water is sufficiently high that the electrical conductivity of the mineral
grains is a substantial contribution to the electrical conductivity of the
aquifer, the formulations of Archie are no longer valid. Modified formula-
tions are also required for material with surface conductivity like clay.

High resistive pore water

The electrical resistivity of pore water is controlled by the ion content
(salinity) as described in the chapter “Groundwater quality”. If the ion con-
tent of the groundwater is low resulting in a high bulk resistivity of the
aquifer, current flow through the aquifer can be explained by parallel con-
nection of rock matrix and pore fluid (Repsold 1976).

S DR (1.9)
p AQUIFER p MATRIX F ' p WATER

If we assume a matrix resistivity pyatrix 0f 1000 Qm and a formation
factor of 5, then even for water resistivity of 20 Qm aquifer resistivity is
clearly lower than expected by Archie’s law. If a formation factor is calcu-
lated formally by F=paquirer/Pwater, @ decrease of the so obtained appar-
ent formation factor is observed with increasing water resistivity (Fig.
1.12). Field examples for apparent formation factors depending on water
resistivity are shown in Fig. 1.13.

Resistivity of clay and till

Clayey material is characterized by low electrical resistivity in the range of
5 - 60 Qm and often a target in electrical or electromagnetic surveys. This
low resistivity is caused by surface conductivity of clay minerals. As clay
minerals are flat, water can diffuse between the minerals and so increase
the specific surface area. The specific surface area of clays can be up to
1000 m*/g, whereas for sands this area is less than 0.1 m?*/g (Scheffer and
Schachtschabel 1984). The large specific surface area supports the surface
conductivity. Because a number of cations in clay minerals is replaced by
cations of higher valence, electrical charge of the clay mineral surface is
negative. The negative charge is compensated by the concentration of ca-
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tions in the pore water in the vicinity of the mineral surface. This process
is quantified by the cation exchange capacity (CEC).

The calculation of the resistivity of clayey material is complicated, since
the electrical current flow is possible through clay minerals as well as
through pore fluid. A relatively easy approach is given by Frohlich and
Parke (1989). They assume that the bulk conductivity of clayey material 6,
can be explained by parallel connection of surface conductivity Gsurrace
and conductivity of pore water Gwater With volumetric water content ©:

1 1.10
Oy = a2 O WATER 0" + O SURFACE ( )
or, expressed in terms of resistivity
1 o~ 1 (1.11)

= +
Po 2'PwaTer  PSURFACE

The first part of Egs. 1.10 and 1.11 is related to Archie’s law, when ex-
ponent k is defined by the saturation degree Sw

Ok =Sy o™ (1.12)
A special case of Eq. 1.10 is given by Mualem and Friedman (1991)
023 (1.13)

+ OSURFACE

G = OWATER

An expression of surface conductivity (in mS/cm) in terms of volume-
tric clay content C was found by Rhoades et al. (1989)

Osurpace = 2.3-C—0.021 (1.14)

However, for the practical use of Eqgs. 1.13 and 1.14, the validity of the
empirically determined constants for the project area must be checked.

A more general approach to electrical conductivity of clayey material
based on cation exchange capacity is given by Sen et al. (1988):

1.15
Gy =%(Gw +0 LJ+EQV ( )

Yo, +BQ,

Q. can be expressed by cation exchange capacity CEC, matrix density
Pmart, and porosity ¢:

Q, :pMATq()l_q))CEC (1.16)
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Fig. 1.14. Correlation between clay content and cation exchange capacity for two
areas in Southern Germany (Gtiinzel 1994)

According to Giinzel (1994), constants A, B, and E are given by
BQ,=0.7, EQ,=0, and A:mksna, with m=porosity exponent of Archie equa-
tion and A°,,= equivalence conductivity of Na‘-exchange cations, empiri-
cally derived as A°,,=1.94 (S/m)/(mol/l).

Sen et al. (1988) found an empirical relation between porosity exponent
and cation exchange capacity for sandstone samples: m=1.67+0.2xCEC"2.
This can lead to an increase in resistivity with increasing clay content, a
clear contradiction to the experience that increasing clay content of uncon-
solidated material leads to decreasing resistivity. The use of the empirical
relation between m and CEC should be restricted to consolidated material.
Sen et al. (1988) also mentioned that a good fit of measured data is possi-
ble using constant m=2.

Eq. 1.15 is valid for saturated material. For partly saturated material,
Giinzel (1994) replaced Qv by Q"= Qv/Sw (Sw = saturation degree), forma-
tion factor F is changed accordingly. Assuming clay free material with
CEC =0, Eq. 1.15 reduces to Archie’s law 6 = oy/F.

As shown above, the critical parameter for conductivity of clayey mate-
rial is not the clay content, but the cation exchange capacity. Cation ex-
change capacity strictly depends on the mineral composition of clay, which
may differ from area to area. Giinzel (1994) showed that for smaller areas,
where a constant composition of clay minerals can be assumed, a linear re-
lation CEC = ixC between clay content C and cation exchange capacity
exists (Fig. 1.14). As a consequence, if in Eq. 1.16 CEC is replaced by
ixC, Eq. 1.15 relates clay content to conductivity.



