Applied Physiology in Intensive Care Medicine

Second Edition

With 155 Figures and 27 Tables

M. R. Pinsky · L. Brochard · J. Mancebo
G. Hedenstierna (Eds.)
Introduction

The practice of intensive care medicine is at the very forefront of titration of treatment and monitoring response. The substrate of this care is the critically ill patient who, by definition, is at the limits of his or her physiologic reserve. Such patients need immediate, aggressive but balanced life-altering interventions to minimize the detrimental aspects of acute illness and hasten recovery. Treatment decisions and response to therapy are usually assessed by measures of physiologic function, such as assessed by cardio-respiratory monitoring. However, how one uses such information is often unclear and rarely supported by prospective clinical trials. In reality, the bedside clinician is forced to rely primarily on physiologic principles in determining the best treatments and response to therapy. However, the physiologic foundation present in practicing physicians is uneven and occasionally supported more by habit or prior training than science.

A series of short papers published in Intensive Care Medicine since 2002 under the heading Physiologic Notes attempts to capture the essence of the physiologic perspectives that underpin both our understanding of disease and response to therapy. This present volume combines the complete list of these Physiologic Notes up until February 2009 with the associated review articles over the same interval that also addressed these central issues. This volume was created to address this fundamental unevenness in our understanding of applied physiology and underscore what is known and how measures and monitoring interact with organ system function and response to therapy. This collection of physiologic perspectives and reviews, written by some of the most respected experts in the field, represent an up-to-date and invaluable compendium of practical bedside knowledge essential to the effective delivery of acute care medicine. Although this text can be read from cover to cover, the reader is encouraged to use this text as a reference source reading individual Physiologic Notes and Review articles as they pertain to specific clinical issues. In that way the relevant information will have immediate practical meaning and hopefully become incorporated into routine practice.

We hope that the reader finds these papers and reviews useful in their practice and enjoy reading them as much as we enjoyed editing the original articles that it comprises.

Michael R. Pinsky, MD
Laurent Brochard, MD
Jordi Mancebo, MD
Göran Hedenstierna, MD
1. Physiological Notes

1.1 Pulmonary

1.1.1 Respiratory Mechanics

Intrinsic (or auto-) positive end-expiratory pressure during controlled mechanical ventilation 3
LAURENT BROCHARD

Intrinsic (or auto-) positive end-expiratory pressure during spontaneous or assisted ventilation 7
LAURENT BROCHARD

Work of breathing .. 11
BELEN CABELLO, JORDI MANCEBO

Interpretation of airway pressure waveforms .. 15
EVANS R. FERNÁNDEZ-PÉREZ, ROLF D. HUBMAYR

Measurement of respiratory system resistance during mechanical ventilation ... 17
CLAUDE GUERIN, JEAN-CHRISTOPHE RICHARD

Understanding wasted/ineffective efforts in mechanically ventilated COPD patients using the Campbell diagram ... 21
THEODOROS VASSILAKOPOULOS

1.1.2 Gas exchange

Dead space ... 25
UMBERTO LUCANGELO, LUIS BLANCH

The multiple inert gas elimination technique (MIGET) .. 29
PETER D. WAGNER

Alveolar ventilation and pulmonary blood flow: the V/Q concept ... 37
ENRICO CALZIA, PETER RADERMACHER

Mechanisms of hypoxemia .. 41
ROBERT RODRÍGUEZ-ROISIN, JOSEP ROCA

Pulse oximetry .. 45
AMAL JUBRAN

Effects of body temperature on blood gases ... 49
ANDREAS BACHER

Venous oximetry .. 53
FRANK BLOOS, KONRAD REINHART

Relation between PaO₂/FO₂ ratio and FO₂: a mathematical description ... 57
JÉRÔME ABOAB, BRUNO LOUIS, BJÖRN JONSON, LAURENT BROCHARD

Hyxemia due to increased venous admixture: influence of cardiac output on oxygenation .. 61
JUKKA TAKALA

1.2. Cardiovascular:

Pulmonary vascular resistance: A meaningless variable? .. 65
ROBERT NAIEJE

Pulmonary artery occlusion pressure .. 69
MICHAEL R. PINSKY

Clinical significance of pulmonary artery occlusion pressure ... 73
MICHAEL R. PINSKY

Pulmonary capillary pressure .. 77
JUKKA TAKALA

Ventricular interdependence: how does it impact on hemodynamic evaluation in clinical practice? 81
FRANÇOIS JARDIN

Cyclic changes in arterial pressure during mechanical ventilation ... 85
FRANÇOIS JARDIN
Contents

1.3. Metabolism and Renal Function

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactic acidosis</td>
<td>89</td>
</tr>
<tr>
<td>Daniel de Backer</td>
<td></td>
</tr>
<tr>
<td>Defining renal failure: physiological principles</td>
<td>93</td>
</tr>
<tr>
<td>Rinaldo Bellomo, John A. Kellum, Claudio Ronco</td>
<td></td>
</tr>
<tr>
<td>Hypotension during intermittent hemodialysis: new insights into an old problem</td>
<td>99</td>
</tr>
<tr>
<td>Frédérique Schortgen</td>
<td></td>
</tr>
</tbody>
</table>

1.4. Cerebral Function

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intracranial pressure. Part one: Historical overview and basic concepts</td>
<td>105</td>
</tr>
<tr>
<td>Peter J. D. Andrews, Giuseppe Citerio</td>
<td></td>
</tr>
<tr>
<td>Intracranial pressure. Part two: Clinical applications and technology</td>
<td>109</td>
</tr>
<tr>
<td>Giuseppe Citerio, Peter J. D. Andrews</td>
<td></td>
</tr>
<tr>
<td>Neuromonitoring in the intensive care unit. Part one: Intracranial pressure and cerebral blood flow monitoring</td>
<td>113</td>
</tr>
<tr>
<td>Anuj Bhatia, Arun Kumar Gupta</td>
<td></td>
</tr>
<tr>
<td>Neuromonitoring in the intensive care unit. Part two: Cerebral oxygenation monitoring and microdialysis</td>
<td>123</td>
</tr>
<tr>
<td>Anuj Bhatia, Arun Kumar Gupta</td>
<td></td>
</tr>
</tbody>
</table>

2. Physiological Reviews

2.1. Measurement techniques

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluid responsiveness in mechanically ventilated patients: a review of indices used in intensive care</td>
<td>133</td>
</tr>
<tr>
<td>Karim Bendjelid, Jacques-André Romand</td>
<td></td>
</tr>
<tr>
<td>Different techniques to measure intra-abdominal pressure (IAP): time for a critical re-appraisal</td>
<td>143</td>
</tr>
<tr>
<td>Manu L. N. G. Malbrain</td>
<td></td>
</tr>
<tr>
<td>Tissue capnometry: does the answer lie under the tongue?</td>
<td>159</td>
</tr>
<tr>
<td>Alexandre Toledo Maciel, Jacques Creteur, Jean-Louis Vincent</td>
<td></td>
</tr>
</tbody>
</table>

2.2. Physiological processes

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sleep in the intensive care unit</td>
<td>191</td>
</tr>
<tr>
<td>Sairam Parthasarathy, Martin J. Tobin</td>
<td></td>
</tr>
<tr>
<td>Magnesium in critical illness: metabolism, assessment, and treatment</td>
<td>201</td>
</tr>
<tr>
<td>J. Luis Noronha, George M. Matuschak</td>
<td></td>
</tr>
<tr>
<td>Pulmonary endothelium in acute lung injury: from basic science to the critically ill</td>
<td>215</td>
</tr>
<tr>
<td>Stylianos E. Orfanos, Irene Mavrommati, Ioanna Korovesi, Charis Roussos</td>
<td></td>
</tr>
<tr>
<td>Pulmonary and cardiac sequelae of subarachnoid haemorrhage: time for active management?</td>
<td>229</td>
</tr>
<tr>
<td>Carol S. A. Macmillan, Ian S. Grant, Peter J. D. Andrews</td>
<td></td>
</tr>
<tr>
<td>Permissive hypercapnia – role in protective lung ventilatory strategies</td>
<td>241</td>
</tr>
<tr>
<td>John G. Laffey, Donal O'croinin, Paul McLoughlin, Brian P. Kavanagh</td>
<td></td>
</tr>
<tr>
<td>Right ventricular function and positive pressure ventilation in clinical practice: from hemodynamic subsets to respirator settings</td>
<td>251</td>
</tr>
<tr>
<td>François Jardin, Antoine Vieillard-Baron</td>
<td></td>
</tr>
<tr>
<td>Acute right ventricular failure – from pathophysiology to new treatments</td>
<td>261</td>
</tr>
<tr>
<td>Alexandre Mebazaa, Peter Karpati, Estelle Renaud, Lars Algotsson</td>
<td></td>
</tr>
<tr>
<td>Red blood cell rheology in sepsis</td>
<td>273</td>
</tr>
<tr>
<td>Michael Piagnerelli, Karim Zouaouei-Boudjeltia, Michel Vanhaeverbeek, Jean-Louis Vincent</td>
<td></td>
</tr>
</tbody>
</table>
Stress-hyperglycemia, insulin and immunomodulation in sepsis 283
PAUL E. MARIK, MURUGAN RAGAVAN

Hypothalamic-pituitary dysfunction in critically ill patients with traumatic and nontraumatic brain injury .. 293
IOANNA DIMOPOULOU, STYLIANOS TSAGARAKIS

Matching total body oxygen consumption and delivery: a crucial objective? 303
PIERRE SQUARA

Normalizing physiological variables in acute illness: five reasons for caution 313
BRIAN P. KAVANAGH, L. JOANNE MEYER

Interpretation of the echocardiographic pressure gradient across a pulmonary artery band in the setting of a univentricular heart .. 321
SHANE M. TIBBY, ANDREW DURWARD

Ventilator-induced diaphragm dysfunction: the clinical relevance of animal models 327
THEODOROS VASSILAKOPOULOS

Understanding organ dysfunction in hemophagocytic lymphohistiocytosis 337
CAROLINE CRÉPUT, LIONEL GALICIER, SOPHIE BUYSE ELIE AZOULAY

3. Seminal Studies in Intensive Care

Manipulating afterload for the treatment of acute heart failure. A historical summary .. 351
CLAude PERRET, JEAN-FRANÇOIS ENRICO

Nosocomial pneumonia .. 355
WALDEMAR G. JOHANSON, LISA L. DEVER

The introduction of positive endexpiratory pressure into mechanical ventilation: a retrospective .. 363
KONRAD J. FALKE

Elastic pressure-volume curves in acute lung injury and acute respiratory distress syndrome .. 367
BJÖRN JONSON

The concept of “baby lung” .. 375
LUCIANO GATTINONI, ANTONIO PESENTI

The effects of anesthesia and muscle paralysis on the respiratory system 385
GÖRAN HEDENSTIerna, LENnART EDMARK

Diaphragmatic fatigue during sepsis and septic shock .. 395
SOPHIE LANONE, CAMILLE TAILLÉ, JORGE BOCZKOWSKI, MICHEL AUBIER

The use of severity scores in the intensive care .. 403
JEAN-ROGER LE GALL

Oxygen transport—the oxygen delivery controversy .. 409
JEAN-LOUIS VINCENT, DANIEL DE BACKER

Organ dysfunction during sepsis .. 417
SUVEER SINGH, TIMOTHY W. EVANS

Ventilator-induced lung injury: from the bench to the bedside .. 429
LORRAINE N. TREMblAY, ARTHUR S. SLUTSKY

Remembrance of Weaning Past: the Seminal Studies .. 439
MARTIN J. TOBIN

Interactions between respiration and systemic hemodynamics. Part I: basic concepts .. 449
FRANÇOIS FEIHL, ALAIN F. BROCCARD

Interactions between respiration and systemic hemodynamics. Part II: practical implications in critical care .. 459
FRANÇOIS FEIHL, ALAIN F. BROCCARD

Subject Index .. 467
Contributors

Jérôme Aboab
Réanimation Médicale
Hôpital Henri Mondor
Créteil, France

Lars Algotsson
Department of Anaesthesiology–Heart-Lung Division
University Hospital of Lund,
22185 Lund, Sweden

Peter J. D. Andrews
Department of Anaesthetics, Intensive Care and Pain Medicine
University of Edinburgh, Western General Hospital
Crewe Road, EH4 2XU Edinburgh, Scotland, UK

Michel Aubier
INSERM U 700 and IFR 02, Facult Xavier Bichat
16 rue Henri Huchard, 75018 Paris, France

Elie Azoulay
Department of Clinical Immunology, and Hôpital Saint-Louis, Medical ICU, AP-HP,
University Paris-7 Diderot, UFR de Médecine,
1 avenue Claude Vellefaux, 75010 Paris, France

Andreas Bacher
Department of Anesthesiology and General Intensive Care
Medical University of Vienna, AKH
Währinger Gürtel 18–20, 1090 Vienna, Austria

Jan Bakker
Department of Intensive Care, Erasmus MC
University Medical Center Rotterdam
P.O. Box 2040, 3000 CA
Rotterdam, The Netherlands

Rinaldo Bellomo
Department of Intensive Care and Division of Surgery
Austin & Repatriation Medical Centre
3084 Heidelberg, Melbourne, Victoria, Australia

Karim Bendjelid
Surgical Intensive Care Division,
Geneva University Hospitals
1211 Geneva 14, Switzerland

Anuj Bhatia
Department of Anaesthesia,
Addenbrooke’s Hospital,
Hills Road, CB2 2QQ Cambridge, UK

Luis Blanch
Critical Care Center
Hospital de Sabadell
Parc Taulis/n, 08208 Sabadell, Spain

Frank Bloos
Klinik für Anästhesiologie und Intensivtherapie
Klinikum der Friedrich-Schiller-Universität
Erlanger Allee 101, 07747 Jena, Germany

Jorge Boczkowski
INSERM U 700 and IFR 02, Facult Xavier Bichat
16 rue Henri Huchard, 75018 Paris, France

Alain F. Broccard
Medical Intensive Care Unit,
Regions Hospital Pulmonary and Critical Care Division,
Regions Hospital, St Paul,
MN 55101-2595, USA

Laurent Brochard
Réanimation Médicale
Hôpital Henri Mondor,
Université Paris 12, INSERM
U651, 94010 Créteil, France

Sophie Buyse
Department of Clinical Immunology, and Hôpital Saint-Louis, Medical ICU, AP-HP, University Paris-7 Diderot, UFR de Médecine,
1 avenue Claude Vellefaux, 75010 Paris, France
Contributors

Belen Cabello
Hospital Santa Creu i Sant Pau, Servicio de Medicina Intensiva
Av/ Sant Antoni Maria Claret 167, CP 08025 Barcelona, Spain

Enrico Calzia
Sektion Anästhesiologische Pathophysiologie und Verfahrensentwicklung Universitätsklinik für Anästhesiologie, Universität Ulm
Parkstrasse 11, 89070 Ulm, Germany

Giuseppe Citerio
Neurorianimazione, Dipartimento di Anestesia e Rianimazione
Nuovo Ospedale San Gerardo
Via Donizetti 106, 20052 Monza, Italy

Caroline Créput
Department of Clinical Immunology, and Hôpital Saint-Louis, Medical ICU, AP–HP,
University Paris-7 Diderot, UFR de Médecine,
1 avenue Claude Vellefaux, 75010 Paris, France

Jacques Creteur
Department of Intensive Care,
Erasme University Hospital, Free University of Brussels
Route de Lennik 808, 1070 Brussels, Belgium

Daniel De Backer
Department of Intensive Care,
Erasme University Hospital
Free University of Brussels
Route de Lennik 808, 1070 Brussels, Belgium

Lisa L. Dever
UMDNJ–New Jersey Medical School,
VA New Jersey Health Care System
385 Tremont, East Orange, NJ 07018, USA

Ioanna Dimopoulou
Second Department of Critical Care Medicine,
Attikon Hospital, Medical School National and Kapodistrian University of Athens
2 Pemazoglou Street, 14561 Kifissia, Athens, Greece

Andrew Durward
Evelina Children’s Hospital, Guy’s and Saint Thomas’ NHS Trust,
Paediatric Intensive Care Unit,
SE1 7EH London, UK

Lennart Edmark
Department of Anesthesia and Intensive Care
Central Hospital
72335 Vasteras, Sweden

Jean-François Enrico
Former Chief of Intensive Care Unit
Hôpital des Cadolles,
Neuchâtel, Switzerland

Timothy W. Evans
Imperial College School of Medicine
Department of Intensive Care Medicine
Royal Brompton Hospital, London, UK

Konrad J. Falke
Klinik für Anaesthesiology und operative Intensivmedizin Berlin
Campus Virchow Klinikum,Charite,
Berlin, Germany

François Feihl
Division of Clinical Pathophysiology,
University Hospital (CHUV)
and Lausanne University (UNIL),
1011 Lausanne, Switzerland

Evans R. Fernández Pérez
Mayo Clinic College of Medicine
Rochester, MN 55905, USA

Lionel Galicier
Department of Clinical Immunology, and Hôpital Saint-Louis, Medical ICU, AP–HP,
University Paris-7 Diderot, UFR de Médecine,
1 avenue Claude Vellefaux, 75010 Paris, France

Jean-Roger Le Gall
Department of Intensive Care Medicine
Saint-Louis University Hospital, Paris, France

Luciano Gattinoni
Istituto di Anestesia e Rianimazione
Fondazione IRCCS Ospedale Maggiore Policlinico
Mangiagalli, Regina Elena di Milano, Università degli Studi
Via Francesco Sforza 35, 20122 Milan, Italy

Ian S. Grant
Department of Anaesthesia,
University of Edinburgh,
Western General Hospital, Edinburgh,
Scotland, UK
Claude Guerin
Hôpital de la Croix Rousse and Université de Lyon,
Service de Réanimation Médicale,
103 Grande Rue de la Croix Rousse,
69004 Lyon, France

Arun Kumar Gupta
Department of Anaesthesia,
Addenbrooke’s Hospital, Hills Road,
CB2 2QQ Cambridge, UK

Göran Hedenstierna
Clinical Physiology, Department of Medical Sciences, University Hospital
75185 Uppsala, Sweden

Rolf D. Hubmayr
Mayo Clinic College of Medicine
Rochester, MN 55905, USA

François Jardin
Hôpital Ambroise Paré,
Service de Réanimation Médicale,
9 avenue Charles de Gaulle,
92104 Boulogne, France

Waldemar G. Johanson†
UMDNJ-New Jersey Medical School
185 South Orange, Newark, NJ 07018, USA

Björn Jonson
Department of Clinical Physiology
University Hospital of Lund
22185 Lund, Sweden

Amal Jubran
Division of Pulmonary and Critical Care Medicine
Edward Hines Jr. Veterans Affairs Hospital
Route 111 N, Hines, IL, 60141, USA

Peter Karpati
Department of Anaesthesiology and Critical Care Medicine
Hospital Lariboisière, 2 Rue Ambroise Pare
75475 Paris Cedex 10, France

Brian P. Kavanagh
Department of Critical Care Medicine,
Hospital for Sick Children
555 University Avenue, Toronto,
ONT, M5G 1X8, Canada

John A. Kellum
Division of Critical Care Medicine, Scaife Hall
University of Pittsburgh Medial Centre,
Terrace Street, Pittsburgh, PA 15260, USA

Ioanna Korovesi
Department of Critical Care & Pulmonary Medicine and “M. Simou” Laboratory
Medical School, University of Athens, Evangelismos Hospital
45–47 Ipsilandou St., 10675 Athens, Greece

John G. Laffey
Department of Anaesthesia,
University College Hospital Galway and Clinical Sciences Institute,
National University of Ireland, Galway, Ireland

Sophie Lanone
INSERM U 700 and IFR 02, Facult Xavier Bichat
16 rue Henri Huchard, 75018 Paris, France

Alexandre Lima
Department of Intensive Care, Erasmus MC
University Medical Center Rotterdam
P.O. Box 2040, 3000 CA
Rotterdam, The Netherlands

Bruno Louis
Inserm Unit 651
Department of Medecine Paris 12
Créteil, France

Umberto Lucangelo
Department of Perioperative Medicine,
Intensive Care and Emergency, Cattinara Hospital, Trieste University School of Medicine
34139 Trieste, Italy

Jordi Mancebo
Hospital Santa Creu i Sant Pau,
Servicio de Medicina Intensiva
Av/ Sant Antoni Maria Claret 167,
CP 08025 Barcelona, Spain

Alexandre Toledo Maciel
Department of Intensive Care,
Erasme University Hospital, Free University of Brussels
Route de Lennik 808, 1070 Brussels, Belgium

Carol S. A. Macmillan
University of Dundee, Department of Anaesthesia
Ninewells Hospital, Dundee DD1 9SY, UK
Manu L. N. G. Malbrain
Medical Intensive Care Unit, ACZA Campus Stuivenberg
Lange Beeldekenstraat 267, B-2060 Antwerpen, Belgium

Paul E. Marik
Department of Critical Care Medicine
University of Pittsburgh Medical Center
640A Scaife Hall, 3550 Terrace Street, Pittsburgh, PA, 15261, USA

George M. Matuschak
Division of Pulmonary, Critical Care and Occupational Medicine
Departments of Internal Medicine and Pharmacological and Physiological Science
School of Medicine
Saint Louis University, 3635 Vista Ave., Saint Louis, MO 63110-0250, USA

Irene Mavrommati
Department of Critical Care & Pulmonary Medicine and “M. Simou” Laboratory
Medical School, University of Athens, Evangelismos Hospital
45-47 Ipsiandou St., 10675 Athens, Greece

Paul McLoughlin
Department of Physiology,
University College Dublin
Dublin, Ireland

Alexandre Mebazaa
Department of Anaesthesiology and Critical Care Medicine
Hôpital Lariboisière, 2 Rue Ambroise Pare
75475 Paris Cedex 10, France

L. Joanne Meyer
Department of Medicine,
St. Joseph’s Hospital
Toronto, Canada

Xavier Monnet
Hôpital de Bicêtre, AP-HP,
Service de réanimation médicale,
78 rue du Général Leclerc,
94270 Le Kremlin-Bicêtre, France
and
Université Paris-Sud, Equipe d’accueil EA 4046,
Faculté de Médecine Paris-Sud,
94270 Le Kremlin-Bicêtre, France

Robert Naeije
Department of Physiology,
Faculty of Medicine of the Free University of Brussels, Erasme Campus
808 Route de Lennik, CP 604,
1070 Brussels, Belgium

Luis J. Noronha
Division of Pulmonary, Critical Care and Occupational Medicine
Departments of Internal Medicine and Pharmacological and Physiological Science
School of Medicine
Saint Louis University, 3635 Vista Ave., Saint Louis, MO 63110-0250, USA

Donall O’Croinin
Department of Physiology,
University College Dublin
Dublin, Ireland

Stylianos E. Orfanos
2nd Department of Critical Care,
University of Athens Medical School, Attikon Hospital
1, Rimini St., 12462 Haidari (Athens), Greece

Sairam Parthasarathy
Division of Pulmonary and Critical Care, Medicine Edward Hines Jr.
Veterans Administrative Hospital, Loyola University of Chicago Stritch School of Medicine
Route 111 N, Hines, IL 60141, USA

Michael Piagnerelli
Department of Intensive Care,
Erasme University Hospital
Free University of Brussels
808 route de Lennik, 1070 Brussels, Belgium

Claude Perret
Former Chief of Intensive Care Department
University Hospital of Lausanne, Switzerland
Rue de Halles 4, CH-1095 Lutry, Switzerland

Antonio Pesenti
Dipartimento di Medicina Perioperatoria e Terapia Intensiva
A.O. Ospedale S.Gerardo Monza, Università degli Studi Milan-Bicocca, Italy
Michael R. Pinsky
Department of Critical Care Medicine
University of Pittsburgh Medical Center,
604 Scaife, 3550 Terrace Street,
Pittsburgh, PA 15261, USA

Murugan Raghavan
Conemaugh Memorial Medical Center
Johnstown, Pennsylvania, USA

Peter Radermacher
Sektion Anästhesiologische Pathophysiologie und Verfahrensentwicklung Universitätsklinik für Anästhesiologie, Universität Ulm
Parkstrasse 11, 89070 Ulm, Germany

Konrad Reinhart
Klinik für Anästhesiologie und Intensivtherapie
Klinikum der Friedrich-Schiller-Universität
Erlanger Allee 101, 07747 Jena, Germany

Estelle Renaud
Department of Anaesthesiology
and Critical Care Medicine
Hôpital Lariboisière, 2 Rue Ambroise Pare
75475 Paris Cedex 10, France

Jean-Christophe Richard
Hôpital de la Croix Rousse and Université de Lyon,
Service de Réanimation Médicale,
103 Grande Rue de la Croix Rousse,
69004 Lyon, France

Charis Roussos
Department of Critical Care & Pulmonary Medicine and "M. Simou" Laboratory
Medical School, University of Athens, Evangelismos Hospital
45–47 Ipsilantou St., 10675 Athens, Greece

Josep Roca
Servei de Pneumologia, Hospital Clinic
Institut d’Investigaciones Biomédiques
August Pi i Sunyer, Universitat de Barcelona
Villarroel 170, 08036 Barcelona, Spain

Robert Rodríguez-Roisin
Servei de Pneumologia, Hospital Clinic
Institut d’Investigaciones Biomédiques
August Pi i Sunyer, Universitat de Barcelona
Villarroel 170, 08036 Barcelona, Spain

Jacques-André Romand
Surgical Intensive Care Division,
Geneva University Hospitals
1211 Geneva 14, Switzerland

Claudio Ronco
Divisione di Nefrologia, Ospedale San Bortolo
Via Ridolfi, 36100 Vicenza, Italy

Frédérique Schortgen
Réanimation Médicale et Infectieuse
Hôpital Bichat-Claude Bernard
75018 Paris, France

Suveer Singh
Chelsea and Westminster Hospital
Department of Intensive Care Medicine
369 Fulham Road, SW10 9NH London, UK

Arthur S. Slutsky
Queen Wing, St. Michael’s Hospital
30 Bond St., Toronto, ONT, M5B 1W8, Canada

Pierre Squara
CERIC Clinique Ambroise Pare
27 Boulevard Victor Hugo, 92200
Neuilly-sur-Seine, France

Camille Taillé
INSERM U 700 and IFR 02, Facult Xavier Bichat
16 rue Henri Huchard, 75018 Paris, France

Jukka Takala
Department of Intensive Care Medicine,
University Hospital Bern (Inselspital),
University of Bern, 3010 Bern, Switzerland

Jean-Louis Teboul
Hôpital de Bicêtre, AP-HP,
Service de réanimation médicale,
78 rue du Général Leclerc,
94270 Le Kremlin-Bicêtre, France

Shane M. Tibby
Paediatric Intensive Care Unit,
Evelina Children’s Hospital,
Guy’s and Saint Thomas’ NHS Trust,
SE1 7EH London, UK
Martin J. Tobin
Division of Pulmonary and Critical Care Medicine
Edward Hines Jr. VA Hospital, 111N
5th Avenue and Roosevelt Road
Hines, Illinois 60141, USA

Lorraine N. Tremblay
Department of Surgery
Sunnybrook and Women’s Health Sciences Center
Toronto, Ont., Canada

Stylianos Tsagarakis
Department of Endocrinology, Athens Polyclinic
Athens, Greece

Michel Vanhaevertbeek
Experimental Medicine Laboratory,
André Vésale Hospital
Montigny-le-Tilleul, Belgium

Theodoros Vassilakopoulos
Department of Critical Care and Pulmonary Services,
University of Athens Medical School,
Evangelismos Hospital,
45–47 Ipsilandou Street, 10675 Athens, Greece
and
Critical Care Department,
Evangelismos Hospital,
45–47 Ipilandou Strasse, 10675 Athens, Greece

Antoine Vieillard-Baron
University Hospital Ambroise Paré,
Assistance Publique Hôpitaux de Paris
Medical Intensive Care Unit
9 avenue Charles de Gaulle, 92104
Boulogne Cedex, France

Jean-Louis Vincent
Department of Intensive Care,
Erasm University Hospital
Free University of Brussels
Route de Lennik 808, 1070 Brussels, Belgium

Peter D. Wagner
Department of Medicine, Division of Physiology,
University of California, San Diego, 9500 Gilman Drive,
Dept. 0623A, La Jolla CA 92093-0623A, USA

Karim Zouaoui-Boudjelta
Experimental Medicine Laboratory,
André Vésale Hospital
Montigny-le-Tilleul, Belgium
Physiological Notes

1.1. Pulmonary

1.1.1. Respiratory Mechanics
- **Intrinsic (or auto-) positive end-expiratory pressure during controlled mechanical ventilation** .. 3
 Laurent Brochard
- **Intrinsic (or auto-) positive end-expiratory pressure during spontaneous or assisted ventilation** .. 7
 Laurent Brochard
- **Work of breathing** .. 11
 Belen Cabello, Jordi Mancebo
- **Interpretation of airway pressure waveforms** .. 15
 Evans R. Fernandez-Perez, Rolf D. Hubmayr
- **Measurement of respiratory system resistance during mechanical ventilation** .. 17
 Claude Guerin, Jean-Christophe Richard
- **Understanding wasted/ineffective efforts in mechanically ventilated COPD patients using the Campbell diagram** .. 21
 Theodoros Vassilakopoulos

1.1.2. Gas exchange
- **Dead space** .. 25
 Umberto Lucangelo, Lluis Blanch
- **The multiple insert gas elimination technique (MIGET)** .. 29
 Peter D. Wagner
- **Alveolar ventilation and pulmonary blood flow: The V̇_{A}/Q̇_{c} concept** .. 37
 Enrico Calzia, Peter Radermacher
- **Mechanisms of hypoxemia** .. 41
 Robert Rodríguez-Roisin, Josep Roca
- **Pulse oximetry** .. 45
 Amal Jubran
- **Effects of body temperature on blood gases** .. 49
 Andreas Bacher
- **Venous oximetry** .. 53
 Frank Bloos, Konrad Reinhart
- **Relation between PaO₂/FiO₂ ratio and FiO₂ : a mathematical description** .. 57
 Jérôme Aboab, Bruno Louis, Björn Jonson, Laurent Brochard
- **Hypoxemia due to increased venous admixture: influence of cardiac output on oxygenation** .. 61
 Jukka Takala
1.2. Cardiovascular:
 - Pulmonary vascular resistance: A meaningless variable? 65
 Robert Naeije
 - Pulmonary artery occlusion pressure ... 69
 Michael R. Pinsky
 - Clinical significance of pulmonary artery occlusion pressure 73
 Michael R. Pinsky
 - Pulmonary capillary pressure ... 77
 Jukka Takala
 - Ventricular interdependence: how does it impact on hemodynamic evaluation in clinical practice? ... 81
 François Jardin
 - Cyclic changes in arterial pressure during mechanical ventilation 85
 François Jardin

1.3. Metabolism and Renal Function
 - Lactic acidosis .. 89
 Daniel De Backer
 - Defining renal failure: Physiological principles 93
 Rinaldo Bellomo, John A. Kellum, Claudio Ronco
 - Hypotension during intermittent hemodialysis: new insights into an old problem ... 99
 Frédérique Schortgen

1.4. Cerebral Function
 - Intracranial pressure. Part one: Historical overview and basic concepts ... 105
 Peter J. D. Andrews, Giuseppe Citerio
 - Intracranial pressure. Part two: Clinical applications and technology ... 109
 Giuseppe Citerio, Peter J. D. Andrews
 - Neuromonitoring in the intensive care unit. Part one: Intracranial pressure and cerebral blood flow monitoring 113
 Anuj Bhatia, Arun Kumar Gupta
 - Neuromonitoring in the intensive care unit. Part two: Cerebral oxygenation monitoring and microdialysis 123
 Anuj Bhatia, Arun Kumar Gupta
Laurent Brochard

Intrinsic (or auto-) PEEP during controlled mechanical ventilation

Introduction

Extrinsic positive end-expiratory pressure (PEEP) applied to the patient at the airway opening is used artificially to increase end-expiratory lung volume. Extrinsic PEEP is increased or decreased in small increments in ventilator-dependent patients because of its marked effects on cardiorespiratory status. Unintentional or unmeasured end-expiratory hyperinflation, called intrinsic or auto-PEEP, can also occur and have similarly marked profound cardiorespiratory effects in ventilator-dependent patients during controlled mechanical ventilation. Ventilatory settings can interact with the passive process of expiration and generate intrinsic or auto-PEEP [1, 2].

What is intrinsic (or auto-) PEEP?

During passive expiration of the lungs the elastic forces of the respiratory system are the driving forces and can be described by the relationship between lung volume and the elastic recoil pressure of the respiratory system. The lower the elastic forces, or the higher the resistive forces, the longer will be the time needed to fully expire the inspired tidal volume. In a single-compartment model of the lung in which the lung behaves as if it has a single resistance and compliance, the volume at any given time during expiration (V) is described by the monoexponential equation, \(V = V_o - Ve^{-kt} \), where \(k \) is the time constant of the equation and is the product of resistance times compliance (the reverse of elastance), and \(V_o \) is the end-inspiratory volume. In practical terms a time constant is the time required for the lungs to expire 63\% of their initial volume. Thus the time needed passively to expire the inspired tidal volume is determined by the two main characteristics of the respiratory system: elastance and resistance. If expiration is interrupted before its natural end, i.e., by occurrence of the next inspiration, end-expiratory lung volume is higher than the so-called relaxation volume of the respiratory system, usually referred to as functional residual capacity. As a result the alveolar pressure at the end of expiration is higher than zero (zero being the atmospheric pressure), as predicted by the relationship between lung volume and the elastic recoil pressure of the respiratory system. This process is called dynamic hyperinflation, and the positive end-expiratory alveolar pressure associated with a higher than resting lung volume, is called intrinsic or auto-PEEP. Importantly for the clinician, this pressure is not directly measured at the airway opening and is thus not shown on the pressure dial of the ventilator. What the ventilator measures is the pressure in the ventilator circuit. Because the direction of the flow is still expiratory, the pressure measured by the ventilator at the end of expiration reflects only the relationship between flow and the resistance of the expiratory line, above the set PEEP. It does not give the clinician any information about the real alveolar pressure.

How one can suspect the presence of intrinsic (or auto-) PEEP

The presence of a positive alveolar pressure higher than the atmospheric pressure or higher than the external PEEP set on the ventilator (which is a new “reference pressure” for the lungs) can be identified by inspection of the expiratory flow-time curve. When the expiratory time is sufficient for lung emptying, expiratory flow de-
clines from a maximum to zero or to the set PEEP. An interruption in this process results in an abrupt change in the slope of this curve, immediately continued by the next inspiratory flow. In other words, the next “inspiration” starts during “expiration.” Since the ventilator, which cannot generate flow into the patient’s lungs until the pressure at the airway opening exceeds the end-expiratory alveolar pressure, one way in which to measure intrinsic or auto-PEEP is to determine the airway pressure at the exact time of inspiratory flow. One can measure the intrinsic PEEP level by simultaneously recording airway pressure and flow data using a high-speed tracing. Figure 1 illustrates how shortening the expiratory phase generates such dynamic hyperinflation [3].

Is the level of intrinsic (or auto-) PEEP predictable?

If one assumes the respiratory system to be homogeneous and behave as a single compartment, a monoexponential equation can be used. By simple mathematics it takes three time constants (one being the product of resistance and compliance) to expire 96% of the inspired tidal volume. Therefore any longer expiratory time minimizes or fully avoids emptying. For instance, a resistance of 10 cmH₂O.l⁻¹.s⁻¹ and a compliance of 100 ml.cmH₂O⁻¹ (0.1 l.cm H₂O⁻¹) results in a time constant of 1 s. Thus 3 s represents the minimal expiratory time needed to avoid intrinsic or auto-PEEP. Unfortunately, the diseased lungs are not only frequently inhomogeneous, making this calculation overly simplistic, but the presence of small airway collapse during expiration, also referred to as expiratory flow limitation, makes this even more complicated. Because of an abnormal structure of the small airways, when the pressure surrounding these conducts becomes higher than the pressure inside the airway, these small conducts collapse. The relationship between the “driving pressure” (pressure in the alveoli minus pressure at the airway opening) on which is based the equation, disappears. In the setting of expiratory flow-limitation, the expiratory time required to minimize intrinsic PEEP is much longer than predicted by the time constant alone. By minimizing inspired minute ventilation the clinician can minimize intrinsic (auto-) PEEP.

Can intrinsic (or auto-) PEEP be reliably measured?

Since the reason for the presence of intrinsic PEEP is flow-dependent pressure gradients from the alveolus to the airway opening, occluding of the expiratory port of the ventilator at the exact end of expiration causes airway pressure to equilibrate rapidly with alveolar pressure and reliably measure the end-expiratory alveolar pressure. This occlusion takes place at the exact time where the next inspiration should start and is now available on most modern ventilators (“expiratory hold or pause”). If the patient is fully relaxed, this pressure measurement reflects the mean alveolar pressure at the end of expiration. Most of the time a plateau is reached after less than 1 s, but in the case of inhomogeneous lungs this pressure may require a few seconds to also reflect some very slow compartments. This airway occlusion pressure may not be homogeneously present in the whole lung but represents an average pressure of all regional levels of end-expiration alveolar pressure. Usually the difference between the expiratory pause airway pressure and the set external PEEP is called intrinsic or auto-PEEP, while the measured pressure is referred to as total PEEP.

Can the set external PEEP influence the total PEEP in the case of dynamic hyperinflation?

A frequent confusion is the belief that external PEEP could be useful in reducing the level of dynamic hyperinflation because it helps to reduce the value of auto- or intrinsic PEEP. Obviously this is not the case. The effect of external PEEP is to minimize the difference between the alveolar and the ventilator proximal airway pressure. This difference being called intrinsic or auto-PEEP, external PEEP application results in a decreased intrinsic or auto-PEEP. The level of dynamic hyperinflation, however, depends on the level of total PEEP and is either not influenced by external PEEP when external PEEP is less than intrinsic PEEP or is even worsened if external PEEP is set higher than the minimal level of regional intrinsic PEEP.
References

Laurent Brochard

Intrinsic (or auto-) positive end-expiratory pressure during spontaneous or assisted ventilation

Introduction

The mechanisms generating intrinsic or auto-positive end-expiratory pressure (PEEP) during controlled mechanical ventilation in a relaxed patient also occur during spontaneous breathing or when the patient triggers the ventilator during an assisted mode [1, 2]. These include an increased time constant for passive exhalation of the respiratory system, a short expiratory time resulting from a relatively high respiratory rate and/or the presence of expiratory flow limitation. Whereas dynamic hyperinflation and intrinsic or auto-PEEP may have haemodynamic consequences, this is not frequently a major concern in spontaneously breathing patients or during assisted ventilation because the spontaneous inspiratory efforts result in a less positive or more negative mean intrathoracic pressure than during controlled mechanical ventilation. The main consequence of dynamic hyperinflation during spontaneous and assisted ventilation is the patient's increased effort to breathe and work of breathing [1, 2].

To what extent does intrinsic (or auto-) positive end-expiratory pressure influence work of breathing?

For air to enter the lungs, the pressure inside the chest has to be lower than the pressure at the mouth (spontaneous breathing) or at the airway opening (assisted ventilation). In the case of intrinsic (or auto-) PEEP, by definition, the end-expiratory alveolar pressure is higher than the pressure at the airway opening. When the patient initiates the breath, there is an inevitable need to reduce airway pressure to zero (spontaneous breathing) or to the value of end-expiratory pressure set on the ventilator (assisted ventilation) before any gas can flow into the lungs. For this reason, intrinsic or (auto-) PEEP has been described as an inspiratory threshold load. In patients with chronic obstructive pulmonary disease (COPD) this load has sometimes been measured to be the major cause of increased work of breathing [3].

During assisted ventilation, is the trigger sensitivity important to reduce intrinsic (or auto-) positive end-expiratory pressure?

Because the problem of intrinsic or (auto-) PEEP has to do with the onset of inspiration, one may reason that increasing the inspiratory trigger sensitivity to initiate a breath with a lower pressure or flow deflection should reduce the work of breathing induced by hyperinflation. These systems are based on the detection of a small pressure drop relative to baseline (pressure-triggering system) or on the presence of a small inspiratory flow (flow-triggering systems). Unfortunately, increasing the trigger sensitivity induces only a small reduction in the total work of breathing. The reason for this lack of effect relates to the need for the inspiratory trigger to sense changes in airway pressure or in inspiratory flow. Thus, intrinsic PEEP needs to be counterbalanced first by the
effort of the inspiratory muscles, in order for this effort to generate a small pressure drop (in the presence of a closed circuit) or to initiate the inspiratory flow (in an open circuit) [4]. The consequence of intrinsic or (auto-) PEEP is that the inspiratory effort starts during expiration. This is easily identified by inspection of the expiratory flow-time curve [1]. As a consequence, it cannot be detected by any of the commercially available trigger systems.

Can the set external positive end-expiratory pressure reduce dynamic hyperinflation and work of breathing?

Responses to these two questions are the same as during controlled mechanical ventilation in a relaxed patient [1]. Their consequences are, however, very different. External PEEP reduces the difference between the alveolar and the ventilator proximal airway pressure, i.e., intrinsic (or auto-) PEEP. The inspiratory threshold load resulting from intrinsic (or auto-) PEEP is thus reduced by addition of external PEEP. Thus, the total work of breathing is reduced, especially in patients with high levels of intrinsic (or auto-) PEEP, such as those subjects with COPD [5, 6].

Although external PEEP reduces work of breathing, it does not minimise hyperinflation. The level of dynamic hyperinflation is not modified by external PEEP, unless this PEEP is set higher than the minimal level of regional intrinsic PEEP, and then hyperinflation increases. Increasing hyperinflation can aggravate the working conditions of the respiratory muscles by placing them at a mechanical disadvantage and can result in significant haemodynamic compromise by decreasing venous return and increasing right ventricular outflow resistance. Hyperinflation in excess of intrinsic (or auto-) PEEP occurs usually when the set PEEP is positioned at values above 80% of the mean “static” intrinsic PEEP [7]. For this reason, titration of external PEEP based on measuring intrinsic (or auto-) PEEP would be desirable. Unfortunately, a reliable measurement of intrinsic (or auto-) PEEP in the spontaneously breathing subject is much more difficult to obtain than in passive positive-pressure ventilation conditions.

Can standard ventilatory settings influence intrinsic (or auto-) positive end-expiratory pressure?

During assisted ventilation, the patient is supposed to determine the respiratory rate freely, and one may suppose that he/she will govern his/her respiratory rate to control expiratory time and minimise hyperinflation. Unfortunately, most patients will not be able to counteract fully the effects of a ventilator inspiratory time longer than their own inspiratory time [8]. Although some compensatory mechanism may exist, it will frequently be insufficient. Every setting influencing the ventilator inspiratory time may thus influence the level of dynamic hyperinflation.

Is intrinsic (or auto-) positive end-expiratory pressure always synonymous with dynamic hyperinflation?

In patients with spontaneous respiratory activity, recruitment of the expiratory muscles frequently participates in generating intrinsic (or auto-) PEEP independently of dynamic hyperinflation. In the case of airflow obstruction, the main consequence of an activation of the expiratory muscles is to augment intrathoracic pressure, whereas their effects on expiratory flow may be very modest, especially in the case of airflow limitation, thus promoting small airways to collapse. The activation of the expiratory muscles results from an increase in respiratory drive. Many patients with COPD already have a recruitment of their expiratory muscles at rest. This expiratory muscle recruitment results in a measurable increase in alveolar pressure. However, such expiratory muscle recruitment, although creating an intrinsic (or au-
to-) PEEP, does not contribute to the inspiratory threshold load and the increased work of breathing. Indeed, at the same time that the inspiratory muscles start to decrease intrathoracic pressure, the expiratory muscles relax and their release almost immediately abolishes this part of intrinsic (or auto-) PEEP due to the expiratory muscles [9]. This is illustrated in Fig. 1.

Can intrinsic (or auto-) positive end-expiratory pressure be reliably measured?

The commonly applied end-expiratory airway occlusion method that measures intrinsic (or auto-) PEEP in patients on controlled ventilation cannot be readily applied to the patient making spontaneous inspiratory efforts. For example, it is not possible to determine which amount of measured positive airway occlusion pressure, if not all, is due to expiratory muscle activity [9]. Setting the external PEEP based on this measurement could induce considerable mistakes by overestimating intrinsic (or auto-) PEEP. The only readily available and reliable method of measuring intrinsic (or auto-) PEEP in the spontaneously breathing subject is to measure the drop in oesophageal pressure occurring before flow becomes inspiratory, and subsequently subtract the part due to expiratory muscle activity determined from an abdominal pressure signal [9]. The reasoning is as follows: any rise in abdominal pressure occurring during expiration is transmitted to the intrathoracic space and increases alveolar pressure.

Intrinsic PEEP is measured from the abrupt drop observed on the oesophageal pressure signal until flow becomes inspiratory (phase 1 on Fig. 1). Part of this drop in oesophageal pressure is caused by the relaxation of the expiratory muscles. This part needs to be subtracted from the oesophageal pressure drop, in order to evaluate a “corrected” intrinsic PEEP due to hyperinflation. Two main possibilities exist: to subtract the rise in gastric pressure that occurred during the preceding expiration [9] or to subtract the concomitant decrease in gastric pressure at the onset of the effort [10]. Because the correction of intrinsic (or auto-) PEEP for expiratory muscle activity has not been used in early studies, one can hypothesise that the magnitude of intrinsic (or auto-) PEEP has often been overestimated. This combined oesophageal and gastric pressure measuring technique requires the insertion of a nasogastric tube equipped with both oesophageal and gastric balloon catheters. This technique is often used for research purposes but cannot be easily used at the bedside for routine clinical monitoring.

References

Introduction

The main goal of mechanical ventilation is to help restore gas exchange and reduce the work of breathing (WOB) by assisting respiratory muscle activity. Knowing the determinants of WOB is essential for the effective use of mechanical ventilation and also to assess patient readiness for weaning. The active contraction of the respiratory muscles causes the thoracic compartment to expand, inducing pleural pressure to decrease. This negative pressure generated by the respiratory pump normally produces lung expansion and a decrease in alveolar pressure, causing air to flow into the lung. This driving pressure can be generated in three ways: entirely by the ventilator, as positive airway pressure during passive inflation and controlled mechanical ventilation; entirely by the patient’s respiratory muscles during spontaneous unassisted breathing; or as a combination of the two, as in assisted mechanical ventilation. For positive-pressure ventilation to reduce WOB, there needs to be synchronous and smooth interaction between the ventilator and the respiratory muscles [1, 2, 3]. This note will concentrate on how to calculate the part of WOB generated by the patient’s respiratory muscles, especially during assisted ventilation.

Esophageal pressure and the Campbell diagram

Measuring WOB is a useful approach to calculate the total expenditure of energy developed by the respiratory muscles [4]. In general, the work performed during each respiratory cycle is mathematically expressed as $\text{WOB} = \int \text{Pressure} \times \text{Volume}$, i.e. the area on a pressure–volume diagram. Esophageal pressure, which is easily measured, is usually taken as a surrogate for intrathoracic (pleural) pressure. The dynamic relation between pleural pressure and lung volume during breathing is referred to as the Campbell diagram [5] (Fig. 1). Esophageal pressure swings during inspiration are needed to overcome two forces: the elastic forces of the lung parenchyma and chest wall, and the resistive forces generated by the movement of gas through the airways. One can calculate these two components (elastic and resistive) by comparing the difference between esophageal pressure during the patient’s effort during the breath and the pressure value in passive conditions, represented by the static volume–pressure curve of the relaxed chest wall. This passive volume–pressure curve is a crucial component of the Campbell diagram. It is calculated from the values of esophageal pressure obtained over lung volume when the airways are closed and the muscles are completely relaxed. Unfortunately, as this is difficult to do (because it requires passive inflation and often muscle paralysis), a theoretical value for the slope of this curve is frequently used. However, if a patient is passively ventilated and an esophageal balloon is placed, a true value for the volume–pressure relationship of the chest wall during passive tidal breathing can be obtained [6]. This passive pressure–volume relationship can be used as a reference value for subsequent calculations when the patient develops spontaneous inspiratory efforts.
The WOB is normally expressed in joules. One joule is the energy needed to move 1 l of gas through a 10-cmH\(_2\)O pressure gradient. The work per liter of ventilation (J/l) is the work per cycle divided by the tidal volume (expressed in liters). In a healthy subject the normal value is around 0.35 J/l [7]. Lastly, WOB can be expressed in work per unit of time, multiplying joules per cycle by the respiratory rate (expressed in breaths per minute) to obtain the power of breathing (joules/minute). In a healthy subject the normal value is around 2.4 J/min [7]. As illustrated by the Campbell diagram, two other phenomena affect the WOB: intrinsic PEEP (positive end-expiratory pressure, or PEEPi) and active expiration.

PEEPi and active expiration

The distending pressure of the lungs is called the transpulmonary pressure and it can be estimated as the difference between airway and esophageal (pleural) pressure. At the end of a normal expiration, alveolar and airway pressures are zero relative to atmosphere, and esophageal pressure is negative, reflecting the resting transpulmonary pressure (around 5 cmH\(_2\)O in normal conditions). However, in the presence of PEEPi, the alveolar pressure remains positive throughout expiration, because of either dynamic airway collapse or inadequate time to exhale [8]. This implies that some degree of dynamic hyperinflation does exist (lung volume at end-expiration is higher than passive functional residual capacity). Importantly, for lung volume to further increase in a patient with PEEPi, the inspiratory muscles contract to an amount equal to PEEPi before any volume is displaced.

PEEPi can be quite high in patients with chronic obstructive pulmonary disease (COPD) and may represent a high proportion of the total WOB [9]. For example, a patient who displaces 0.5 l of tidal volume through a 7-cmH\(_2\)O pressure gradient will perform an amount of work of 0.35 J/cycle. If nothing else changes except that this patient develops 5 cmH\(_2\)O of PEEPi, 0.25 J will be required to counterbalance this, meaning that the total WOB will be 0.60 J (0.35 + 0.25), which represents around 40% of the total work required for the inspiration. The PEEPi value is measured as the drop in esophageal pressure occurring during expiration when the inspiratory muscles start contraction, until the flow reaches the point of zero (see Fig. 1).

In the case of ineffective respiratory efforts, that is, muscle contraction without volume displacement, WOB cannot be measured from the Campbell diagram, since this calculation is based on volume displacement. In this situation, measurement of the pressure–time product (PTP) may more accurately reflect the energy expenditure of these muscles. The PTP is the product of the pressure developed by the respiratory muscles multiplied by the time of muscle contraction, expressed in cmH\(_2\)O per second. The relevant pressure is again the difference between the measured esophageal pressure and the static relaxation curve of the chest wall.

Expiration normally occurs passively. However, the coexistence of PEEPi and active expiration is common, especially in COPD patients [10]. Positive expiratory swings in gastric pressure are observed during active expiration as a consequence of abdominal muscle recruitment. When the patient starts contracting the inspiratory muscles, the expiratory muscles also start to relax. The drop in esophageal pressure used to estimate PEEPi is therefore also due to the relaxation of the expiratory muscles. To avoid overestimating the value of PEEPi, the abdominal pressure swing resulting from the active expiration must thus be subtracted from the initial drop in esophageal pressure [10].

Technical aspects of WOB calculation

Two other calculations can be obtained from pressure and volume measurements: airway pressure WOB and transpulmonary pressure WOB. The airway pressure WOB displays the energy dissipated by the ventilator to inflate the respiratory system. The transpulmonary pressure WOB shows the energy needed to inflate the lung parenchyma and reflects the mechanical characteristics of the pulmonary tissue. The limitation of these two measurements is that the amount of WOB performed by the patient’s respiratory muscles is ignored.

The main tools used to measure the WOB are a double-lumen polyethylene gastro-esophageal catheter–balloon system and a pneumotachygraph. The catheter has an esophageal and a gastric balloon, usually filled with...
0.5 and 1 ml of air to measure the esophageal and gastric pressures, respectively. Correct positioning of the esophageal balloon is assessed by an occlusion test: when the airways are closed at the end of expiration and an active inspiration occurs, a drop in esophageal pressure occurs. In this scenario, there are no changes in lung volume and the decrease in esophageal pressure equals the decrease in airway pressure (because in the absence of volume displacement, the transpulmonary pressure has to be nil) [11]. The catheter–balloon system should be placed to obtain a ratio between airway pressure and esophageal pressure changes as close as possible to 1. Also, the correct positioning of the gastric balloon needs to be checked [12].

Limitations

The calculation of WOB has several limitations. The first is that it requires insertion of a double-balloon gastro-esophageal catheter system. The second is the validity of the esophageal pressure value. Since pleural pressure is influenced by gravity, it can be modified by the weight of the thoracic content and by the posture. In the supine position, end-expiratory esophageal pressure is usually positive because of the weight of the heart and mediastinum on the esophagus. However, the amplitude of the changes in esophageal pressure is not usually affected. The third limitation is that the theoretical value for chest wall compliance is often used rather than a true measured value. Furthermore, chest wall deformation can occur if levels of ventilation are high [13]. Lastly, it is difficult to determine what the optimal WOB level should be for each patient on clinical grounds.

Conclusion

From the standpoint of clinical research, the measurement of WOB is extremely useful in the field of mechanical ventilation, having contributed to important progress in the management of patients for optimizing and understanding the effects of ventilator settings such as trigger, external PEEP, peak inspiratory flow, etc. WOB has also been used to evaluate the physiological effects of a number of agents such as helium and bronchodilators [9, 14, 15, 16, 17, 18, 19]. Studies on WOB have given us greater insight into the pathophysiology of weaning failure [3] and have also contributed to the progress made in the field of non-invasive mechanical ventilation [20, 21]. Bedside measurements of WOB in clinical practice, however, should be reserved for individuals in whom assessment of this parameter can provide further insight into the patient ability to breath and the patient–ventilator interactions.

Acknowledgements. The authors wish to thank Carolyn Newey for her help in editing the manuscript. Belen Cabello is the recipient of a research grant from the Instituto de Salud Carlos III (project CM04/00096, Ministerio de Sanidad) and the Institut de Recerca Hospital de la Santa Creu i Sant Pau.

References

Interpretation of airway pressure waveforms

Abstract Most mechanical ventilators display tracings of airway pressure (Paw) volume (V) and flow (˙V). In volume preset modes, Paw informs about the mechanical properties of the respiratory system and about the activity of respiratory muscles acting on the system. When monitoring ventilator waveforms, it is important to appropriately scale the tracing so that nuances in time profiles may be appreciated. In this short monograph, we offer three examples of how clinicians may use this information for patient assessment and care.

The Paw waveform

The interactions between a ventilator and a relaxed intubated patient can be modeled as a piston connected to a tube (flow-resistive element) and balloon (elastic element). Accordingly, at any instant in time (t), the pressure at the tube inlet reflects the sum of a resistive pressure (Pres) and an elastic pressure (Pel) [1]. Pres is determined by the product of tube resistance with ˙V, while Pel is determined by the product of balloon elastance (a measure of balloon stiffness) with volume [1]. In this model, the resistive element reflects the properties of the intubated airways, while the elastic element reflects those of lungs and chest wall. When applied to volume preset ventilation with constant inspiratory ˙V and a short post-inflation pause, the resulting Paw tracing has three distinct components: (1) an initial step change proportional to Pres; (2) a ramp that reflects the increase in Pel as the lungs fill to their end-inflation volume; and (3) a sudden decay from a pressure maximum (Ppeak) to a plateau (Pplat) that reflects the elastic recoil (Pel) of the relaxed respiratory system at the volume at end-inflation. Since in this example flow is held constant throughout inflation, Pres must remain constant unless flow resistance changes volume and time. Consequently, the initial step change in Paw and its decay from Ppeak to Pplat are of similar magnitude. Fig. 1a demonstrates these features. Since, in pneumatic systems, there are invariable delays in the pressure and flow transients, in practice the step changes in pressure are never as sudden as they are depicted in Fig. 1a [2]. Nevertheless, the amplitude of transients can be easily estimated by extrapolating the tracing relative to the slope of the pressure ramp. Finally, while the principles that govern the interactions between pressure, volume and flow apply to all modes of mechanical ventilation, the specific pressure waveforms depicted in Fig. 1 refer only to constant flow inflation (square wave) and look very different when other flow profiles (e.g., decelerating, sine wave) are used. Our use of square wave profiles in Fig. 1 should not be interpreted as an endorsement of a specific mode, but rather as the most convenient means to present this information.

The tracing in Fig. 1b differs in several important respects: the Paw ramp is steeper and it is nonlinear with respect to time. Since V is constant the nonlinearity between Paw and t means that the relationship between Paw and V...
must be nonlinear as well. Assuming identical ventilator settings as in Fig. 1a the increased steepness of the ramp and its convexity to the time axis indicates a stiffening of the respiratory system with volume and time and suggests that the lungs may be overinflated to volumes near or exceeding their capacity. At the bedside, such an observation should raise concern for injurious ventilator settings [2].

The tracing in Fig. 1c is characterized by a larger-than-expected initial step change in PaW that exceeds the peak-to-plateau pressure difference. In an otherwise relaxed patient, such an observation should raise suspicion for dynamic hyperinflation and inadvertent PEEP (PEEPi). If Pel at end-expiration is greater than PaW at that time (i.e., PEEPi is present), then gas will flow in the expiratory direction. The step change in PaW during the subsequent inflation will therefore not only reflect Pres but also PEEPi that must be overcome to reverse flow at the tube entrance [1]. Tracings like the one in Fig. 1c should therefore alert the clinician to the presence of dynamic hyperinflation and provide an estimate of the extrinsic PEEP necessary to minimize the associated work of breathing. PEEPi is invariably associated with a sudden transient in expiratory flow prior to ventilator-assisted lung inflation [3]. However, this flow transient need not be associated with dynamic hyperinflation, because it is also seen in patients with increased respiratory effort and active expiration.

The tracing in Fig. 1d represents a significant departure from relaxation patterns. There is no initial step change in PaW; the ramp is nonlinear, and the end-inspiratory pressure plateau is lower than expected. This tracing suggests that the inspiratory muscles are active throughout machine inflation and that their work represents a considerable fraction of the work performed on the respiratory system. This pattern should alert clinicians to the presence of a potentially fatiguing load.

References

Measurement of respiratory system resistance during mechanical ventilation

Abstract Background: The measurement of respiratory system resistance during mechanical ventilation is important to ascertain the causes of increase in airway pressure during volume-controlled ventilation, which may include airways resistance and decreased respiratory system compliance. Discussion: Separation of total resistance from compliance of the respiratory system can be assessed by the end-inspiratory hold maneuver that separates peak pressure from plateau pressure. Conclusions: Although this method assumes a homogeneous respiratory system, it has proven useful clinically to separate flow-dependence issues such as bronchospasm or endotracheal tube obstruction from stiff lungs (acute lung injury) or decrease chest wall (abdominal distension) compliance.

Keywords Airway pressure · Mechanical ventilation · Respiratory system compliance · Respiratory system resistance

Introduction

Change in the resistance of the respiratory system to gas flow (Rrs) commonly occurs in critically ill patients and is manifest in mechanically ventilated patients on volume-controlled ventilation as an increase in airway pressure (Paw). Increases in Paw commonly occur with many processes and can profoundly alter gas exchange and cardiovascular function. Inspiratory gas flowing from the ventilator must overcome two primary components of Rrs before it can distend the alveoli. These include airway resistive forces needed to cause airflow associated with the endotracheal tube (ETT) and airways and elastic forces needed to distend the tissues associated with baseline positive end-expiratory pressure (PEEPt) and tidal volume (V) as they interact with the combined lung and chest wall tissue elastance. In patients receiving noninvasive mechanical ventilation the upper airways are an important, but difficult to assess [1] contributing factor to Rrs. At any given time t during mechanical inflation Paw can be described by the equation of motion that reflects the sum of resistive (Pres) and elastic (Pel) forces at that moment:

$$Paw(t) = PEEP_t + Pres(t) + Pel(t) = PEEP_t + V'(t) \times R + V(t) \times E$$

where V' is inflation flow, R and E resistance and elastance of the respiratory system. Although Eq. 1 depicts the behavior of the respiratory system as a single-compartment model (Fig. 1a), this approach tends to describe respiratory function under most conditions. However, the model described in Eq. 1 also assumes both R and E are constant as V and V' change, which is incorrect. For example, airway resistance (Raw) decreases with increasing V [2]. More refined models have therefore been described (Fig. 1b) [3, 4]. In particular, such complex models are needed to take into account the V' dependence of Rrs [5]. An immediate practical implication of this is that any value of Rrs must be referred to the levels of V' set on the ventilator.
Fig. 1 a Single-compartment model of respiratory system with a standard resistance (dashpot R) and elastance (spring E). b Multiple-compartment model of respiratory system comprising the standard resistance (dashpot Rint) and the standard elastance (spring E), both arranged serially, and the viscoelastic units which are arranged in parallel around E. The viscoelastic units comprise a dashpot and a spring that are arranged serially. c Interrupter technique during mechanical ventilation with constant flow inflation. From top to bottom, schematic drawing of airway pressure (Paw), flow and change in lung volume against time. At the end of a baseline breath the airways are occluded for 5 s (second horizontal double arrow). After occlusion the sudden pressure drop from maximal pressure (Pres) to pressure at first zero flow (Pmax) (occlusion the sudden pressure drop from maximal pressure (Pres)). The viscoelastic units comprise a dashpot and a spring that are arranged serially. (first horizontal double arrow)
for V' delivery during inhaled therapy or justifies to change the nature of the gas such as helium in case of highly turbulent conditions. Equation 2 is used in many ventilators as an “automatic tube compensation mode” (ATC) during pressure support breathing to compensate for the resulting additional work of breathing due to the ETT [18]. ATC may also use equation as $\text{Pres} = V' b$ where b, which depends on the size of the ETT tube, is usually slightly lower than 2.

Tissue resistance

The tissue resistance ΔR_{rs} is equal to or slightly greater than R_{int}, R_{s}. Tissue resistance has two components, lung parenchyma and chest wall, which includes the diaphragm. In patients with chronic obstructive lung disease (COPD) the contribution of chest wall to R_{rs} is modest [10], whereas in patients with the acute respiratory distress syndrome (ARDS) the lung and chest wall contribution to ΔR_{rs} is highly variable and depends to a great degree on whether lung injury is the primary cause of ARDS (primary) or secondary. In secondary ARDS abdominal distension often increases intra-abdominal pressure limiting chest wall expansion making the chest wall component the dominate factor in increasing ΔR_{rs} [19]. ΔR_{rs} also exhibits V' dependence in both normals [4] and patients [9, 10]. However, unlike R_{int}, Rs, ΔR_{rs} decreases progressively with increasing V' [2]. Thus R_{rs} depends on the respective contributions of R_{int}, Rs and ΔR_{rs}. From the clinical perspective R_{rs} is maximal at low V' and decreases with increasing V' to a minimal value that occurs at V' of about 11 s$^{-1}$ in both COPD [10] and ARDS [9, 20] patients.

Clinical Implications

Assessing R_{rs} during mechanical ventilation is important in order to: (a) attribute to increased R_{rs} an increase in Paw during volume-controlled mode or a decline in tidal volume during pressure-controlled mode, (b) identify the mechanism of increased R_{rs} as an increase in resistance of ETT or Raw or tissue resistance, (c) assess the effects of bronchodilating agents, and (d) detect ETT obstruction. R_{rs} can easily be measured with the interrupter technique in patients receiving invasive mechanical ventilation in ICU from the values of P_{max}, P_{plat}, and V' provided by the ventilator. Clinicians must have in mind the V' dependence of the values of R_{rs} when interpreting the results.

References