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Part III
Some Applications of Variational Methods

to Development of Continuum
Mechanics Models

In this part, the application of the variational approach to constructing the governing
equations will be considered for several areas of continuum mechanics. The first
two chapters are concerned with one of the most beautiful areas of solid mechan-
ics – the theory of elastic shells and beams. In a sense, this is a physical theory of
surfaces and curves in three-dimensional space. It is attractive by its exceptional
elegance, the profound relations with geometry and the astonishing diversity and
complexity of the behavior of the objects it describes. The extent of the book allows
us to discuss only the derivation of the classical and refned shell theories and the
classical beam theory from the three-dimensional elasticity theory, and a case when
the classical shell theory does not work: theory of hard-skin plates and shells. The
next chapter gives a review of stochastic variational problems. Then we turn to con-
sideration of homogenization, one of the central problems of continuum mechanics.
This is followed by several other examples of applications of variational methods to
construction of continuum models: shallow water theory, theory of heterogeneous
mixtures, a model of granular media and a turbulence model. The discussion of
each theory is concluded by constructing the governing equations, and the issues
related to the features of these equations are not discussed. The only exception is
the homogenization theory where we consider the exact solutions of the cell problem
which are found by means of the variational methods.

The chapters can be read independently.



Chapter 14
Theory of Elastic Plates and Shells

Consider the surface �̊ in three-dimensional space and, at each point on the surface,
erect a segment of length h directed along the normal to the surface; the centers
of the segments are on �̊. The segments cover some three-dimensional region, V̊
(Fig. 14.1). If h is much smaller than the minimum curvature radius of the surface
�̊, R, and the characteristic size of the surface �̊, L ,

h

R
� 1,

h

L
� 1,

then an elastic body occupying the region V̊ in its undeformed state is called an
elastic shell. If �̊ is a plane, i.e. R = ∞, then there is only one small parameter, h/L .

One can expect that the deformation of the elastic shells can be approximately
described by functions which depend only on the two surface coordinates and time.
The problem of constructing the shell theory consists of the proper choice for these
functions, derivation of the governing equations for these functions and establish-
ing the link between the two-dimensional characteristics and the three-dimensional
stress state. These issues are addressed in this chapter. The last three sections of
the chapter are concerned with the theory of laminated plates and shells, and, in

Fig. 14.1 Notation for shells
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particular, hard-skin plates and shells. In case of a hard skin an additional small
parameter, the ratio of elastic moduli of the core and the skin, comes into play and
changes the leading asymptotics. We begin with introduction of necessary facts from
theory of surfaces.

14.1 Preliminaries from Geometry of Surfaces

The surface tensors. Consider in three-dimensional space a two-dimensional sur-
face �, defined by the parametric equations

xi = r i (ξα) , (14.1)

where ξα are the surface parameters and the small Greek indices α, β, γ, . . . run
values 1, 2.

The parametric equations (14.1) contain more information than just the definition
of the surface because they distinguish the individual points on the surface marked
by the parameters ξα . The specific choice of the parameters on the surface is not
essential, and it appears to be necessary to consider the invariance of all relationships
with respect to the transformation group of the surface coordinates, ξα → ξ

′α ,

ξ
′α = ξ

′α (ξβ
)
. (14.2)

The vectors and tensors with respect to this group are called the surface vectors and
tensors, and the corresponding tensor indices the surface indices.

The tangent vectors and the metric tensor. The derivatives, r i
α = �r i/�ξα , are the

components of two vectors in the observer’s frame, r i
1 and r i

2. The three-dimensional
vectors, r i

1 and r i
2, are tangential to the surface �. At the same time, for each fixed

index i, they form a surface vector with respect to index α.
The observer’s metrics, allowing one to measure distances in three-dimensional

space, induces the surface intrinsic metrics on �, which determines the distances
between the points of the surface: the squared distance, ds2, between the points ξα

and ξα + dξα ,

ds2 = gi j
(
r i (ξα + dξα)− r i (ξα)

) (
r j (ξα + dξα)− r j (ξα)

) = gi jr
i
αdξαr j

βdξβ,

can be written as

ds2 = aαβdξαdξβ,

where the tensor

aαβ = gi jr
i
αr j

β , (14.3)

is called the surface metric tensor or the first quadratic form of the surface.



14.1 Preliminaries from Geometry of Surfaces 591

The contravariant components of the surface metric tensor, aαβ, are introduced
as the solutions of the system of linear equations

aαβaγβ = δα
γ .

According to (3.20),

aαβ = 1

a

�a

�aαβ

, (14.4)

where a is the determinant of the matrix
∥∥aαβ

∥∥.
Using the space and the surface metrics, we can juggle the space and the surface

indices; for example, for r i
α we have

riα ≡ gi jr
j
α, rα

i ≡ aαβriβ. (14.5)

The Levi-Civita tensor. The two-dimensional Levi-Civita tensor is defined as

εαβ =
√

aeαβ

with eαβ being the two-dimensional Levi-Civita symbol (e11 = e22 = 0, e12 =
−e21 = 1). By definition, eαβ = eαβ.

One can check that

εαβ ≡ aαα′aββ ′εα′β ′ = 1√
a

eαβ.

Note the identities

εαβεγβ = δα
γ , eαβeγβ = δα

γ . (14.6)

The normal vector. Consider a vector with the components

ni = 1√
a

εijkr
j

1 rk
2 =

1

2
εαβεijkr

j
αrk

β. (14.7)

Here εijk is the three-dimensional Levi-Civita tensor (see Sect. 3.1).
The vector, ni , is orthogonal to the surface, since, due to (14.7),

nir
i
α = 0. (14.8)

Let us show that the vector ni has the unit length

gi j ni n j = 1. (14.9)

From (14.7) and (3.19),
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gi j ni n j = 1

a
gi jεiklr

k
1 rl

2εjmnrm
1 rn

2 =

= 1

a
(gkm gln − gknglm) rk

1 rl
2rm

1 rn
2 =

1

a

(
a11a22 − a2

12

) = 1.

So, ni are the components of the unit vector normal to the surface � indeed. It
follows from (14.7) and (3.19) that

niε
ijk = εαβr j

αrk
β. (14.10)

Note also the relation

εi jkr j
αrk

β = niεαβ. (14.11)

It can be obtained from the following reasoning. The scalar product of εi jkr j
αrk

β with

r i
1 and r i

2 is zero. Hence, for each fixed α and β, εi jkr j
αrk

β is proportional to ni , and
one can write

εi jkr j
αrk

β = cαβni . (14.12)

Tensor cαβ must be antisymmetric. Therefore, cαβ = cεαβ. Contracting (14.12) with
niε

αβ and using (14.7), we obtain the value of c : c = 1.

The area element. The area element, dω, of the surface, �, is the area of the
infinitesimally small parallelogram with the sides, r i

1dξ 1 and r i
2dξ 2. It is equal to

the length of the vector product of these two vectors, εijkr
j

1 dξ 1rk
2 dξ 2. The vector

product, according to (14.7), is equal to ni
√

adξ 1dξ 2. Since the normal vector, ni ,

has the unit length,

dω = √adξ 1dξ 2. (14.13)

The surface in the initial state. Let the position of the surface � change with time
and be given by the functions xi = r i (ξα, t). The position of the surface � at the
initial instant, t0, is denoted by �̊, and all the other quantities in the initial state will
be furnished with the symbol ◦. In particular,

r i (ξα, t0) ≡ r̊ i (ξα) , r̊ i
α ≡

�r̊ i

�ξα
, åαβ = gi j r̊

i
αr̊ j

β ,

å = det
∥∥åαβ

∥∥ , åαβ = 1

å

�å

åαβ

, n̊i = 1√
å

εijkr̊
j

1 r̊ k
2 ,

r̊iα = gi j r̊
i
α, r̊α

i = åαβ r̊iβ. (14.14)

The decomposition of Kronecker’s delta. The following identity holds:

r i
αrα

j + ni n j = δi
j . (14.15)
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In order to check that, it is sufficient to project (14.15) onto the tangent vectors and
the normal vector (contract (14.15) with r j

α and n j ) and inspect that the resulting
equations are identities.1

The decomposition of Kronecker’s delta is used in constructing the projections
onto the tangent plane and the normal direction. For example, the vector with com-
ponents T i can be represented by the sum of a vector tangent to the plane and a
normal vector,

T i = T iδi
j = T jr i

αrα
j + T j n j n

i = T αr i
α + T ni ,

where T α = T irα
i is a surface vector, T αr i

α is the vector tangent to the surface (i.e.
T αr i

αni = 0), and T = T j n j is a scalar. Similarly, the tensor of the second order
can be written as

T i j = T klδi
kδ

j
l = T kl

(
r i
αrα

k + ni nk
) (

r j
βrβ

l + n j nl

)
=

= T αβr i
αr j

β + T α
1 r i

αni + T α
2 r j

αni + T ni n j , (14.16)

where T αβ = T klrα
k rβ

l is the surface tensor, T α
1 = T klrα

k nl , T α
2 = T klnkrα

l are
the surface vectors which coincide in the case of a symmetric tensor T i j , and T =
T i j ni n j is a scalar. The first term of the sum (14.16) “lies in the tangent plane” to
the surface in the sense that it is orthogonal to the normal vector with respect to both
indices, the second term is orthogonal to the normal vector with respect to index i ,
the third term – with respect to index j , and the fourth term is “orthogonal to the
tangent plane” (its contraction with the tangent vectors is equal to zero).

The decomposition of Kronecker’s delta is also used in the decomposition of the
gradient along the tangent and the normal directions,

�

�xi
= δ

j
i

�

�x j
= (

r j
αrα

i + n j ni
) �

�x j
= rα

i

�

�ξα
+ ni

�

�n
. (14.17)

1 The decomposition of the Kronecker’s delta (14.15) uses the space metrics. Actually, such de-
composition does not need metrics and can be done without the use of the metric properties. Indeed,
consider on the surface � a vector field, r i

3, which is not tangent to � at any point. This means that
the determinant, r, of the matrix with the components r i

1, r i
2 and r i

3 is not zero. Let us define three
vector fields g1

i , g2
i , g3

i by the system of linear equations

r i
αgα

j + r i
3g3

j = δi
j . (14.18)

Since r �= 0, the solution of the system of equations (14.18) exists, and it is unique. Equation
(14.18) is the sought decomposition of the Kronecker’s delta. Note that vector g3

i is normal to � in
the sense that

g3
i r i

α = 0.

Indeed,

g3
i r i

α =
(

1

r

�r

�r i
3

)
r i
α =

(
1

r
eijkr

j
1 rk

2

)
r i
α ≡ 0.
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Here �/�n ≡ n j �/�x j is the derivative along the normal vector, while �/�ξ a ≡
r j
α�/�x j is the derivative along the surface: for any function ϕ

(
xi
)

considered on
the surface, ϕ

(
xi
) = ϕ

(
r i (ξα)

)
,

r i
α

�ϕ
(
xi
)

�xi
= �r i (ξα)

�ξα

�ϕ
(
r i (ξα)

)

�r i
= �

�ξα
ϕ
(
r i (ξα)

)
.

The decomposition of the Kronecker’s delta in terms of the initial state,

r̊ i
αr̊α

j + n̊i n̊ j = δi
j ,

yields similar relations.

Two covariant derivatives. In the same coordinates system, ξα, we have two met-
ric tensors, aαβ and åαβ. We introduce two Christoffel’s symbols: for the surface
metrics, aαβ,

�
γ

αβ =
1

2
aγ δ

(
aαδ,β + aβδ,α − aαβ,δ

)
, (14.19)

and the surface metrics, åαβ,

�̊
γ

αβ =
1

2
åγ δ

(
åαδ,β + åβδ,α − åαβ,δ

)
. (14.20)

The comma before a Greek index, α, denotes partial derivative with respect to ξα.

The corresponding covariant derivatives are denoted by the bar and the semicolon
in indices. For example, for a surface vector, T α,

T α
|β =

�T α

�ξβ
+ �α

λβ T λ, T α
;β =

�T α

�ξβ
+ �̊α

λβ T λ,

for a surface tensor, Tαβ,

Tαβ|γ = �Tαβ

�ξγ
− �λ

αγ Tλβ − �λ
βγ Tαλ,

Tαβ;γ = �Tαβ

�ξγ
− �̊λ

αγ Tλβ − �̊λ
βγ Tαλ,

and for a surface scalars, like r i (ξα) or ni (ξα) ,

r i
α = r i

,α = r i
|α = r i

;α, ni
,α = ni

|α = ni
;α.

One can show by direct inspection, using (14.19), that the covariant derivatives of
aαβ vanish:

aαβ|γ = 0, aαβ

|γ = 0,
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and, similarly,

åαβ;γ = 0, åαβ
;γ = 0.

Besides,2

εαβ|γ = 0, ε
αβ

|γ = 0. (14.21)

Note the relation

�
β

αβ =
1√
a

�
√

a

�ξα
(14.22)

which follows from (14.19) similarly to (4.80).

The second quadratic form of the surface. Denote by ei the basic vectors of Carte-
sian coordinates in three-dimensional space. Consider the increment of the tangent
vectors tα = r i

αei when the point ξα is shifted along the surface for dξα :

dtα = r i
α,βei dξβ. (14.23)

The coefficients, r i
α,β , are symmetric with respect to α, β as the second partial

derivatives of the functions r i (ξα) ,

r i
α,β =

�r i
α

�ξβ
= �2r i (ξ )

�ξα�ξβ
.

Let us breakdown the vectors ek into their tangent and normal components by
means of (14.15):

ek = e jδ
i
k = tγ rγ

k + nk
(
ei n

i
)
. (14.24)

Substituting (14.24) into (14.23), we obtain

dtα = �
γ

αβtγ dξβ + bαβdξβ
(
ni ei

)
. (14.25)

Here

�
γ

αβ = rk
α,βrγ

k , bαβ = rk
α,βnk . (14.26)

2 Indeed, differentiating the identity, εαβεαβ = 2, we have

εαβεαβ|γ + εαβε
αβ

|γ = 0.

Since the covariant derivatives of the surface metric tensor are zero, εαβεαβ|γ = εαβε
αβ

|γ . That
yields εαβεαβ|γ = 0. The tensor, εαβ|γ , is antisymmetric over α, β. Therefore, the only non-zero
components have the indices, α = 1, β = 2 and α = 2, β = 1. Hence, εαβ|γ = 0.
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The object, �
γ

αβ, introduced by (14.26)1 coincides with that of (14.19). Indeed,
from (14.19) and (14.3) we have

�
γ

αβ =
1

2
aγ δ

⎛
⎝�

(
r i
αriδ

)

�ξβ
+

�
(

r i
βriδ

)

�ξα
− �

(
r i
αriβ

)

�ξ δ

⎞
⎠ =

= 1

2
aγ δ

(
r i
,αβriδ + riαr i

,βδ + r i
,βαriδ + riβr i

,δα − r i
,αδriβ − riαr i

,βδ

)
.

In the brackets the first and the third terms are equal while the second and last terms
cancel out as well as the fourth and fifth terms, and we arrive at (14.26)1.

The object bαβ (14.26)2 can be written in terms of the covariant derivatives of the
tangent vectors,

r i
α|β = r i

α,β − �λ
αβr i

λ or r i
α;β = r i

α,β − �̊λ
αβr i

λ. (14.27)

Since, according to (14.8) and (14.27),

r i
α|βni = r i

α;βni = r i
α,βni ,

we have

bαβ = r i
α,βni = r i

α|βni = r i
α;βni . (14.28)

Formula (14.28) shows that bαβ form the components of a surface tensor. They are
called the components of the second quadratic form of the surface. Tensor bαβ is
symmetric, because r i

α,β = r i
,αβ = r i

,βα. Using (14.8), the definition of bαβ (14.26)2

can also be written as

bαβ = −r i
αni,β . (14.29)

The derivatives of the tangent and normal vectors can be expressed in terms of
bαβ. To obtain such relations, we note that the three-dimensional vectors, r i

α|β, are
directed along the normal vector to the surface: contracting (14.27) with the tangent
vectors, riγ ,

riγ r i
α|β = riγ r i

α,β − aγ λ�λ
αβ, (14.30)

and using (14.26)1, we see that the right hand side of (14.30) is zero. The magnitudes
of vectors, r i

α|β, are determined by (14.28). Hence, for the derivatives of the tangent
vectors, we obtain

r i
α|β = r i

β|α = r i
|αβ = bαβni . (14.31)

To find the derivatives of the normal vector, we note the relation

ni n
i
,α = 0, (14.32)
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which is obtained by differentiation of the equation, ni ni = 1, with respect to the
surface coordinates. Equation (14.32) means that the three-dimensional vectors, ni

,α,

are tangent to the surface, and hence can be presented as a sum of tangent vectors.
The coefficients of the sum can be obtained by projecting ni

,α on r i
β. From (14.29)

these coefficients are −bαβ. Finally,

ni
,α = −bβ

αr i
β. (14.33)

Equation (14.33) can also be taken as the initial definition of the second quadratic
form. It shows that bβ

α are the measures of the rate of the normal vector when the
point is moving over the surface.

The key role of the two quadratic forms of the surface, aαβ and bαβ, in the sur-
face geometry is explained by the following statement: each surface is determined
uniquely (up to a rigid motion) by its quadratic forms, aαβ and bαβ .

Curvatures. Consider the eigenvectors of the second quadratic form, i.e. the vectors
tα which are solutions of a system of linear equations,

bαβ tβ = κaαβ tβ. (14.34)

In a generic case, there are two eigenvectors, tα
1 and tα

2 , and two corresponding
eigenvalues, κ1 and κ2. The vectors tα

1 and tα
2 determine the directions of principal

curvature. The corresponding eigenvalues are called the principle curvatures, and
their inverse, R1 = 1/κ1 and R2 = 1/κ2, radii of curvature. The lines tangent to
the eigenvectors are called curvature lines. There is a special coordinate system the
coordinate lines of which are the curvature lines. The coordinates of this system are
called principal coordinates.

The two invariants of the second quadratic form,

H = 1

2
bα

α =
1

2

(
1

R1
+ 1

R2

)
and K = det

∥∥bαβ

∥∥
det

∥∥aαβ

∥∥ =
1

R1 R2
,

are called the mean and the Gaussian curvature, respectively.

Compatibility conditions. The tensors, aαβ and bαβ , are not independent because
their six components are expressed in terms of three functions, r i (ξα) . Therefore,
there must be some compatibility relations linking these tensors. These relations are
the Codazzi equations:

bαβ|γ − bαγ |β = 0, (14.35)

and the Gauss equations:

Rσαβγ = bσβbαγ − bσγ bαβ, (14.36)

where Rσαβγ is the curvature tensor of the surface:

Rσαβγ = 1

2

(
�aσγ

�ξα�ξβ
+ �aαβ

�ξσ �ξγ
− �aσβ

�ξα�ξγ
− �aαγ

�ξσ �ξβ

)
.
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Fig. 14.2 Notation to the divergence theorem

The compatibility equations (14.35) and (14.36) are the equations containing only
aαβ , bαβ and their derivatives. Due to antisymmetry of (14.35) with respect to β,

γ and (14.36) with respect to σ, α and β, γ, there are two independent equations
(14.35) and one independent equation (14.36). So, there are three constraints for the
six components of the two quadratic forms of the surface.

Divergence theorem. Let →v be a vector field tangent to the surface �. Denote its
surface components by vα . For the surface divergence, vα

|α the following divergence
theorem holds:

∫

�

vα
|αdω =

∫

��

vαναds, (14.37)

where →ν is the unit tangent vector to � which is normal to the tangent vector →τ of
the curve �� (Fig. 14.2), να are its surface components, s the arc length along ��.

The analytical origin of (14.37) is the formula following from (14.22)

vα
|α =

�vα

�ξα
+ �α

αβvβ = 1√
a

�
(√

avα
)

�ξα
, (14.38)

which yields

vα
|αdω = �

(√
avα

)

�ξα
dξ 1dξ 2.

Therefore, the covariant formula (14.37) is equivalent to the usual statement for an
integral of divergence over a two-dimensional region.

14.2 Classical Shell Theory: Phenomenological Approach

It is natural to model the position of a thin elastic shell by a surface. Then the
key kinematic characteristics of the elastic shell are the functions xi = r i (ξα, t),
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defining the position of the surface at the instant t . To obtain the dynamical equa-
tions of the shell theory we have to construct the action functional. Elastic energy
must depend on the functions r i (ξα, t) in a very special way because energy does
not feel rigid motion. Therefore, we forewarn the construction of the action func-
tional by the description of the surface deformation measures.

Strain measures. As was mentioned, any surface, �, up to its rigid motion, is de-
termined by the first and second quadratic forms of the surface, aαβ and bαβ. Their
values in the initial state, �̊, are denoted by åαβ and b̊αβ . Recall that

b̊αβ = r̊ k
α;β n̊k, n̊i

,α = −b̊β
α r̊ i

β. (14.39)

The juggling of indices of b̊αβ and other tensors in the initial state is done by means
of the metric tensor of the initial state, åαβ. Juggling of indices in the deformed state,
if not otherwise stated, is done by means of the current metric tensor, aαβ .

The tensors

Aαβ = 1

2

(
aαβ − åαβ

)
and Bαβ = bαβ − b̊αβ (14.40)

characterize the surface deformation and can serve as the strain measures of the
surface.

The tensor Aαβ is a measure of elongations of the surface; if Aαβ = 0, the dis-
tances between any two points of the surface measured along the surface do not
change. The tensor Bαβ is a measure of bending.

To appreciate better the role of Bαβ as a bending measure, note that a plane can
be deformed in a cylindrical surface without change of the lengths of any line on the
surface. For such deformation, Aαβ = 0. The only indicator of the deformation oc-
curred is the tensor Bαβ. Deformations for which Aαβ = 0 are called pure bending.
Juggling the indices in Aαβ and Bαβ and other strain measures, encountered further,
is done by means of the metric tensor of the initial state, åαβ .

Energy. It is natural to assume that kinetic and free energies of the shell possess the
surface densities, i.e. they can be written as the surface integrals

K =
∫

�̊

K dω̊, F =
∫

�̊

�dω̊,

dω̊ being an area element of �̊.
In classical shell theory kinetic and free energies are considered as functionals of

the position vector of the surface, r i (ξα, t) . One assumes that

K = 1

2
ρ̄r i

,t ri,t ,
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ρ̄ being the surface mass density, while � is a function of the strain and bending
measures:

� = �
(

Aαβ, Bαβ

)
.

Variational principle. First let no external forces act on the shell. Then the action
functional for an elastic shell is

I
(
r i (ξα, t)

) =
t1∫

t0

∫

�̊

(
1

2
ρ̄r i

,t ri,t −�
(

Aαβ, Bαβ

))
dω̊dt. (14.41)

The true motion of the shell is a stationary point of the functional (14.41) on a set
of all functions r i (ξα, t) with given initial and final values,

r i (ξα, t0) = r̊ i (ξα) , r i (ξα, t1) = 1
r i (ξα) ,

and, possibly, some boundary values. Consider a typical setting of the kinematic
boundary constraints.

Kinematic boundary conditions. If the dependence of � on Aαβ and Bαβ is not de-
generated, one can show that free energy, F , “feels” (see Sect. 5.5) the change of the
values of r i and ni at the boundary. Therefore, the kinematic boundary conditions
include an assigning of r i and ni on a part of the boundary, �̊u, of the surface �̊:

r i = r i
(b), ni = ni

(b) on �̊u . (14.42)

The index u in �̊u emphasizes that on �̊u the displacements of the shell,

ui ≡ r i (ξα, t)− r i (ξα, t0),

are known.
Among the six boundary conditions (14.42), only four conditions are indepen-

dent. Indeed, let σ be a parameter on the curve �̊u, and ξα = ξα (σ ) are the para-
metric equations of �̊u . Then equation (14.42)1 can be written as

r i (t, ξα (σ )) = r i
(b) (t, σ ) .

It determines a space curve, �u, given by the parametric equation

xi = r i
(b) (t, σ ) .

The normal vector to the surface, ni , must be orthogonal to �u, and therefore the
prescribed boundary values of the normal vector, ni

(b) (t, σ ) , must obey the two
equations
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ni(b)

�r i
(b) (t, σ )

�σ
= 0, ni

(b)ni(b) = 1,

which leave only one independent constraint (14.42)2.

Variations of characteristics of the surface. To derive the governing equations of
the shell theory we first need to find the variations of the geometrical characteris-
tics of the deformed surface. Let functions r i (ξα, t) acquire infinitesimally small
increments, δr i . Varying (14.3), we get3

δaαβ = riα
(
δr i

)
,β
+ (α ↔ β) . (14.43)

It is taken into account that δr i
α =

(
δr i

)
,α

due to the permutability of the operators
δ and �/�ξα .

If the projections of the vector, δr i , on the normal and the tangent vectors are
used,

δr i = δrαr i
α + δr ni ,

then (14.43) can be written as4

δaαβ = riα
(
δrγ r i

γ + δrni
)
,β
+ (α ↔ β) =

= (
riα (δrγ )|β r i

γ + δrγ riαr i
γ |β + δr,βriαni + δrriαni

,β

)+ (α ↔ β) .

(14.44)

In the brackets, the first term is equal to aαγ δrγ

|β due to (14.3); since the covari-
ant derivatives of the metric tensor are zeros, it can also be written equal to δrα|β
where

δrα = aαγ δrγ = aαγ rγ

i δr i = riαδr i .

The second and the third terms are zero in accordance with (14.31) and (14.8). The
last term is equal to −bαβδr due to (14.33). Finally,

δaαβ = δrα|β + δrβ|α − 2bαβδr. (14.45)

3 Recall that the notation (α ↔ β) means the previous term in the equation with the indices α and
β replaced by β and α, respectively.
4 Since

(
δrγ r i

γ

)
,β

, for each i , is a surface scalar, it can be written in various ways:

(
δrγ r i

γ

)
,β
= (δrγ ),β r i

γ + δrγ
(
r i
γ

)
,β
=

= δrγ

|βr i
γ + δrγ r i

γ |β = δrγ

;βr i
γ + δrγ r i

γ ;β .

We use the second option, the covariant form of this equation, for the deformed state.
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The variation of the normal vector can be found by varying the equations

nir
i
α = 0, ni n

i = 1.

We have

r i
αδni = −niδr i

α, niδni = 0. (14.46)

Equations (14.46) define the projections of the vector δni on the tangent vectors and
the normal vector. The projection on the normal vector is zero. Consequently,

δni = −rα
i nk

(
δrk

)
,α

. (14.47)

Let us find δbαβ . Since in the Cartesian observer’s frame, bαβ ≡ nir i
,αβ, we have

δbαβ = ni
(
δr i

)
,αβ
+ r i

,αβδni .

Taking into account (14.47) and (14.26)1, we get

δbαβ = niδr i
α,β − r i

α,βrγ

i nkδrk
γ

= ni

(
δr i

α,β − �
γ

αβδr i
γ

)
= niδr i

α|β = niδr i
|αβ. (14.48)

From (14.48) and (14.43), the variations of the two deformation measures of the
surface are5

δAαβ = ri(αδr i
,β), (14.49)

δBαβ = niδr i
|αβ.

The system of equations. Everything is prepared now to proceed to the derivation
of the governing equations of shell dynamics.

In accordance with (14.49), the variation of the free energy F is

δF =
∫

�̊

(
��

�Aαβ

riαδr i
,β+

��

�Bαβ

niδr i
|αβ

)
dω̊. (14.50)

Since we have to integrate by parts, and the second term contains the covariant
derivatives in the deformed state, it is convenient to transform the integral (14.50) to
the integral over the deformed surface �. We note that the area elements of �̊ and
� are linked by a factor θ :

dω̊ = θdω, θ =
√

å/
√

a (14.51)

5 Recall that the parenthesis in indices mean symmetrization, i.e.

ri(αδr i
,β) =

1

2

(
riαδr i

,β + riβδr i
,α

)
.



14.2 Classical Shell Theory: Phenomenological Approach 603

This factor may be interpreted as the ratio of the surface mass densities in the de-
formed and undeformed states.

Introducing the notations

Sαβ = θ
�� (A, B)

�Aαβ

, Mαβ = −θ
�� (A, B)

�Bαβ

, (14.52)

we have

δF =
∫

�

(
Sαβr i

αδr i,β−Mαβniδr i
|αβ

)
dω. (14.53)

The tensors Sαβ and Mαβ are symmetric. The tensor Sαβ “works” on the surface
strains, while Mαβ “works” on the surface bending; therefore, they are called the
stress resultants and the stress moments, respectively.

For the variation of kinetic and free energies we have6

δ

t1∫

t0

Kdt =
t1∫

t0

∫

�̊

ρ̄ri,t
�δr i

�t
dω̊dt = −

t1∫

t0

∫

�̊

ρ̄ri,t tδr i dω̊dt =

= −
t1∫

t0

∫

�

ρ̄θri,t tδr i dωdt,

δ

t1∫

t0

Fdt =
t1∫

t0

∫

�

(
Sαβr i

αδr i
,β − Mαβniδr i

|αβ

)
dωdt =

=
t1∫

t0

∫

�

(
Sαβr i

β +
(
Mαβni

)
|β
)

δri,αdωdt −

−
t1∫

t0

∫

��

Mαβniνβδr i
|αdsdt

= −
t1∫

t0

∫

�

(
Sαβr i

β +
(
Mαβni

)
|β
)
|α

δri dωdt +

+
t1∫

t0

∫

��

((
Sαβr i

β +
(
Mαβni

)
|β
)

ναδri − Mαβniνβδr i
|α
)

dsdt.

6 Here we use a covariant form of the divergence theorem (14.37) for a surface �.
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Taking first the variations δr i and δr i
,α equal to zero at the boundary, we obtain

from the condition, δ I = 0, Euler equations,

ρ̄θ
�2r i (t, ξα)

�t2
=
(

Sαβr i
β +

(
Mαβni

)
|β
)
|α

. (14.54)

Equations (14.54), along with the constitutive equations for Sαβ and Mαβ (14.52)
and the kinematical relations (14.3), (14.7), (14.29) and (14.40), form a closed sys-
tem of equations for three functions, r i (t, ξα).

Boundary conditions. In the case of non-zero variations on �� the following equal-
ity is to be satisfied at any instant:

∫

��

[(
Sαβr i

α +
(
Mαβni

)
|α
)

δri − Mαβniδri,α

]
νβds = 0. (14.55)

The integral (14.55) contains the variations δr i and their derivatives δr i
,α . They

are not independent: the derivative of δr i along the contour is determined completely
by the values of δr i on this contour. To obtain the boundary conditions from (14.55),
first we have to rewrite (14.55) in the form containing only independent variations.
To this end we break down the two-dimensional Kronecker’s delta, δβ

α , in terms of
the tangent vector, τα, and the normal vector, να,

δβ
α = τατβ + νανβ,

and make the corresponding decomposition of the derivatives,

δr i
,α = δr i

,βδβ
α = δr i

,βτ βτα + δr i
,βνβνα (14.56)

If ξβ = ξβ (s) are the parametric equations of the contour �, s being the arc
length of �, then

τβ = dξβ (s)

ds
,

and the first term of (14.56) can be written as

δr i
,βτ βτα = τα

dδr i

ds
.

The second term in (14.56) contains the normal derivative of δr i which we denote
by dδr i/dν :

dδr i

dν
≡ δr i

,βνβ.
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The integral (14.55) takes the form

∫

��

[(
Sαβr i

α +
(
Mαβni

)
|α
)

δri − Mαβταni
dδr i

ds
− Mαβναni

dδr i

dν

]
νβds = 0.

Obviously, δr i and ni dδr i/dν are independent. Integrating the second term by
parts we obtain the equation containing only independent variations:

∫

��

[((
Sαβr i

α +
(
Mαβni

)
|α
)

νβ + d

ds

(
Mαβτανβni

))
δr i − Mαβνανβni

dδr i

dν

]
ds = 0.

(14.57)

Variations δr i and ni dδr i/dν are zero at �̊u due to (14.42). On the other part
of the boundary, �̊ f = �̊ − �̊u, the arbitrariness of δri and ni dδr i/dν, yields the
boundary conditions on �̊ f :

(
Sαβr i

α +
(
Mαβni

)
|α
)

νβ + d

ds

(
Mαβτανβni

) = 0, Mαβνaνβ = 0. (14.58)

These boundary conditions are quite unusual: in contrast to other problems we
have dealt with in continuum mechanics, they contain the derivatives of normal
vector to the boundary, and, thus, curvatures of the boundary. This is caused by the
presence of the second derivatives of position vector in energy density and occurs
for both plates and shells. The issue of the proper boundary conditions for plates
was a long-standing problem in the nineteenth century. It was solved by Kirchhoff.
He was the first to apply the energy method to the derivation of the equations and
the boundary conditions of plate theory and make the transformation from (14.55),
(14.56) and (14.57) in case of plates. Interestingly, it took more than half a cen-
tury to understand how to get Kirchhoff’s boundary conditions from the differential
equations of linear elasticity.

External forces. Let the external forces now be non-zero. Denote by Qi and Ri

the forces working on the variations of the positions of the points of � and ��,

respectively, and by M the “generalized force” working on the rotations of the fibers
normal to ��. Then the variation of the action functional (14.41) must be equated
to the negative work of the external forces on the shell displacements,

−
t1∫

t0

⎡
⎣
∫

�

Qiδr i dω +
∫

��

(
Riδr i + Mni

dδr i

dν

)
ds

⎤
⎦ dt. (14.59)

This yields the corresponding contributions to the momentum equations

ρ̄θ
�2r i (t, ξα)

�t2
=
(

Sαβr i
α +

(
Mαβni

)
|β
)
+ Qi , (14.60)
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and the boundary conditions

(
Sαβr i

α +
(
Mαβni

)
|α
)

νβ + d

ds

(
Mαβταnβni

) = Ri ,

Mαβνανβ = M. (14.61)

The governing system of equations projected to the tangent plane and the
normal vector. It is often convenient to write down the “intrinsic” system of equa-
tions projected to the tangent directions and the normal vector. According to (14.33),

Sαβr i
α +

(
Mαβni

)
|α =

(
Sαβ − bα

λ Mλβ
)

r i
α + Mαβ

|αni .

It is convenient to introduce a non-symmetric tensor, T αβ, as

T αβ = Sαβ − bα
λ Mλβ. (14.62)

Projecting equations (14.60) on the tangent vectors and the normal vector, we have

T αβ

|β − bα
λ Mλβ

|β + Qα = ρ̄θrα
i

�2r i

�t2
,

Mαβ

|αβ + bαβ T αβ + Q = ρ̄θni
�2r i

�t2
. (14.63)

Here the projections of the external forces are denoted by

Qα = rα
i Qi , Q = ni Qi , Rα = Rirα

i , R = Ri ni .

The projections of the boundary conditions are

T αβνβ − Mγβτγ νβτλbα
λ = Rα,

νβ Mαβ

|α +
d

ds

(
Mαβτανβ

) = R,

Mαβνaνβ = M. (14.64)

If the function � is known, (14.63) and (14.64) augmented by the constitutive
equations (14.52), and the initial conditions, form a closed system of equations of
shell dynamics.

Physically linear theory. As in elasticity theory, by physically linear one means a
simplification of general theory based on smallness of strains. The strains in shell
theory are characterized by two dimensionless parameters:

εA = max
�

(
Aαβ Aαβ

)1/2
and εB = h max

�

(
Bαβ Bαβ

)1/2
. (14.65)
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In physically linear shell theory one neglects the contributions on the order of εA

and εB with respect to unity. This considerably simplifies the system of equations.
First of all, one can replace the covariant differentiation over � by the covariant
differentiation over �̊. Indeed, there is a simply verified identity:

�
γ

αβ − �̊
γ

αβ = aγ σ
(

Aασ ;β + Aβσ ;α − Aαβ;σ
)
. (14.66)

Therefore, �
γ

αβ − �̊
γ

αβ ∼ εA/ l, where l is the characteristic length of the stress state

on �,7 and replacement of �
γ

αβ by �̊
γ

αβ corresponds to neglecting the terms on the
order of εA in comparison with unity. Second, θ can be replaced by unity. Third,
bαβ can be replaced by b̊αβ when they enter in the products like bα

λ Mλβ or T αβbαβ.

Finally, the governing equations take the form

T αβ

;β − b̊α
λ Mλβ

;β + Qα = ρ̄rα
i

�2r i

�t2
,

Mαβ

;αβ + b̊αβ T αβ + Q = ρ̄ni
�2r i

�t2
, (14.67)

T αβ = Sαβ − b̊α
λ Mλβ.

In the boundary conditions vectors τα and να may be replaced by τ̊ α and ν̊α ,
respectively.8 Indeed, let ξα = ξα (s̊) be the equation for the contour �̊, s̊ being
the arc lengths on �̊. Then τ̊ α = dξα/ds̊. Since the contour �̊ does not move over
particles, the vector τα is proportional to dξα/ds̊. The proportionality coefficient,
ds/ds̊, differs from unity by a small term on the order of εA. Consequently, τα =
τ̊ a + O (εA). The vectors να and ν̊a are defined by the equations aαβνανβ = 1,
aαβνατβ = 0, and åαβ ν̊α = 1, åαβ ν̊ατ̊ β = 0. Therefore, να = ν̊α + 0 (εA).

So the boundary conditions are

T αβ ν̊β − Mγβ τ̊γ ν̊β τ̊ λb̊α
λ = Rα,

ν̊β Mαβ
;α −

d

ds̊

(
Mαβ τ̊αν̊β

) = R, (14.68)

Mαβ ν̊αν̊β = M.

In physically linear theory energy is a quadratic form of Aαβ and Bαβ . Accord-
ingly, Sαβ and Mαβ are linear functions of Aαβ and Bαβ. We consider these relations
further.

Geometrically linear theory. Another case where considerable simplifications are
possible is the case of small displacements, ui = r i − r̊ i . Then, setting δr i = ui in
(14.49), we get

7 About the characteristic length (see Sect. 5.11); a complete definition will be given below.
8 Note that the three-dimensional vectors r i

ατα and r i
ανα may differ considerably from r̊ i

ατ̊ α and
r̊ i
αν̊α because r i

α − r̊ i
α may be not small even for small strains.
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Aαβ = r̊ i
(αui,β), (14.69)

Bαβ = n̊i u
i
;αβ.

As in three-dimensional elasticity, even for small displacements, theory can be,
in principle, physically nonlinear, i.e. the dependence of Sαβ and Mαβ on the strain
measures is nonlinear.

Equations (14.63) and (14.64) can be simplified due to smallness of displace-
ments: the acceleration terms rα

i �2r i/�t2 and ni �
2r i/�t2 can be replaced by �2uα/�t2

and �2u/�t2, respectively, with uα and u being the projection of the displacements
to the tangent plane and the normal vector of the initial state, uα ≡ r̊α

i ui , u ≡ n̊i ui ,
and covariant derivatives over � may be replaced by covariant derivatives over �̊.
We obtain the governing equations

ρ̄
�2uα

�t2
= T αβ

;β − b̊α
λ Mλβ

;β + Qα,

ρ̄
�2uα

�t2
= Mαβ

;αβ − b̊αβ T αβ + Q, (14.70)

T αβ = Sαβ − b̊α
λ Mλβ,

and the boundary conditions

T αβ ν̊β − Mγβ τ̊γ ν̊β τ̊ λb̊α
λ = Rα,

ν̊β Mαβ
;α −

d

dξ

(
Mαβ τ̊αν̊β

) = R, (14.71)

Mαβ ν̊αν̊β = M.

In linear shell theory equations (14.70) and (14.71) are closed by the linear re-
lations between Sαβ, Mαβ and Aαβ , Bαβ and the linear relations between the defor-
mation measures and displacements (14.69).

Various bending measures. Instead of the bending measure Bαβ one can use an-
other bending measure ραβ which is a function of Bαβ and Aαβ as long as the couple
(Aαβ, Bαβ) is in one-to-one correspondence with the couple (Aαβ, ραβ). If the energy
density � is given as a function of Aαβ and Bαβ, it can be computed in terms of Aαβ

and ραβ, and we get another form of the theory. In linear shell theory we have an
additional opportunity to drop small terms of order εA and εB in comparison to
unity and, thus, get a different set of equations which still have the same accuracy.
For example, let � be a quadratic function, which we write in a symbolic form:

1

μh
� = A2 + h2 B2,

with μ being the characteristic value of the shear modulus. If we take

ραβ = Bαβ − b̊λ
(α Aλβ),


