Natural Heritage from East to West
Niki Evelpidou · Tomás de Figueiredo · Francesco Mauro · Vahap Tecim · Andreas Vassilopoulos
Editors

Natural Heritage from East to West

Case studies from 6 EU Countries

Springer
Cumulative global transformations, occurring daily, affect important aspects of our life. Characteristic cultural and natural heritage, including sites of priceless value, is under constant threat. There are growing pressures, of both natural and human origin, such as wars, conflicts, natural or technological disasters and the effects of global climate change. These provoke the continuous degradation of many sites included in the World Heritage List. In consequence, immediate strategic measures must be taken.

Natural heritage is our legacy from the past, that we inherited from our ancestors and pass on to future generations. It is vital to realize its value and protect it by all possible means, enforcing innovative and sustainable action plans that promote global international co-operation.

This book aims to address specific natural heritage sites in Europe, from West to East. The six countries of study interest are Portugal, Malta, Greece, Italy, Romania and Turkey. For each case, the corresponding current status is presented. This is accompanied by recommended action plans for protection and conservation, training initiatives that improve the public awareness of natural heritage issues and efforts to estimate the natural/environmental value of the sites. The book is the overall result of an interregional initiative aiming to promote convergence, provoke public interest and recommend action for radical changes in our attitude towards heritage conservation.
Acknowledgements

GeoEnvironmental Institute would like to thank all editors and authors that contributed to this book. Also, a special acknowledgment must be extended to MSc Konstantia Chartidou (School of Geology and GeoEnvironment, University of Athens) for her support to this project and the proofing of the content and to Dr. John Peterson (School of Computer Sciences, University of East Anglia) for corrections and improvements to English text.

All authors would like to acknowledge the contribution of Dr. John W.M. Peterson, School of Computing Sciences, University of East Anglia, Norwich, UK, for corrections and improvement to the English text.

Università Telematica Guglielmo Marconi (UTGM) and ENEA acknowledge the collaboration of CUTGANA (Centro Universitario per la Tutela e la Gestione degli Ambieniti Naturali e degli Agroecosistemi), Università di Catania, for the paper on “The Cyclops Islands”.

IRMCo acknowledges the use of the Integrated Land and Water Information System (ILWIS), developed by ITC, the Netherlands, for the management and assessment of geographic information in a GIS environment. ILWIS functionality was employed for the paper on “The natural heritage of the Island of Gozo” and the paper on “The geomorphological cave features of Għar il-Friefet”.

IPB (Polytechnic Institute of Bragança) wishes to acknowledges all those colleagues, most of them also members of CIMO (Centre for Mountain Research), that contributed to the recently issued Management Plan of Montesinho Natural Park (PNM). Their hidden contribution to the articles concerning PNM is much acknowledged. A word in recognition of his endless and contagious enthusiasm towards Montesinho and to the Mountain domain, spread among us all in the IPB, is due to Professor Dionísio Gonçalves, the first Director, Coordinator and President of PNM, CIMO and IPB, respectively. The authors of the photos inserted in the articles concerning Montesinho are also much acknowledged for their contribution, which is referenced at the end of each text, unless they are authors of papers, too.
Contents

Geomorphological Evolution of Santorini 1
Andreas Vassilopoulos, Niki Evelpidou, and Konstantia Chartidou

The Petrified Forest of Lesvos A Unique Natural Monument 15
Nickolas C. Zouros

The Lavrion Mines .. 27
Athanassios Katerinopoulos

Tafoni and Alveole Formation. An Example from Naxos and
Tinos Islands ... 35
Niki Evelpidou, Dimitra Leonidopoulou, and Andreas Vassilopoulos

Origin, Geology and Geochemistry of Mpouharia and Nohtaria
Landforms, in Mikrovaltov Kozani, NW Macedonia – Greece 43
Akindinos Kelepertzis and Evagelos Tziritis

The Gorge of the Angitis River at “Stena Petras” Near the
Alistrati Cave. A Magnificent Piece of Natural Architecture in
Eastern Macedonia, Greece .. 51
Theodoros Astaras

Volcanoes “Monuments of Nature” 59
Konstantinos G. Kyriakopoulos

Amber in Romania .. 71
Antonela Neacsu

Muddy Volcanoes ... 79
Cristian Marunteanu and Dumitru Ioane

Post-volcanic Phenomena in the East Carpathians 87
Alexandru Szakács

Ancient Gold Mining in Rosia Montana (Apuseni Mts, Romania) ... 95
Dumitru Ioane and Horea Bedelean

Rupestrian Settlements in the Alunis Area 101
Cristian Marunteanu and Dumitru Ioane
Salt Karst in Manzalesti – Romania 105
Cristian Marunteanu and Dumitru Ioane

Montesinho and the Mountains of Northern Portugal 111
Tomás de Figueiredo

Montesinho Natural Park: General Description and Natural Values 119
J. Castro, Tomás de Figueiredo, Felícia Fonseca, João Paulo Castro, Sílvia Nobre, and Luís Carlos Pires

The Geological Heritage of Montesinho Natural Park (Portugal) 133
Carlos Meireles

Ultramafics of Bragança Massif: Soils, Flora and Vegetation 143
Eugénio Sequeira, Calos Aguiar and Carlos Meireles

Land Use, Landscape and Sustainability: Examples from Montesinho .. 151
J. Castro

Alvão-Marão: Preserving Important Natural Resources in a Mountain Range ... 155
Domingos Lopes, João Bento, Marco Magalhães, and Pedro Ferreira

A Groundwater System in a Mountain Environment (Serra da Estrela, Portugal) .. 163
Jorge Espinha Marques, José Manuel Marques, and Calos Aguiar

Northwest Beira Highlands – Freita and Caramulo Hills (Portugal) .. 169
Celeste Oliveira Alves Coelho, Sandra Valente, and Cristina Ribeiro

Ecological and Cultural Consequences of Agricultural Abandonment in the Peneda-Gerês National Park (Portugal) 175
Yvonne Cerqueira, Cláudia Araújo, Joana Vicente, Henrique Miguel Pereira, and João Honrado

The Cyclops Islands .. 185
Laura Maria Padovani

The Gate of Hades: The Phlegraean Fields 193
Paola Carrabba

Val d’Orcia, a Renaissance Agricultural Landscape 201
Alessandro Ramazzotti and Francesco Mauro

Vallo di Diano: A Highland in South Italy 209
Francesco Mauro

Valnerina: The High Valley of Hermits, Friars and Saints 215
Francesco Mauro and Ilaria Reggiani

Volcanoes and Crater Lakes in Latium: Nature and History of Rome . 221
Francesco Mauro
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Natural Heritage of the Island of Gozo, Malta</td>
<td>231</td>
</tr>
<tr>
<td>Dirk De Ketelaere, Anna Spiteri, and Josianne Vella</td>
<td></td>
</tr>
<tr>
<td>The Geomorphological Cave Features of Ghar il-Friefet</td>
<td>257</td>
</tr>
<tr>
<td>Anna Spiteri, Michael Sinreich, and Dirk De Ketelaere</td>
<td></td>
</tr>
<tr>
<td>Our Ancestral Country Allies: The Rubble Walls</td>
<td>267</td>
</tr>
<tr>
<td>Josianne Vella and Jesús Garrido</td>
<td></td>
</tr>
<tr>
<td>Cappadocia (Kapadokya)</td>
<td>281</td>
</tr>
<tr>
<td>Ferika Özer Sari and Malike Özsoy</td>
<td></td>
</tr>
<tr>
<td>Caves of Turkey</td>
<td>287</td>
</tr>
<tr>
<td>Muhammed Aydoğan</td>
<td></td>
</tr>
<tr>
<td>Dalyan Paradise</td>
<td>301</td>
</tr>
<tr>
<td>Sabah Balta</td>
<td></td>
</tr>
<tr>
<td>Damlatas Cave, Alanya</td>
<td>311</td>
</tr>
<tr>
<td>Ebru Alakavuk and Zeynep Yağmuroğlu</td>
<td></td>
</tr>
<tr>
<td>The Dilek Peninsula: Büyük Menderes Delta</td>
<td>315</td>
</tr>
<tr>
<td>Ebru Alakavuk and Burcu Şengün</td>
<td></td>
</tr>
<tr>
<td>Halfeti – Rumkale</td>
<td>321</td>
</tr>
<tr>
<td>Gülünur Ballice</td>
<td></td>
</tr>
<tr>
<td>Kekova</td>
<td>333</td>
</tr>
<tr>
<td>Ebru Aydeniz</td>
<td></td>
</tr>
<tr>
<td>Mt. Nemrud (Nemrut) Komagene (Commagene)</td>
<td>339</td>
</tr>
<tr>
<td>Malike Özsoy</td>
<td></td>
</tr>
<tr>
<td>Mt. Nemrud Caldera</td>
<td>353</td>
</tr>
<tr>
<td>Malike Özsoy</td>
<td></td>
</tr>
<tr>
<td>Oludeniz Lagoon – Fethiye</td>
<td>361</td>
</tr>
<tr>
<td>Gokce Ozdemir and Osman Culha</td>
<td></td>
</tr>
<tr>
<td>Pamukkale (Hierapolis)</td>
<td>367</td>
</tr>
<tr>
<td>Gokce Ozdemir</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>373</td>
</tr>
</tbody>
</table>
Contributors

Calos Aguiar Instituto Politécnico de Bragança, Escola Superior Agrária, Mountain Research Center – CIMO, Campus Sta Apolónia, 5301-855 Bragança, Portugal, cfaguiar@ipb.pt

Ebru Alakavuk Yasar University Kazim Dirik Mahallesi 364 Sok, No:5, Bornova, İzmir, Turkey, ebru.alakavuk@yasar.edu.tr

Cláudia Araújo CIBIO – Centro de Investigação em Biodiversidade e Recursos Genéticos; Departamento de Botânica, Faculdade de Ciências da Universidade do Porto, Portugal, claudia.araujo@fc.up.pt

Theodoros Astaras Department of Physical and Environmental Geography, School of Geology, Aristotle University of Thessaloniki, University Campus 541 24 Thessaloniki-Greece, astaras@geo.auth.gr

Ebru Aydeniz Yasar University Kazim Dirik Mahallesi 364 Sokak No: 5, Bornova, İzmir, Turkey, ebru.aydeniz@yasar.edu.tr

Muhammed Aydoğan Faculty of Architectural, Dokuz Eylul University, City and Regional Planning Department & Department of GIS, m.aydogan@deu.edu.tr

Gülnur Ballice Yasar University İzmir, 35500, Turkey, gulnur.ballice@yasar.edu.tr

Sabah Balta Department of Tourism and Hotel Management, Yasar University, İzmir, Turkey, sabah.balta@yasar.edu.tr

Horea Bedelean “Babes-Bolyai” University, Cluj-Napoca, Romania, bedelean@bioge.ubbcluj.ro

João Bento Universidade de Trás-os-Montes e Alto Douro, Departamento Florestal, Vila Real, Portugal, j_bento@utad.pt

Paola Carrabba Department of Biotechnology, Agro-industry and Health Protection, ENEA – National Agency for New Technology, Energy and the Environment, Casaccia Research Center, 00123 Rome, Italy, carrabba@casaccia.enea.it
J. Castro Instituto Politécnico de Bragança, Escola Superior Agrária Apartado 1172, 5301-855 Bragança, Portugal, mzecast@ipb.pt

João Paulo Castro Instituto Politécnico de Bragança, Escola Superior Agrária, Mountain Research Centre – CIMO, Campus Sta Apolónia, 5301-855 Bragança, Portugal, jpmc@ipb.pt

Yvonne Cerqueira CIBIO – Centro de Investigação em Biodiversidade e Recursos Genéticos; Departamento de Botânica, Faculdade de Ciências da Universidade do Porto, Portugal, yvonne.cerqueira@fc.up.pt

Konstantia Chartidou National and Kapodistrian University of Athens, Faculty of Geology and Geoenvironment, Department of Geography and Climatology, Panepistimiopolis, Gr-157 84, Athens, Greece, chartidou@geoenvi.org

Celeste Oliveira Alves Coelho Department of Environment and Planning, CESAM – Centre for Environmental and Marine Studies, University of Aveiro, Portugal, coelho@dao.ua.pt

Osman Culha Department of Tourism and Hotel Management, Yasar University Kazim Dirik M., 364 S. No: 5, 35500, Bornova, Izmir, Turkey, osman.culha@yasar.edu.tr

Tomás de Figueiredo Instituto Politécnico de Bragança, Escola Superior Agrária, Mountain Research Centre – CIMO, Campus Sta Apolónia, 5301-855 Bragança, Portugal, tomasfig@ipb.pt

Dirk De Ketelaere Integrated Resources Management (IRM) Co. Ltd. Malta, info@environmentmalta.com

Niki Evelpidou National and Kapodistrian University of Athens, Faculty of Geology and Geoenvironment, Department of Geography and Climatology, Panepistimiopolis, Gr-15784, Athens, Greece, evelpidou@geol.uoa.gr

Pedro Ferreira Universidade de Trás-os-Montes e Alto Douro, Departamento Florestal, Vila Real, Portugal, pedrof@utad.pt

Felícia Fonseca Instituto Politécnico de Bragança, Escola Superior Agrária, Mountain Research Centre – CIMO, Campus Sta Apolónia, 5301-855 Bragança, Portugal, ffonseca@ipb.pt

Jesús Garrido Integrated Resources Management (IRM) Co. Ltd. Malta, info@environmentmalta.com

João Honrado CIBIO – Centro de Investigação em Biodiversidade e Recursos Genéticos; Departamento de Botânica, Faculdade de Ciências da Universidade do Porto, Portugal, jhonrado@bot.fc.up.pt

Dumitru Ioane University of Bucharest, Romania, dumitru.ioane@g.unibuc.ro
Contributors

Athanassios Katerinopoulos National and Kapodistrian University of Athens, Department of Geology and Geoenvironment, Section of Mineralogy and Petrology, Panepistimiopolis, Gr-15784, Athens, Greece, akatern@geol.uoa.gr

Akindinos Kelepertzis National and Kapodistrian University of Athens, Faculty of Geology and Geoenvironment, Department of Economic Geology and Geochemistry, Greece, kelepertsis@geol.uoa.gr

Konstantinos G. Kyriakopoulos National and Kapodistrian University of Athens, Department of Geology and Geoenvironment, Section of Mineralogy and Petrology, Panepistimiopolis, Gr-15784, Athens, Greece, ckiriako@geol.uoa.gr

Dimitra Leonidopoulou National and Kapodistrian University of Athens, Faculty of Geology and Geoenvironment, Department of Geography and Climatology, Panepistimiopolis, Gr-157 84, Athens, Greece, dleonid@geol.uoa.gr

Domingos Lopes Universidade de Trás-os-Montes e Alto Douro, Departamento Florestal, Vila Real, Portugal, dlopes@utad.pt

Marco Magalhães Universidade de Trás-os-Montes e Alto Douro, Departamento Florestal, Vila Real, Portugal, mpmmaga@utad.pt

Jorge Espinha Marques Universidade do Porto, Faculdade de Ciências, Departamento de Geologia/Centro de Geologia, Porto, Portugal, jespinha@fc.up.pt

José Manuel Marques Universidade Técnica de Lisboa, Instituto Superior Técnico, Departamento de Engenharia de Minas e Georrecursos, Lisboa, Portugal, jose.marques@ist.utl.pt

Cristian Marunteanu University of Bucharest, Romania, crimarunteanu@yahoo.com

Francesco Mauro Università Telematica “Guglielmo Marconi”, Via Plinio 44, 00193 Rome, Italy, mauro_sustainability@yahoo.com

Carlos Meireles Instituto Nacional de Engenharia, Tecnologia e Inovação, Departamento de Geologia, S. Mamede de Infesta, Portugal, Carlos.Meireles@ineti.pt

Antonela Neacsu University of Bucharest, Romania, antonela@geo.edu.ro

Sílvia Nobre Instituto Politécnico de Bragança, Escola Superior Agrária, Mountain Research Centre – CIMO, Campus Sta Apolónia, 5301-855 Bragança, Portugal, silvian@ipb.pt

Gokce Ozdemir Department of Tourism and Hotel Management, Yasar University Kazim Dirik M., 364 S. No: 5, 35500, Bornova, Izmir, Turkey, gokce.ozdemir@yasar.edu.tr

Malike Özsoy Yasar University, 35500 Bornova-İZMİR, malike.ozsoy@yasar.edu.tr
Laura Maria Padovani Department of Biotechnology, Agro-industry and Health Protection, ENEA – National Agency for New Technology, Energy and the Environment, Casaccia Research Center, 00123 Rome, Italy, padovani@casaccia.enea.it

Henrique Miguel Pereira CBA – Centro de Biologia Ambiental, Faculdade de Ciências da Universidade de Lisboa; ICNB – Instituto da Conservação da Natureza e da Biodiversidade, Portugal, hpereira@fc.ul.pt

Luís Carlos Pires Instituto Politécnico de Bragança, Escola Superior Agrária, Mountain Research Centre – CIMO, Campus Sta Apolónia, 5301-855 Bragança, Portugal, luica@ipb.pt

Alessandro Ramazzotti Università Telematica “Guglielmo Marconi”, Via Plinio 44, 00193 Rome, Italy, alessandro.ramazzotti@macchind.it

Ilaria Reggiani Università Telematica “Guglielmo Marconi”, Via Plinio 44, 00193 Rome, Italy, progetti16@unimarconi.it

Ferika Öz Sari Yasar University, 35500 Bornova-İZMİR, ferika.ozersari@yasar.edu.tr

Burcu Şengün Yasar University Kazim Dirik Mahallesi 364 Sok, No:5 Bornova, İzmir, Turkey, burcu.sengun@yasar.edu.tr

Eugénio Sequeira Liga para a Protecção da Natureza, Lisboa, Portugal, eugenio.sequeira@sapo.pt

Michael Sinreich Integrated Resources Management (IRM) Co. Ltd. Malta

Anna Spiteri Integrated Resources Management (IRM) Co. Ltd. Malta, info@environmalta.com

Alexandru Szakács Sapientia University, Cluj-Napoca; Institute of Geodynamics, Romanian Academy, Bucharest, Romania, szakacs@sapientia.ro

Evagelos Tziritis National and Kapodistrian University of Athens, Faculty of Geology and Geoenvironment, Department of Economic Geology and Geochemistry, Greece, evtziritis@geol.uoa.gr

Andreas Vassilopoulos Geoenvironmental Institute, Flias 13, Maroussi, 151 25, Athens, Greece, vassilopoulos@geo envi.org

Josianne Vella Integrated Resources Management (IRM) Co. Ltd. Malta, info@environmalta.com

Joana Vicente CIBIO – Centro de Investigação em Biodiversidade e Recursos Genéticos; Departamento de Botânica, Faculdade de Ciências da Universidade do Porto, Portugal, jsvicente@fc.up.pt

Zeynep Yağmuroğlu Yasar University Kazim Dirik Mahallesi 364 Sok, No:5 Bornova, İzmir, Turkey, zeynep.yagmuroglu@yasar.edu.tr
Contributors

Nickolas C. Zouros Department of Geography, University of the Aegean,
GR–81100; Natural History Museum of the Lesvos Petrified Forest, Lesvos,
GR–81112, Greece, nzour@aegean.gr

Sandra Valente Department of Environment and Planning, CESAM – Centre for
Environmental and Marine Studies, University of Aveiro, Portugal,
sandra.valente@ua.pt

Cristina Ribeiro Department of Environment and Planning, CESAM – Centre for
Environmental and Marine Studies, University of Aveiro, Portugal,
cristinaribeiro@ua.pt
Geomorphological Evolution of Santorini

Andreas Vassilopoulos, Niki Evelpidou, and Konstantia Chartidou

Santorini is an island of the Aegean Sea that belongs to the Prefecture of Cyclades. It is located southern of Ios Island and, along with Anafi, these are the southernmost islands of the Cyclades. Santorini is composed of Thera, with a crescent shape, and the islands of Therasia and Aspro (Aspronisi) in a circle. In the centre of the circle lies the caldera, which was formed by a volcanic eruption (or eruptions) and the simultaneous collapse of a part of the island. Santorini caldera is one biggest of the world, covering an area of approx. 83 km², with a length of 11 km (N–S) and a width of 7.5 km (E–W). The volcanic islands of Nea Kameni and Palaia Kameni have formed within the caldera. Nowadays Santorini is a volcanic island that belongs to the Aegean volcanic arc and, with its fumaroles, gases and a high temperature, is the only active volcano in the Eastern Mediterranean.

Santorini complex belongs to Cyclades islands situated into Aegean Sea

A. Vassilopoulos (✉)
Geoenvironmental Institute, Flias 13, Maroussi, 151 25, Athens, Greece
e-mail: vassilopoulos@geoenvi.org

N. Evelpidou et al. (eds.), *Natural Heritage from East to West*, DOI 10.1007/978-3-642-01577-9_1, © Springer-Verlag Berlin Heidelberg 2010
The conceivable circle forming the caldera of Santorini. This circle is composed by Thera, Therasia and Aspro islands.

Santorini has been the subject of numerous studies undertaken by a wide variety of scientists (Lacroix, 1896; Padang, 1936; Marinatos, 1939, 1968; Galanopoulos, 1958 & 1971; Ninkovich et al. 1965; Heinek-Mac-Coy, 1984; Velitzelos, 1990; Skarpelis and Liati, 1987; Lagios et al. 1989; Fytikas et al. 1990). Nevertheless, geomorphological publications are still rare. Stratigraphically, the lithographic complex of Santorini consists of two main categories of rocks. At the base of the complex
the following formations are found: Triassic crystalline limestones and dolomites, Eocene phyllites and a Miocene granite intrusion. On top of these, a continuous sequence of volcanic rocks dominates the island; it began to form approximately 1.6 million years ago and continued up to modern times.

Within the caldera the volcanic islands of Nea Kameni and Palaia Kameni have been formed.

Hot springs in Thera island
Santorini’s volcanic sequence is characterised by an alternation of volcanic lavas and pumice. Literature often distinguishes three stratigraphic horizons of pumice, and refers to them as, lower, medium and superior pumice horizons. It should be noted that the superior pumice horizon is the result of the Minoan explosion, dating to around 1,500 BC.

The explosions of Santorini volcano began at the end of the Neocene period, about 2 million years ago, after Aigiida broke into pieces and sunk. The island that existed before the volcanic eruptions was residue of a crystalloschistosive mass. Residues of that pre-volcanic island are found in the Profitis Ilias area, which today has the higher altitude in the island (568 m). The most ancient volcanic centres are located on the southern part of the island. The historical eruptions of this volcano were first recorded in 197 BC (Strabo).

- Due to the explosion in 197–199 BC a small islet – Iera – appeared between Thera and Therasia.
- During the 19 AD explosion an islet named Thera was formed.
- With a powerful explosion in 46 AD, which lasted a few months, another islet near Iera was created.
- In 726 AD a violent explosion probably caused damages to agriculture due to the ash fall. The same explosion resulted in the merging of the Iera islet with the one created in 46 AD. None of these islets exists today and they are in no way relevant to the islands of Kameni.
- During the 1570–1573 explosion Palaia Kameni emerged 66 m above sea level.
- In 1650 an explosion took place 6.5 Km outside the caldera, eastern of Cape Columbo, and a small island formed. This island later sunk, leaving in its place Columbo reef, 19 m below the sea surface.
- The explosions of the 1707–1711 period created Nea Kameni.
- During the 1866–1870 explosions the “George I” (in honour of King George I) dome was created, 130.8 m high and constituting the highest altitude in modern Nea Kameni, accompanied by the Afroessa volcanic cone.
Profitis Ilias mountain has the higher altitude in the island and is a prevolcanic relict consisting mainly of crystallised limestones.

- The 1925 (August 11th) and 1926 (May 31st) explosions, created the Dafni dome (in honour of the cruiser who visited the island), that merged Palaia Kameni and Nea Kameni, which was already merged to Afroessa and George I.
- On January 23rd and March 17th 1928, a new explosion created the Nautilus dome (named after the ship of the Greek Hydrographical Service).
- From 1939 to 1941 new explosions in the area of George I and Nea Kameni created the domes Triton, Ktenas, Fouqué, Smith, Reck and Niki (named in honour of Greece’s victory in the Greek-Italian war).
- In 1950 the volcano’s reactivation resulted in the formation of Liatsikas dome (named after the Greek geologist Liatsikas who studied the Santorini volcano).

Part of the Minoan volcanic relief is smooth and has been formed by tuffs deposition.
Given the complexity of the volcanic evolution, various statistical methods have been used (Vassilopoulos et al., 2002) to analyse the diverse geomorphological units and various software programs were applied in order to visualise the alteration of the relief.

Five geomorphological units have been distinguished in Thera Island:

- The limestone–schist Unit (Prophitis Ilias – Vlychada). This formation is found in the south–eastern part of the island and mainly consists of crystalic limestones, dolomites and phyllites representing the pre-volcanic relief of Thera.
- The volcanic clusters (Mesa Vouno – Mikros Prophitis Ilias – Skarou) located in the Northern part of the island, mainly formed by andesitic lavas.
- The Minoan volcanic relief of Thera and Therassia shapes in the form of a crescent. This unit can be further divided in two sub-units, the one having a smooth relief and the other a rough one.
- The Caldera is the most impressive landform in Thera and has attracted many researchers over time.
- The Unit of the newer volcanic islands, Palaia and Nea Kammeni, whose creation expresses the most recent volcanic activity.

The newer volcanic islands, Palaia and Nea Kammeni, whose creation express the most recent volcanic activity. Figure a) has been taken from Nea Kammeni and shows Palaia Kammeni. Figure b) Show the volcanic crater of Nea Kammeni during a geological field work.
The Akrotiri area is believed to have been inhabited at least since the late Neolithic period (7,000 BC–3,500 BC). Akrotiri settlement is dated by ceramics to as far back as the mid 4th millennium BC. These ceramics are related to those of the Neolithic settlement of Saliagos, between Paros and Antiparos. Almost 50 years of excavations have brought to light a self-sufficient settlement with a network of water supply and sewerage, along with paved roads and houses.

Ceramic elements found in Akrotiri settlement, dated at 4th millennium BC

A very well sewerage system was developed in Akrotiri village

Thick volcanic material deposits covered the prehistoric village of Akrotiri and conserved two or even three floor buildings, with their whole contents intact. The excavated section is a very small part of the entire settlement. Akrotiri must have covered an area around 200,000 m². Nine buildings are known but none has yet been entirely studied. The southernmost part of the excavation is 250 m away from the current beach. The settlement spreads along the slopes of a small hill, it is arranged like an amphitheatre with slopes towards the S and E.

Buildings with two or even three floors were found in Akrotiri village
The choice of this particular position shows that it was a village whose inhabitants combined agriculture with fishery. The proto-Cycladic (3rd millennium BC) settlement is located under the ruins of the more recent city, which makes the assessment of its extent impossible. In places remains of proto-Cycladic walls have been located, while carved rooms inside the rock are found at several locations, probably tombs that were used by later inhabitants as stores. Thus, Santorini, having been incorporated in the Cycladic civilisation, followed the same course as the other islands during the proto-Cycladic period, and the Neolithic village evolved into a significant centre.

Archaeological data proves that during the last centuries of the 3rd millennium, Akrotiri had already adopted a urban character and its port was increasingly important for communication with the rest of the Aegean Sea. There is a possibility that this rapid evolution is linked to the abandonment, for unknown cause, of Poliochni, a city in Limnos referred to 1,000 years earlier. With Poliochni missing, no communication was possible between the Aegean and Pontus Euxinus, from where metals were supplied, especially from Colchis. Akrotiri soon took over Poliochni’s role – due to its favourable position between Crete and the Greek mainland. At this time, goods were not being transferred between the Aegean and the Pontus Euxinus; instead trade was between the Aegean and Cyprus. This would explain how a settlement, Akrotiri, located in a small arid island, became a rich city, but it is just a possibility, since no archaeological data confirms it yet.
During the mid-Cycladic period (2,000–1,600 BC) Akrotiri prospered. This is the era of all the residencies dug up by Marinatos and of the well known frescoes; seen nowadays in the National Archaeological Museum.

Akrotiri rose to be one of the most cosmopolitan merchant ports of the Eastern Mediterranean, but it was destroyed during the late-Cycladic phase (1,600–1,500 BC) and then abandoned.

Palaeogeography

There is a theory suggesting that the Minoan explosion alone caused the creation of the current caldera, (Marinatos, 1972; Pichler and Friedrich, 1980). According to this theory, Minoan Santorini was an almost round island, named Strogili with an average altitude of 500–600 m. However, calderas form due to collapsing, so the volume of the collapsing material should be equal to the volume of the caldera. This fact raised the first suspicions concerning the phases responsible for the formation of the current caldera. In order to prove the above-mentioned theory, the quantity of the collapsing magma should be equal to the volume difference between Strogili and modern Thera. Measurements made on the island as well as drilling specimens of Minoan tephra from the Eastern Mediterranean, showed that the tephra ejected during the Minoan explosion was somewhere between 8 and 13 km3 (Watkins et al., 1978). Other researchers calculated the quantity of Minoan tuffs at 31 km3 (Pyle, 1990). In further research the volume of the caldera was estimated to be 60 km3.
(Pichler and Friedrich, 1980). Many different studies have taken place from time to time, usually leading to contradictory results. The possibility of a northern caldera in the Santorini area, flooded with sea water during Minoan times should be noted. This hypothesis is mainly based on observations of the interior inclinations on the edge of the caldera in Therassia and Oia (Heiken and McCoy, 1984).

Views of the current caldera in Santorini island complex

Topographically, Minoan Santorini was, up to a point, the same as modern Santorini. For instance, the mountains of Profitis Ilias, Mesa Vouno and Mikros Profitis Ilias were, and are still, characteristic of the Minoan relief. In some parts the Minoan relief has been dramatically altered by the deposition of tuffs of significant thickness in the valley beds, as well as on the neighbouring coastline; in some areas this spreads for more than a kilometre, e.g. in Monolithos. However at a smaller scale, topography varies from place to place. For instance, the northern half of the island is dominated by volcanic cones that have strongly influenced the thickness of the tuff deposits and given it a rougher appearance than in other parts of the island. The edges of the caldera show an incredible resemblance to the rocky site that is drawn on the Anoixi (Spring) fresco, found in the Minoan city of Akrotiri. Of course, small scale features have completely disappeared under the layer of pumice. Small valleys like the ones located under Oia and low hills like the ones uncovered
in the Megalochori quarry (where the art of pottery-making had been developed in what was probably a colonised city) have vanished, leaving a new ground surface relatively flat and without any special characteristics. The only elements interrupting this flat surface come from deep erosion valleys and human land use (Gournellos et al. 1995).

Additional evidence of Thera’s palaeotopography may derive from the relationship between the middle tuff series and the Minoan sequence. On southern Thera, the middle tuff series comes, for the most part, from a phreatomagmatic eruption and forms hilly depositions located on cliffy slopes in the inside of the caldera. These elements combined with the middle tuff series distribution, reveal a 6 km diameter area of depression, now inundated by the sea. This caldera was most probably formed during the explosion that produced the lower pumice series, a tuff sequence fairly similar in size and origin to the Minoan tuff.

There are many theories concerning the old coastline in the Akrotiri area. One theory suggests that the prehistoric coast was located about 800 m towards the south (Marinatos, 1972). A rather different theory suggests that the shore was located 50 m inland from the current shore and that the sea was also covering the (modern) Agios Nikolaos plain. That is where the city’s port is believed to have been located (Doumas, 1983).

There is evidence demonstrating the divergence between the modern and the past coastline in certain areas. Such examples can be found around the high masses of
Mesa Vouno and Mikros Profitis Ilias. Everywhere else, the Minoan coastline has disappeared under very thick tuff depositions and the current coastline lies towards the sea. The previous cliff-like slopes still remain and can be seen on the road from Perissa to Kamari and around the crystalline limestone mass in Gavrilos. It is certain that on the pre-Minoan island the modern embayment seen from Perivolos was at least partly inundated by the sea, and the area of the modern city of Emporio was closer to the Minoan coastline. This fact could support the theory that the city of Emporio was probably an important trade centre during the Minoan Age (Aston and Hardy, 1990). Despite the fact that the Minoan coastline has been covered by tuffs, there are currently two places where Minoan slopes appear. Those are in the southwestern part of Therassia and under the city of Oia on the northwestern part of Thera. The slopes facing the Akrotiri peninsula must have vanished due to the enlargement of the caldera during the Minoan explosion. The visible series are evidence of slopes less steep than the ones currently existing in some areas.

Nowadays, there are many wide and relatively flat areas, such as the area near the airport and the coastal land strip on the north. During the Minoan Age the area north of Oia and the western side of Therassia clearly had little to no chance of being available for colonisation. It is possible that the Minoan coastline was 1–2 km beyond the present coastline and the land surface followed the slope that appears on the 100 m contour.

The area west of Akrotiri must be the place where the prehistoric port was located. Around the Profitis Ilias massif there were probably other ports, as at Kamari and near Emporio. It is considered probable that the sheltered caldera served as a port (Doumas, 1983).

As far as land use in the Minoan Age is concerned, it has been discussed by many researchers (Wagstaff, 1978, Hope Simpson and Dickinson 1979; Doumas 1983). The investigation of those areas has inevitably returned very poor results due to the fact that the probably pre-existing area does not exceed 72% of that currently seen. Settlements have been recognized by buildings, walls, graves and pottery items found beneath pumice layers as well as by pieces of pottery found on exposed palaeo-surfaces. Statistically it is rather unexpected that settlements have been discovered on the island, given the fact that only a small piece of the original island still stands and only a very small percentage of the palaeo-surface is exposed. There is a high possibility that significant number of yet unknown settlements exist on the rest of the island. The density of the known settlements, as in the Akrotiri area, could possibly occur elsewhere. In geologically similar islands like Milos (Renfrew and Wagstaff, 1982) the existence of almost 20 settlements, during the Bronze Age, on an area of 33 km², has been proven. Proportionately to the island of Milos, in Minoan Thera 62 settlements are expected, 39 of which would probably have been preserved.

It’s undoubted that systematic and intensive fieldwork will bring to light new settlements, even in the relatively limited areas available. For instance, the existence of settlements in relatively flat areas of the Minoan island, such as the slopes north of Oia and on the western part of Therassia, is considered highly probable.
The Minoan relief has been altered dramatically by the thick tuffs deposition all around the island.

References

The Petrified Forest of Lesvos
A Unique Natural Monument

Nickolas C. Zouros

The Petrified Forest of Lesvos covers an area of 15,000 ha and has been declared a Protected Natural Monument. Fossil sites with standing and lying petrified tree trunks are found in many localities on the western part of Lesvos Island. The Petrified Forest was developed during Late Oligocene to Lower-Middle Miocene, due to intense volcanic activity in the area. In order to protect the Petrified Forest and ensure its proper management, serious efforts have been made during the last decades, including the foundation of the Natural History Museum of Lesvos Petrified Forest, scientific research, geoconservation, site protection measures etc. All these elements comprise the main parameters for the operation of the Western Lesvos Geopark, a body whose aims are the protection of the geological heritage and sustainable local development. The Lesvos Petrified Forest geopark comprises the famous fossil sites of the Lesvos Petrified Forest as well as a variety of other important volcanic geosites. It also includes the establishing of a network of walking trails linking geosites of interest, creation of relevant information points and eco-tourism infrastructure as well as the organization of exhibitions, scientific events and congresses and environmental education programmes and activities.

Introduction

Located in NE Aegean Sea, Lesvos Island is one of the largest Greek islands, with an area of 1630 km². On the western coast of Lesvos, where the volcanic rocks meet the azure blue of the Aegean Sea, natural erosion has slowly revealed the petrified remains of plant life of the distant past. No description can do justice to the brilliance, the beauty and the vivacity of their colours, the real glory of the standing fossilized trunks or the wild beauty of the volcanic landscape.

The most noteworthy concentrations of petrified trunks, making up the renowned “Petrified Forest”, are located in the western peninsula of Lesvos between Sigri,

Antissa and Eresos villages over an area of 15,000 ha. As well as petrified trunks, one encounters perfectly preserved petrified roots, fruit, leaves and seeds.

The large number of standing petrified trunks with their root systems intact and in full development provides proof that these trees were petrified in their original growing position. In other words this is an autochthonous petrified forest.

Recognising the major environmental, geological and palaeontological value of the site, the Greek State has declared the Petrified Forest to be a preserved Natural Monument (Presidential Decree 443/85).

In order to deal with the study, research, preservation, conservation and protection of the Petrified Forest, the Museum of Natural History of the Petrified Forest of Lesvos was founded in 1994. The Museum is located in Sigri villages and coordinates all the research, educational and geotouristic activities in the Petrified Forest protected area.

Due to its great geological and ecological value, a great part of western Lesvos (16,600 ha) is included in the list of the “Natura 2000” areas of Greece under the name “Petrified Forest – Western Peninsula of Lesvos”. Furthermore, due to the significant presence of rare types of birds, the area is also included in the list of the most important bird habitats of Greece.

The year 2000 marked the establishment of the European Geopark Network, its objective being the cooperation of geologic parks and monuments at a European
level for the development of geotourism. The Lesvos Petrified Forest is a founding member of this network. In 2001, the Museum was awarded the Eurosite Management Award for its effective management of the Lesvos Petrified Forest. In February of 2004, the Petrified Forest of Lesvos joined, the Global Geopark Network of UNESCO.

Volcanic Activity and the Creation of the Petrified Forest

The creation of the Petrified Forest is related to the intense volcanic activity that took place in the Northern Aegean during Lower Miocene. Neogene volcanic rocks dominate the central and western part of the island. Lesvos is part of a belt of late Oligocene to middle Miocene calc-alkaline to shoshonitic volcanism of the northern and central Aegean Sea and western Anatolia. The main volcanic sequence consists of andesite, dacite, and basalt lavas, ignimbrites, and a thick pyroclastic sequence (Pe-Piper and Piper, 2002).

In the central part of the island a series of volcanic centres is located along a SW-NE axis. There are impressive volcanic domes, large dikes, volcanic necks and numerous other volcanic sites. Major craters are located in central Lesvos in the regions of Vatoussa, Agra and Lepetimnos.

Early Miocene volcanic eruptions resulted in the flow of pyroclastic material that covered the vegetation.

Gigantic petrified trunk, an ancestor of today’s Sequoia. This is the largest known standing trunk of a petrified tree in the world. The trunk stands 7.02 meters high and has a circumference of 8.58 meters. Here we can see the very well-preserved lower part of the trunk. The visible root system at the base of the trunk is proof that the tree is still in the same spot that it was 20,000,000 years ago. Prior to petrification the tree would have been over 100 meters high. This is trunk belongs to the species *Taxodiumalbertense*, which is the ancestor of the *Sequoia sempervirens* now found on the west coast of the United States (California and Oregon) along the Pacific where the necessary climatological conditions (humidity) prevail for this species to grow. This species along with the related *Taxodiumgysaeum, Sequoia abietina, Taxodiumpseudoalbertense, Cunninghamia miocenica* species formed the Sequoia forests of the Aegean during the Tertiary period.