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Preamble

Effective and efficient modelling of infinite media is important to the production of
accurate and useful solutions for many scientific and engineering problems involv-
ing infinite domains, such as earthquake wave propagation within the upper crust of
the Earth in the fields of geophysics and seismology, dynamic structure–foundation
interaction in the fields of geotechnical, civil and dam engineering, transient pore-
fluid flow, heat transfer and mass transport within the interior of the Earth in the
fields of geoscience and geoenvironmental engineering, to name only a few. Such
an effective and efficient modelling provides useful analytical and numerical tools
for simulating, both accurately and efficiently, the effect of the far field of a system
on the near field of the system so that computational resources can be concentrated
on the simulation aspects of multiple processes, multiple scales, complicated geo-
logical and geometrical conditions for the near field of the system. Towards this
end, dynamic and transient infinite elements have been developed during the past
few decades.

This monograph aims to provide a state-of-the-art report on the theory and appli-
cation of dynamic and transient infinite elements for simulating the far fields of
infinite domains involved in many scientific and engineering problems, based on
the author’s own work during the last two decades. For this purpose, while the the-
oretical aspects of either dynamic infinite elements or transient infinite elements are
systematically presented, the related application examples are immediately followed
to illustrate the usefulness and applicability of these infinite elements for simulat-
ing a wide range of dynamic and transient problems involving infinite domains.
To broaden the readership of this monograph, common mathematical notations are
used to derive the formulations of both dynamic and transient infinite elements. This
enables this monograph to be used either as a useful textbook for postgraduate stu-
dents or as a valuable reference book for computational geoscientists, geotechnical
engineers, civil engineers and applied mathematicians. In addition, each chapter is
written independently of the remainder of the monograph so that readers may read
the chapters of interest separately.

In this monograph, the coupled computational method of finite elements and
dynamic infinite elements is used to solve wave propagation problems in infinite
domains. For a given wave propagation problem, the near field of the problem
is simulated using finite elements so that complicated geometries and complex
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vi Preamble

material properties can be considered in the coupled computational method. The
far field of the problem is simulated using dynamic infinite elements so that waves
can be propagated from the near field to the far field without causing spurious
reflection and refraction at the interface between finite elements and dynamic infi-
nite elements in the coupled computational model. By taking advantages of both
finite elements and dynamic infinite elements, the coupled computational method
of finite elements and dynamic infinite elements provides a powerful simulation
tool for dealing with a wide range of practical problems, such as the distributions
of free-field motion during earthquakes, the seismic responses of dam–reservoir
water–sediment–foundation systems and the dynamic analyses of civil structure–
foundation interactions. To simulate transient pore-fluid flow, heat transfer and mass
transport problems in infinite domains, the coupled computational method of finite
elements and transient infinite elements is also presented. As an application exam-
ple, this coupled method has been used to investigate the effects of several key
factors on contaminant transport processes in fractured porous media of infinite
domains. The related theoretical developments and application results are briefly
described as follows: (1) Owing to the characteristics of propagating waves from the
near field to the far field of a system, the wave propagation function of a dynamic
infinite element plays a key role in the formulation of the element. Since the wave
propagation function is explicitly dependent on frequency, the coupled computa-
tional method of finite elements and dynamic infinite elements can be directly
used to solve linear wave propagation problems in the frequency domain, while
it can be only used to deal with nonlinear wave propagation problems in the hybrid
frequency–time domain. (2) For a two-dimensional dynamic infinite element, the
corresponding wave propagation function has two independent wavenumbers so that
it can be used to simulate explicitly both P-wave and SV-wave propagation in the far
field of a system. Similarly, for a three-dimensional dynamic infinite element, the
corresponding wave propagation function has three independent wavenumbers so
that it is capable of simulating simultaneously P-wave, SV-wave and R-wave prop-
agation in the far field of a system. (3) The coupled computational model of finite
elements and dynamic infinite elements can be used to solve both wave scattering
and wave radiation problems in infinite domains. When dealing with wave scatter-
ing problems, a wave input procedure, which can be easily applied to the coupled
computational model of finite elements and dynamic infinite elements, is presented
to transform an incident wave into equivalent nodal loads at a wave input boundary
located within the coupled computational model. (4) For the application of dynamic
infinite elements to dam engineering problems, the coupled computational method
of two-dimensional finite elements and dynamic infinite elements has been used to
simulate the dynamic responses of both a gravity dam–water–sediment–foundation
system and an embankment dam–water–sediment–foundation system. For a gravity
dam, the related numerical results have indicated that the reservoir bottom sedi-
ment has a remarkable effect on the dynamic response of the dam, while in the
case of an embankment dam, the corresponding results have demonstrated that both
the type and the location of impervious members within the dam have significant
influences on the dynamic response of the embankment dam. (5) As an application
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example of simulating wave scattering problems in the fields of geophysics and
seismology, the coupled computational method of two-dimensional finite elements
and dynamic infinite elements has been used to investigate the effects of canyon
topographical and geological conditions on the distributions of free-field motion
during earthquakes. The related numerical results have demonstrated that both topo-
graphical and geological conditions have significant influences on seismic accelera-
tion distributions along the surface of a canyon, implying that structures located on
softer soils may be subjected to stronger seismic loads than those located on stiffer
rocks. (6) The coupled computational model of three-dimensional finite elements
and dynamic infinite elements has been used to solve dynamic framed structure–
raft foundation–underlying medium interaction problems in the field of civil engi-
neering. The related numerical results have demonstrated that since the radiation
damping of an underlying medium plays a predominant role in determining the total
damping of the underlying medium, the dynamic response of a three-dimensional
framed structure on a layered medium is much stronger than that on a homogeneous
medium, as a result of wave reflection and refraction within the soft layer. (7) To
construct transient infinite elements for simulating transient pore-fluid flow and heat
transfer problems in fluid-saturated porous media of infinite domains, the hydraulic
head distribution and heat transfer functions are used to derive the formulations of
the transient infinite elements. Since these functions are explicitly dependent on
time, the coupled computational method of finite elements and transient infinite ele-
ments can be straightforwardly employed to solve transient pore-fluid flow and heat
transfer problems in the time domain. (8) Based on the mass transport function con-
cept, the formulations of transient infinite elements are derived for simulating the
far fields of mass transport problems in fractured porous media of infinite domains.
With the use of the double porosity continuum approach, the porous block and fis-
sured network in a fractured porous medium can be treated as an equivalent medium
consisting of two overlapping continua. This enables the coupled computational
method of finite elements and transient infinite elements to be used for investigating
the effects of various key factors on contaminant transport processes in fractured
porous media of infinite domains. The related numerical results have demonstrated
that the leakage between the porous block and the fissure network, the porosity ratio
of the fissured network to the porous block, pore-fluid advection and solute disper-
sion have significant effects on contaminant concentration distributions in fractured
porous media of infinite domains.

November 28, 2008 Chongbin Zhao
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Nomenclature

The following symbols are commonly used with the attached definitions, unless
otherwise specified in the monograph.

A area of a finite element
C contaminant concentration
{C} contaminant concentration vector
C1 contaminant concentration in the porous block
C2 contaminant concentration in the fissured network
cp specific heat of pore-fluid
D dispersion coefficient
g acceleration due to gravity
h hydraulic head
H reference length
K hydraulic conductivity
L length of a problem domain
M mapping function
N shape function
[N] shape function matrix
p pressure
P nodal force
{P} nodal force vector
P0 concentrated force
Pλ nodal force on the wave input boundary
S boundary length of a finite element
T temperature
{T} temperature vector
t temporal variable
u displacement in the x direction
v displacement in the y direction
V volume of a finite element
w displacement in the z direction
x, y, z spatial coordinates in a global coordinate system

xv



xvi Nomenclature

λ thermal conductivity
λe0 reference thermal conductivity in the horizontal direction
φ porosity
ψ vector potential function
ρ density
ν Poisson’s ratio
β stress increase factor
σ normal stress
τ shear stress
ω circular frequency
ξ , η, ζ spatial coordinates in a local coordinate system
θ wave incident angle
ηd hysteretic damping coefficient
χ transmissive coefficient between the porous block and the fissured

network in a fractured porous medium

Subscripts

f pertaining to pore-fluid
0 pertaining to reference quantities
P pertaining to P-wave
SV pertaining to SV-wave

Superscripts

e pertaining to quantities in a finite element level
∗ pertaining to dimensionless quantities
s pertaining to solid matrix
T pertaining to the transpose of a matrix



Chapter 1
Introduction

Effective and efficient modelling of infinite media is important for the production of
accurate and useful solutions for many scientific and engineering problems involv-
ing infinite domains (Bettess 1977, 1980; Chow and Smith 1981; Medina and Taylor
1983; Zhang and Zhao 1987; Zhao et al. 1989; Zhao and Valliappan 1993a, b, c, d;
Astley 1996, 1998; Yang et al. 1996; Yang and Huang 2001; Yun et al. 2000, 2007;
Wang et al. 2006). Some typical examples involving infinite domains are as follows:
(1) earthquake wave propagation within the upper crust of the Earth in the fields
of geophysics and seismology; (2) dynamic structure–foundation interaction in the
fields of geotechnical, civil and dam engineering; and (3) transient pore-fluid flow,
heat transfer and mass transport within the interior of the Earth in the fields of geo-
science and geoenvironmental engineering. Although the solid Earth is viewed as a
bounded domain at the terrestrial scale, it can be treated as an unbounded domain at
the human scale. For instance, in the case of predicting possible property damages
caused by an earthquake, only a limited region around the epicentre is of interest
because the earthquake wave energy is significantly reduced as the distance from
the epicentre is increased. Compared with the region of interest around an epicen-
tre, which is called the near field or the interior domain of a system, the outside
region, referred to as the far field or the exterior domain of the system, is large
enough to be treated as an infinite domain, from the mathematical point of view.
Similarly, the sizes of engineering structures such as civil buildings, dams, embank-
ments, retaining walls and nuclear reactors are very small, compared with those of
their foundations. Since only the response of a structure and its surrounding founda-
tion is of interest, from the structural design point of view, computational resources
should be concentrated on the analysis of the structure and the near field of the
foundation.

In terms of simulating the near fields of systems involving infinite domains, the
finite element method provides a very powerful tool in the sense that complicated
geometries and complex material distributions can be effectively and efficiently con-
sidered in a finite element model (Zienkiewicz 1997; Rao 1989). In particular, the
numerical adequacy and convergence properties of a finite element model were
extensively studied, so that many numerical simulation criteria have been estab-
lished. For example, when a finite element is used to simulate wave propagation
problems, there is a mesh size requirement criterion available, which states that in

1C. Zhao, Dynamic and Transient Infinite Elements, Advances in Geophysical and
Environmental Mechanics and Mathematics, DOI 10.1007/978-3-642-00846-7_1,
C© Springer-Verlag Berlin Heidelberg 2009



2 1 Introduction

order to ensure the numerical adequacy and convergence of a finite element model,
the size of a linear finite element should be less than one-eighth of the wavelength
to be simulated, whereas the size of a quadratic finite element should be less than
one-fourth of the wave length to be simulated in the finite element model. Simi-
larly, when a finite element is used to simulate transient mass transport problems,
the size of the element should satisfy the Courant number, so that the numerical
adequacy and convergence of a finite element model can be ensured (Zienkiewicz
1977; Zhao et al. 1994). For these reasons, the finite element mesh of the near field
can be designed on the basis of the related mesh criteria available, without a need to
conduct a mesh refinement study.

Since the finite element method can be used to simulate problems of finite
domains, it is necessary to develop useful numerical techniques for simulating the
far fields of problems when they are of infinite domains. Towards this end, static,
dynamic and transient infinite elements have been developed for simulating the far
fields of many scientific and engineering problems involving infinite domains during
the past few decades. Static infinite elements refer to the time-independent infinite
elements suitable for simulating the far fields of static problems. Dynamic infinite
elements refer to the frequency-dependent infinite elements suitable for simulating
the far fields of dynamic and wave propagation problems, while transient infinite
elements refer to the time-dependent infinite elements suitable for simulating the
far fields of transient pore-fluid flow, heat transfer and mass transport problems.
On the other hand, for most scientific and engineering problems involving infinite
domains, the near field of a problem can be appropriately determined so that the
nonlinear behaviour of the problem can be simulated by finite elements. As a result,
for the sake of developing dynamic and transient infinite elements, linear dynamic
elasticity (in certain cases including linear visco-elasticity) is used to represent the
mechanical behaviour of the far field, while linearized ground water flow and diffu-
sive mass transport equations are used to approximately represent the behaviours of
the corresponding far fields.

For the numerical simulation of an infinite domain, a primitive and very simple
method, in which the infinite domain was approximately truncated as a large-enough
finite domain, was widely used at the early stage of the finite element analysis. The
major disadvantages in using this primitive method are as follows: (1) the simu-
lation of a large-enough domain leads to a significant increase in computational
resources; (2) the boundary conditions of a problem at infinity cannot be rigorously
satisfied. For instance, stresses and displacements attenuating zero at infinity for a
static problem and the wave radiation condition in the far field for a dynamic prob-
lem have to be violated in the numerical analysis; (3) stretching a fixed number of
finite elements to model a vast domain can result in a severe loss of solution accu-
racy for static problems, while it results in spurious solutions for dynamic problems
because the element size requirement for appropriately simulating dynamic prob-
lems cannot be satisfied in the numerical simulation; (4) for transient heat transfer
and mass transport problems, the use of artificially truncated boundaries can cause
unexpected numerical reflections back into the near field, where the solutions are
usually of great interest to the analyst, of a system.
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To overcome the above-mentioned disadvantages, infinite elements have been
developed to simulate, both effectively and efficiently, the physical and mechanical
effects of the far field of a system on the near field of the system. In this respect,
Ungless (1973) presented the static infinite element concept for simulating infinite
domains of static problems. This concept attracted considerable research on the
development and application of static infinite elements during both the 1970s and
the 1980s (Bettess 1977, 1980, 1992; Beer and Meek 1981; Booker and Small 1981;
Zhao et al. 1986). In the early 1980s, Chow and Smith (1981) extended the static
infinite element concept to the simulation of infinite domains for dynamic problems.
Owing to the wave propagation characteristics associated with dynamic problems,
a large amount of research has been contributed to the development and application
of dynamic infinite elements for simulating the far-field effects of infinite domains
since the 1980s (Medina and Taylor 1983; Zhang and Zhao 1987; Zhao et al. 1989;
Zhao and Valliappan 1993a, b, c, d; Astley 1996, 1998; Yang et al. 1996; Yang and
Huang 2001; Yun et al. 2000, 2007; Wang et al. 2006). As most of the research con-
ducted in the development of dynamic infinite elements is associated with steady-
state wave propagation problems in the frequency domain, it remains desirable to
directly develop dynamic infinite elements in the time domain for simulating elas-
tic wave propagation problems involving infinite domains in the future. On the
other hand, for dealing with the numerical simulation of infinite domains associated
with transient pore-fluid flow, heat transfer and mass transport problems, Zhao and
Valliappan (1993e, f, 1994a) presented (time-dependent) transient infinite elements
in the time domain. Since the proposed transient infinite elements are time depen-
dent, they have been successfully used, with a combination of the conventional finite
element method, to solve a wide range of transient pore-fluid flow, heat transfer and
mass transport problems in fluid-saturated porous media of infinite domains (Zhao
et al. 1994b, c; Khalili et al. 1999a, b; Lai et al. 2002; Zhang et al. 2007).

The prediction of an earthquake and related property damages has been a hot
research topic in the fields of geology, geophysics and seismology. Although earth-
quakes cannot be predicted using the present day’s knowledge of geoscientists,
modern advances in computational simulation methods provide some useful tools
suitable for investigating the detailed dynamic processes and mechanisms associ-
ated with an earthquake. From the computational simulation point of view, an earth-
quake may involve the following two important stages: an inception stage and an
occurrence stage. At an inception stage, the deformation rate of crustal materials
(i.e. about a few centimetres per year) is so slow that the geological system related
to the inception of an earthquake can be treated as a quasi-static system, indicating
that the whole geological system can be simulated using the coupled computational
method of finite elements and static infinite elements. However, at the occurrence
stage of an earthquake, the resulting earthquake wave propagates at a speed of a few
thousand kilometres per second within the crust of the Earth, so that the geologi-
cal system related to the occurrence of an earthquake must be treated as a dynamic
system. In this situation, the whole geological system needs to be simulated using
the coupled computational method of finite elements and dynamic infinite elements.
To demonstrate the potential application of dynamic infinite elements in the fields of
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geophysics and seismology, the coupled computational method of two-dimensional
finite elements and dynamic infinite elements is used to investigate the effects of
canyon topographical and geological conditions on the distributions of free-field
motion during earthquakes. This is studied in the fourth chapter of this monograph.

As extensive studies on the dynamic response of concrete gravity and embank-
ment dams due to earthquake loadings have demonstrated, the dynamic response
of either a concrete gravity dam or an embankment dam is mainly affected by the
following factors: (1) the interaction between the dam and the impounded reser-
voir water (Chopra 1968; Chakarbarti and Chopra 1974; Liam-Finn et al. 1977);
(2) the compressibility of the impounded water (Chopra and Gupta 1982); (3) the
interaction between the dam and the foundation rock (Liam-Finn et al. 1977; Liam-
Finn and Varoglu 1972a, b,1975); (4) the materials at the reservoir bottom (Hall
and Copra 1982; Fenves and Chopra 1983, 1984, 1985; Lotfi et al. 1987; Medina
et al. 1990. Based on a substructure method, Chopra and his colleagues considered
the above factors and made some interesting conclusions on the dynamic response
of concrete gravity dams due to earthquake loadings (Chopra 1968; Chakarbarti
and Chopra 1974; Hall and Copra 1982; Fenves and Chopra 1983, 1984, 1985).
Owing to the limitations of the substructure method, the reservoir bottom mate-
rial was assumed to have zero thickness. However, in certain circumstances such as
concrete gravity and embankment dams built in the Yellow River valley, China, not
only materials at a reservoir bottom have considerable thicknesses, but sediments at
the reservoir bottom are also comprised of very soft clay materials. Although some
basic studies have been carried out to investigate how reservoir bottom sediments
affect the dynamic response of concrete gravity dams (Medina et al. 1990; Zhao
1994), further studies are needed to investigate the detailed dynamic mechanisms
associated with the effects of reservoir bottom sediments on the dynamic response
of concrete gravity and embankments dams. In view of this fact, the coupled compu-
tational method of finite and dynamic infinite elements is used for investigating the
effects of reservoir bottom sediments on the dynamic response of concrete gravity
and embankment dams. Since the coupled computational model keeps all advan-
tages of the conventional finite element method, complicated geometrical, physical
and mechanical properties of a dam–water–foundation system, including the reser-
voir bottom sediment effect, can be straightforwardly considered in the correspond-
ing numerical simulations.

Transient pore-fluid flow, heat transfer and mass transport in fluid-saturated
porous media of infinite domains are important phenomena in many scientific and
engineering fields. For example, in the field of exploration geoscience, pore-fluid
flow, heat transfer and mass transport from the interior of the Earth to the surface of
the Earth are three important physical processes to control ore body formation and
mineralization within the upper crust of the Earth. Owing to the increasing demand
for natural minerals and the possible exhaustion of existing mineral resources in
the foreseeable future, there has been an ever-increasing interest in the study of
key controlling processes associated with ore body formation and mineralization
within the upper crust of the Earth (Phillips 1991; Yeh and Tripathi 1991; Nield and
Bejan 1992; Steefel and Lasaga 1994; Raffensperger and Garven 1995; Schafer et al.
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1998a, b; Xu et al. 1999; Schaubs and Zhao 2002; Ord et al. 2002; Gow et al. 2002;
Zhao et al. 1997–2008). In the field of environmental engineering, carbon diox-
ide gas sequestration in the deep Earth is becoming a potential way to reduce the
greenhouse effect. Even in our daily lives, pore-fluid flow and contaminant transport
through fluid-saturated porous soils can be encountered almost everywhere. This
means that transient infinite elements can be used to solve a wide range of scientific
and engineering problems encountered in nature. To illustrate how transient infinite
elements are used to solve contaminant transport problems in the field of geoen-
vironmental engineering, the coupled computational method of finite elements and
transient infinite elements is used for investigating the effects of various key factors
on contaminant transport processes in fractured porous media of infinite domains.

The arrangements of the forthcoming parts of this monograph are as follows.
In Chap. 2, the formulations of two-dimensional dynamic infinite elements are
presented in detail. To use the coupled computational method of two-dimensional
finite elements and dynamic infinite elements for wave scattering problems in infi-
nite media, a wave input procedure is also presented in this chapter. In Chap. 3,
the coupled computational method of two-dimensional finite elements and dynamic
infinite elements is used to solve dynamic dam–water–sediment–foundation inter-
action problems in the fields of geotechnical and dam engineering. Both a concrete
gravity dam and an embankment dam are considered and some interesting results
are presented. In Chap. 4, the coupled computational method of two-dimensional
finite elements and dynamic infinite elements is used to simulate the spatial
distribution of free-field motion during an earthquake, which is a fundamental
scientific problem in the fields of geophysics and seismology. The effects of differ-
ent topographical and geological conditions on the spatial distributions of free-field
motion during earthquakes have been investigated. The detailed formulations asso-
ciated with three-dimensional dynamic infinite elements are presented in Chap. 5.
Through a combination of three-dimensional finite elements and dynamic infinite
elements, two benchmark problems have been used to verify the correctness and
usefulness of the proposed three-dimensional dynamic infinite elements for simu-
lating wave radiation problems in three-dimensional infinite media. Based on the
related formulations presented in Chap. 5, the coupled computational method of
three-dimensional finite elements and dynamic infinite elements is used in Chap. 6
to simulate dynamic structure–foundation interaction problems in the fields of
civil and structural engineering. For the purpose of understanding the dynamic
mechanisms of a structure–foundation interaction problem, a fundamental problem,
namely the vibration of a rigid plate foundation on a visco-elastic half-space, is
considered before the dynamic response of a three-dimensional framed structure–
raft foundation–underlying medium system is simulated by the coupled computa-
tional method of three-dimensional finite elements and dynamic infinite elements.
In Chap. 7, the detailed formulations of transient infinite elements are presented
for simulating pore-fluid flow and heat transfer problems in fluid-saturated porous
media of infinite domains, because such problems can be found in a broad range of
scientific and engineering fields. Two different approaches are employed to derive
the property matrices of these transient infinite elements. The detailed formulations
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associated with transient infinite elements for simulating mass transport problems
are presented in Chap. 8, when the coupled computational method of finite elements
and transient infinite elements is used to simulate contaminant transport problems in
fractured porous media of infinite domains. On the basis of the double porosity con-
cept, a fractured porous medium can be treated as an equivalent medium consisting
of two overlapping continua, namely a porous continuum and a fissured continuum.
Finally, some conclusions are given at the end of the monograph.



Chapter 2
Theory of Two-Dimensional Dynamic Infinite
Elements for Simulating Wave Propagation
Problems in Infinite Media

Numerical simulation of wave propagation problems in infinite media has attracted
significant attention in many scientific and engineering fields such as geophysics,
seismology, civil engineering and earthquake engineering. From a wave motion
point of view, structural vibration problems can be divided into two categories. One
is a wave radiation problem, or an interior domain problem, in which wave energy is
produced within the near field and then propagated into the far field of the problem
in various wave forms. Typical examples of this category are foundation vibration
problems as a result of trains passing on railways, machine vibration problems on
the foundations of buildings, impacting vibration problems on the ground surface
of an airport during airplanes landing, to name just a few. The other is a wave scat-
tering problem, or an exterior domain problem, in which wave energy is produced
in the far field and propagated into the near field of the problem. An earthquake
source or an explosion in the far field is a typical example of this category. Since
the formulations of dynamic infinite elements for simulating wave radiation prob-
lems are essentially the same as those for simulating wave scattering problems, the
focus of this chapter is on the formulation and derivation of dynamic infinite ele-
ments for simulating wave scattering problems. In this regard, a wave input method
needs to be developed for simulating incoming waves from the far field of an infinite
medium.

For the theoretical analysis of wave scattering problems in the fields of seismol-
ogy and geophysics, extensive work has been carried out over the past years. Aki
and Larner (1970) proposed a practical method using both the discrete wavenumber
representation for a wave field and the related Rayleigh assumption. In their method,
a scattered wave field is expressed as the superposition of plane waves, which
have unknown complex amplitudes and propagate in various directions. The total
motion of the system is obtained through integration over the horizontal wavenum-
ber. Under the assumption of horizontal periodicity of irregularity, the resulting inte-
gral can be replaced by an infinite series. Truncation of this series and application
of interface conditions of continuity for both stress and displacement lead to a set
of linear equations for the unknown complex amplitudes. This method has found
many applications in the fields of geophysics and seismology (Bard 1982; Geli et al.
1988). Trifunac (1973) and Wong and Trifunac (1974) presented analytical solutions
for SH-wave scattering problems around semi-circular and semi-elliptical valleys

7C. Zhao, Dynamic and Transient Infinite Elements, Advances in Geophysical and
Environmental Mechanics and Mathematics, DOI 10.1007/978-3-642-00846-7_2,
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using a Hankel function expansion. By means of boundary integral equations, Wong
(1982) improved the discrete wavenumber method (Aki and Larner 1970) and pre-
sented a general inverse method to solve the P-wave, SV-wave and Rayleigh wave
scattering problems for alluvial valleys of both semi-circular and semi-elliptical
shapes. Lee (1984) and Eshraghi and Dravinski (1989a, b) used a wave function
expansion method to solve wave scattering problems around either hemi-spherical
valleys or dipping layers, respectively. Sanchez-Sesma (1983) applied the boundary
integration method to the scattering of elastic waves around axisymmetric irregular-
ities. Kawase (1988) suggested a discrete wavenumber boundary element method,
in which the conventional boundary element method is used with Green’s functions
of discrete wavenumbers, for dealing with wave scattering problems. Khair et al.
(1989) introduced the hybrid method of finite and boundary elements for solv-
ing three-dimensional scattering problems of plane P-waves and SV-waves around
cylindrical valleys. Obviously, all methods mentioned above are mainly suitable for
dealing with linear, isotropic and homogeneous materials as a result of using half-
space elastic wave theory to describe earthquake excitations in these methods.

The finite element method (Zienkiewicz 1977) is one of the most powerful
numerical methods for solving complex and complicated problems in both scien-
tific and engineering fields (Zhao et al. 1994, 1995, 1997, 1998). However, for the
finite element simulation of wave scattering problems in infinite media, the follow-
ing two issues have to be considered. The first is the infinite extension of a problem
domain, while the second is the incidence of an earthquake wave from the far field of
a system. To simulate infinite media both effectively and efficiently, Ungless (1973)
and Bettess (1977, 1980) presented a static infinite element method for dealing with
static problems. Chow and Smith (1981), Medina and Taylor (1983) and Zhao et al.
(1989) extended the static infinite element method to the solution of wave radiation
problems in infinite media. Using a combination of finite and infinite elements, a
whole system can be divided into a near field and a far field. The near field is sim-
ulated using finite elements, while the far field is simulated using dynamic infinite
elements. For the seismic analysis of a structure, the main concern is usually about
the dynamic response of the structure, so that only a small region of the infinite
medium needs to be treated as the near field of the system. This can result in a sig-
nificant reduction in the total number of finite elements that are used to simulate
the computational domain of the system. Since dynamic infinite elements are capa-
ble of simulating wave propagation within themselves, unwanted wave reflection
phenomena at the interface between a finite element and an infinite element can be
avoided.

Early work on earthquake input procedures for the finite element method was
carried out by Reimer et al. (1974), with particular attention to the finite element
analysis of arch dams. Due to the difficulties of this problem, they suggested a mass-
less finite element model, which is called the massless foundation earthquake input
model. In this model, only a limited massless foundation is simulated using finite
elements, and the acceleration of an earthquake is applied to the whole finite ele-
ment model. This procedure has some obvious discrepancies from physical reality,
as it cannot simulate wave propagation effects in the foundation of an arch dam. To



2.1 Formulation of Two-dimensional Dynamic Infinite Elements 9

overcome these discrepancies, Clough et al. (1985) proposed a sophisticated earth-
quake input method, called the free field input method, for the finite element analysis
of arch dams subjected to earthquakes. Although both the spatial amplitude and the
spatial phase differences of an earthquake can be considered in the free field input
method, it is difficult to apply this method to practical problems in the field of earth-
quake engineering, because few earthquakes have been recorded along the surfaces
of natural canyons. Another wave input method used in the hybrid model of finite
and boundary elements is called the standard wave input method, which is estab-
lished on the basis of the half-space elastic wave theory. Furthermore, Zhao (1987)
presented a wave propagation input method on the basis of using finite and dynamic
infinite element coupled models and considering wave propagation characteristics
in elastic solid media. As this method has been successfully used to solve SH-wave
scattering problems (Zhang and Zhao 1988), it is worth extending this method to
the solution of P-wave and SV-wave scattering problems because of wave mode
conversions in these situations.

To take advantage of the coupled computational model of finite and dynamic
infinite elements for simulating natural foundations, a numerical model for dealing
with wave scattering problems in infinite media is presented in this chapter. With
consideration of P-wave and SV-wave reflection characteristics on a fixed boundary,
the harmonic P-wave and SV-wave propagating from the far field of a system are
transformed into nodal dynamic forces on the wave input boundary, where scatter-
ing waves from canyons or structures can be transmitted back into the far field of
the system through dynamic infinite elements. The major advantage of using the
proposed model is that, by choosing a horizontal boundary in the underlying rock,
full-space elastic wave theory can be used to describe earthquake excitations in the
coupled computational model of finite and dynamic infinite elements. As a result,
the proposed model is capable of simulating wave propagation and scattering mech-
anisms within the region of interest, which is located above the wave input boundary,
under any geometrical and geological conditions. In addition, the proposed numer-
ical model is clear in the physical concept and easy to be included into the existing
finite element computer code. The related numerical results from solving P-wave
and SV-wave scattering problems in a half-plane and a semi-circular canyon have
been obtained using the proposed model.

2.1 Formulation of Two-Dimensional Dynamic Infinite Elements
and Wave Input Method

To derive the formulations of two-dimensional dynamic infinite elements, it is nat-
ural to consider wave motion equations in a half-plane. Since an earthquake wave
can be decomposed into the sum of several harmonic waves, it is necessary to inves-
tigate the propagation behaviours of harmonic waves in a half-plane. Since material
damping occurring in the soil/rock involves a frictional loss of energy, it can be con-
sidered as hysteretic damping, which is independent of frequency, by means of the
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correspondence principle (Wolf 1985). Using this principle, the damped solution of
a system can be obtained from the elastic one by replacing the elastic constants with
the corresponding complex ones. Under the assumption that the dynamic system is
subjected to a harmonic wave loading and that the medium of the system exhibits
hysteretic damping, the corresponding governing wave equations of the system can
be expressed as follows:

G∗∇2u + (λ∗ + G∗)
(
∂2u

∂x2
+ ∂2v

∂x∂y

)
+ fx = ρ

∂2u

∂t2
, (2.1)

G∗∇2v + (λ∗ + G∗)
(
∂2u

∂x∂y
+ ∂2v

∂y2

)
+ fy = ρ

∂2v

∂t2
, (2.2)

G∗ = (1 + iηd)G, λ∗ = (1 + iηd) λ, (2.3)

where G is the shear modulus; λ is the Lamé constant; ηd is the hysteretic damping
coefficient of the medium; u and v are displacements in the x and y directions; fx
and fy are body forces in the x and y directions, respectively; ρ is the density of the
medium; ∇2 is the second-order two-dimensional Laplace operator.

Using the Galerkin weighted residual procedure and neglecting body forces in
Eqs. (2.1) and (2.2), the discretized wave equation of the system can be derived as

− ω2 [M] {�} + (1 + iηd) [K] {�} = {F0} , (2.4)

where {�} is the unknown nodal displacement vector; ω is the circular frequency
of the harmonic wave; [M] and [K] are the global mass and stiffness matrices of the
system respectively; and {F0} is the amplitude vector of the applied harmonic load.
[M], [K] and {F0} can be assembled from the following element submatrices and
subvectors:

[M]e =
∫∫

A
[N]T ρ [N] dA, (2.5)

[K]e =
∫∫

A
[B]T [D∗] [B] dA, (2.6)

{F0}e =
∫

S
[N]T {X0

}
dS + [N]T {P0

}
, (2.7)

where A and S are the area and boundary length of the element; {X̄0} is the ampli-
tude vector of element boundary traction; {P̄0} is the amplitude vector of concen-
trated loads acting on the element; [D∗] is the constitutive matrix of the element
material; and [B] and [N] are the strain matrix and shape function matrix of the ele-
ment. It needs to be pointed out that Eqs. (2.5), (2.6) and (2.7) are equally valid for
both finite and dynamic infinite elements. Since the derivation of two-dimensional
finite element formulation is well known (Zienkiewicz 1977; Rao 1989), only the
formulation of two-dimensional dynamic infinite elements is derived below.
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2.1.1 Formulation of Two-Dimensional Dynamic Infinite Elements

For dealing with wave propagation problems in infinite media of geometrical irreg-
ularities and geological complexities, the use of a coupled computational model of
finite and dynamic infinite elements is very effective (Zhao 1987; Zhang and Zhao
1987; Zhao et al. 1989, 1991, 1992; Zhao and Valliappan 1993a, b, c, d, e, f). Con-
sidering a dynamic infinite element shown in Fig. 2.1, the corresponding coordinate
mapping can be expressed as follows:

x =
5∑

i=1

Mixi, (2.8)

y =
5∑

i=1

Miyi, (2.9)

where Mi (i = 1, 2, . . ., 5) is the following mapping function of the dynamic infinite
element:

M1 = 1

2
(ξ − 1) (η − 1) , (2.10)

M2 = 0, (2.11)

M3 = −1

2
(ξ − 1)(η + 1), (2.12)

M4 = 1

2
ξ (η + 1), (2.13)

M5 = −1

2
ξ (η − 1). (2.14)

The displacement field within this dynamic infinite element can be expressed as
follows:

u =
3∑

i=1

Niui, (2.15)

v =
3∑

i=1

Nivi, (2.16)

Fig. 2.1 Two-dimensional
dynamic infinite element:
nodes 1, 2 and 3 are the end
nodes to be connected with a
finite element; nodes 4 and 5
are the middle nodes with ξ =
1; nodes 6 and 7 are at
infinity
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where Ni (i = 1, 2 and 3) is the following displacement shape function of the
dynamic infinite element:

N1 = P(ξ )
η(η − 1)

2
, (2.17)

N2 = −P(ξ )(η − 1)(η + 1), (2.18)

N3 = P(ξ )
η(η + 1)

2
, (2.19)

where P(ξ ) is the wave propagation function of the dynamic infinite element. From
a harmonic wave propagation point of view, P(ξ ) can be expressed in the following
form:

P(ξ ) = exp
[−(α + iβ)ξ

]
, (2.20)

where α and β are the displacement–amplitude decay factor and nominal wavenum-
ber of the dynamic infinite element in the local coordinate system. Physically,
exp (−αξ) expresses the behaviour of displacement amplitude attenuation within
the dynamic infinite element as a result of wave energy dissipation; while
exp (−iβξ) expresses the behaviour of phase delays as a result of wave propaga-
tion in the local coordinate system.

Equations (2.15) and (2.16) can be written in the matrix form as follows:
{

u
v

}e

== [N]{�}e , (2.21)

where [N] is the shape function matrix of the dynamic infinite element; {�}e is the
nodal displacement vector of the element. They are of the following forms:

[N] =
[

N1 0 N2 0 N3 0
0 N1 0 N2 0 N3

]
,

{�}e = {u1 v1 u2 v2 u3 v3
}T . (2.23)

Using the above definitions, the strain matrix of the dynamic infinite element can
be expressed as follows:

{ε}e =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂x

∂v

∂y

∂u

∂y
+ ∂v

∂x

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

∂N1

∂x
0

∂N2

∂x
0

∂N3

∂x
0

0
∂N1

∂y
0

∂N2

∂y
0

∂N3

∂y

∂N1

∂y

∂N1

∂x

∂N2

∂y

∂N2

∂x

∂N3

∂y

∂N3

∂x

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

= [B]{�}e , (2.24)

where [B] is the strain matrix of the dynamic infinite element; {ε}e is the strain
vector of the element. The strain matrix of the dynamic infinite element can be
further expressed as
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[B] =

⎡

⎢
⎢⎢⎢⎢⎢
⎣

∂N1

∂x
0

∂N2

∂x
0

∂N3

∂x
0

0
∂N1

∂y
0

∂N2

∂y
0

∂N3

∂y
∂N1

∂y

∂N1

∂x

∂N2

∂y

∂N2

∂x

∂N3

∂y

∂N3

∂x

⎤

⎥
⎥⎥⎥⎥⎥
⎦

. (2.25)

To evaluate the strain matrix of the dynamic infinite element, it is necessary to
calculate the first derivatives of the displacement shape functions with respect to the
local ξ and η coordinates as follows:

∂Ni

∂ξ
= ∂Ni

∂x

∂x

∂ξ
+ ∂Ni

∂y

∂y

∂ξ
(i = 1, 2, 3), (2.26)

∂Ni

∂η
= ∂Ni

∂x

∂x

∂η
+ ∂Ni

∂y

∂y

∂η
(i = 1, 2, 3). (2.27)

Equations (2.26) and (2.27) can be readily expressed in the following matrix
form:

⎧
⎪⎪⎨

⎪⎪⎩

∂Ni

∂ξ

∂Ni

∂η

⎫
⎪⎪⎬

⎪⎪⎭
=

⎡

⎢⎢
⎣

∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

⎤

⎥⎥
⎦

⎧
⎪⎪⎨

⎪⎪⎩

∂Ni

∂x
∂Ni

∂y

⎫
⎪⎪⎬

⎪⎪⎭
= [J]

⎧
⎪⎪⎨

⎪⎪⎩

∂Ni

∂x
∂Ni

∂y

⎫
⎪⎪⎬

⎪⎪⎭
(i = 1, 2, 3), (2.28)

where the matrix [J] , called the Jacobian matrix, is given by the following equa-
tion:

[J] =

⎡

⎢⎢
⎣

∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

⎤

⎥⎥
⎦. (2.29)

Substituting Eqs. (2.8) and (2.9) into Eq. (2.29) yields the final expression for the
Jacobian matrix as follows:

[J] =

⎡

⎢⎢
⎢
⎣

5∑

i=1

(
∂Mi

∂ξ
xi

)
5∑

i=1

(
∂Mi

∂ξ
yi

)

5∑

i=1

(
∂Mi

∂η
xi

)
5∑

i=1

(
∂Mi

∂η
yi

)

⎤

⎥⎥
⎥
⎦

. (2.30)

Thus, the first derivatives of the displacement shape functions with respect to the
global x and y coordinates can be expressed as follows:


