Dynamics in Logistics
Dynamics in Logistics

Second International Conference,
LDIC 2009, Bremen, Germany, August 2009
Proceedings

Springer
Editors
Prof. Dr. Hans-Jörg Kreowski
FB Mathematik und Informatik
AG Theoretische Informatik
Universität Bremen
Linzer Str. 9a
28359 Bremen
Germany
e-mail: kreo@informatik.uni-bremen.de

Prof. Dr. Bernd Scholz-Reiter
BIBA GmbH
Bremer Institut für Produktion
und Logistik GmbH
Universität Bremen
Hochschulring 20
28359 Bremen
Germany
e-mail: bsr@biba.uni-bremen.de

Dr. Klaus-Dieter Thoben
BIBA GmbH
Bremer Institut für Produktion
und Logistik GmbH
Universität Bremen
Hochschulring 20
28359 Bremen
Germany
e-mail: tho@biba.uni-bremen.de

ISBN 978-3-642-11995-8
e-ISBN 978-3-642-11996-5
DOI 10.1007/978-3-642-11996-5
Springer Heidelberg Dordrecht London New York
Library of Congress Control Number: 2010936697
© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Cover design: eStudio Calamar S.L., Girona
Printed on acid-free paper
Springer is part of Springer Science+Business Media (www.springer.com)
Preface of the Editors

LDIC 2009 was the second International Conference on Dynamics in Logistics held in Bremen in August 2009. As the first conference in 2007, it was organized by the Research Cluster for Dynamics in Logistics (LogDynamics) at the BIBA (Bremer Institut für Produktion und Logistik GmbH), which is a scientific engineering research institute affiliated to the University of Bremen.

The scope of the conference was concerned with the identification, analysis, and description of the dynamics of logistic processes and networks. The spectrum reached from the planning and modelling of processes over innovative methods like autonomous control and knowledge management to the new technologies provided by radio frequency identification, mobile communication, and networking. The growing dynamic confronts the area of logistics with completely new challenges: It must become possible to rapidly and flexibly adapt logistic processes and networks to continuously changing conditions. LDIC 2009 provided a forum for the discussion of advances in that matter. The conference addressed scientists in logistics, operations research, and computer science and aimed at bringing together both researchers and practitioners interested in dynamics in logistics.

The proceedings of LDIC 2009 consist of 48 contributions. The first paper was invited, the others selected by a strong reviewing process. The volume is organized into the following six subject areas: Mathematical Modelling in Transport and Production Logistics with ten papers, Routing, Collaboration, and Control with nine papers, Information, Communication, Autonomy, Adaption and Cognition with seven papers, Radio Frequency Identification with eight papers, Production Logistics with six papers, and Ports, Container Terminals, Regional Logistics and Services with eight papers.

We would like to thank the members of the program and organization committee and the secondary reviewers Christoph Angerer, Eleonora Bottani, Zeng-Yu Cai, Nick Chung, Gianluigi Ferrari, Christian Gorldt, Nicolau Gualda, Harry Halfar, Tilo Hamann, Carl Hans, Bernd Hellingrath, Karl Hribernik, Michael Huhns, Jens Kamenik, Hamid Reza Karimi, Thorsten Klaas-Wissing, Renate Klempien-Hinrichs, Sabine Kuske, Björn Kvarnström, Xue Li, Gerben Meyer, Dennis Ommen, Jürgen Sauer, Jörn Schönberger, Steffen Sowade, Thomas...
Suding, Hauke Tönnies, and Shu-Jen Wang for their help in the selection process. We are also grateful to Martina Cornels, Renate Klempien-Hinrichs, Jakub Piotrowski, Ingrid Rügge, Jörn Schönberger, Aleksandra Slaby, Tobias Warden and several other colleagues for their support in the local organization and for the technical assistance in running the conference system. Special thanks go to Marcus Seifert for organizing the doctoral workshop of LDIC 2009. We are particularly indebted to Caroline von Totth for her support in editing the volume and in careful unification of the print files of all the contributions. Moreover, we would like to acknowledge the financial support by the BIBA, the Research Cluster for Dynamics in Logistics (LogDynamics), the Nolting-Hauff Stiftung, the Center for Computing and Communication Technologies (TZI), and the University of Bremen. Finally, we appreciate once again the excellent cooperation with the Springer-Verlag.

Bremen, March 2010

Hans-Jörg Kreowski

Bernd Scholz-Reiter

Klaus-Dieter Thoben
Committees

Program

Neil A. Duffie, Madison (Wisconsin, USA)
Kai Furmans, Karlsruhe (Germany)
Axel Hahn, Oldenburg (Germany)
Bill C. Hardgrave, Arkansas (USA)
Bonghee Hong, Pusan (Korea)
Kap Hwan Kim, Pusan (Korea)
Paul George Maropoulos, Bath (United Kingdom)
Dirk Mattfeld, Braunschweig (Germany)
Antônio G.N. Novaes, Florianópolis (Brazil)
Kulwant Pawar, Nottingham (United Kingdom)
Mykhailo Postan, Odessa (Ukraine)
Antonio Rizzi, Parma (Italy)
Janat Shah, Bangalore (India)
Wilfried Sihn, Wien (Austria)
Alexander Smirnov, St. Petersburg (Russian Federation)
Wolfgang Stölzle, St. Gallen (Switzerland)

Organisation

Martina Cornels
Sergey Dashkovskiy
Carmelita Görg
Hans-Dietrich Haasis
Michael Hülsmann
Herbert Kopfer
Jakub Piotrowski
Ingrid Rügge
Marcus Seifert
Aleksandra Slaby
Hauke Tönnies
Dieter Uckelmann
Katja Windt
Contents

Part I Mathematical Modeling in Transport and Production Logistics

Structural Properties of Third-Party Logistics Networks 3
Dieter Armbruster, M. P. M. Hendriks, Erjen Lefeber and Jan T. Udding

Development of a Computational System to Determine the Optimal Bus-stop Spacing in order to Minimize the Travel Time of All Passengers .. 15
Homero F. Oliveira, Mirian B. Gonçalves, Eduardo S. Cursi and Antonio G. Novaes

Some Remarks on Stability and Robustness of Production Networks Based on Fluid Models .. 27
Bernd Scholz-Reiter, Fabian Wirth, Sergey Dashkovskiy, Michael Schönlein, Thomas Makuschewitz and Michael Kosmykov

Online Optimization with Discrete Lotsizing Production and Rolling Horizons ... 37
Wilhelm Dangelmaier and Bastian Degener

Dynamic Vehicle Routing in Over Congested Urban Areas 49
Antonio G. N. Novaes, Enzo M. Frazzon and Paulo J. Burin

Serving Multiple Urban Areas with Stochastic Customer Requests .. 59
Stephan Meisel, Uli Suppa and Dirk Mattfeld

Stability Analysis of Large Scale Networks of Autonomous Work Systems with Delays .. 69
H. R. Karimi, S. Dashkovskiy and N. A. Duffie
Local Input-to-State Stability of Production Networks 79
Sergey Dashkovskiy, Michael Görges and Lars Naujok

An Approach to Model Reduction of Logistic Networks
Based on Ranking .. 91
Bernd Scholz-Reiter, Fabian Wirth, Sergey Dashkovskiy,
Michael Kosmykov, Thomas Makuschewitz and Michael Schönlein

Optimization of Spare Parts Lot Size for Supply of
Equipment’s Park .. 105
Iryna Morozova, Mykhaylo Postan and Lyudmyla Shyryaeva

Part II Routing, Collaboration and Control

Weighted Multiplicative Decision Function for Distributed
Routing in Transport Logistics ... 117
Bernd-Ludwig Wenning, Henning Rekersbrink, Andreas Timm-Giel and
Carmelita Görg

Distributed Decision Making in Combined Vehicle Routing
and Break Scheduling ... 125
Christoph Manuel Meyer, Herbert Kopfer,
Adrianus Leendert Kok and Marco Schutten

Dynamic Routing Applied to Mobile Field Service 135
Auro C. Raduan and Nicolau D. F. Gualda

Intelligent Agent Control and Coordination with User-Configurable
Key Performance Indicators ... 145
Florian Pantke

Stockout Costs in Logistics Unconsidered 161
Henner Gärtner, Rouven Nickel and Peter Nyhuis

Performance Measurement for Interorganisational Collaborations
of SMEs ... 169
Yılmaz Uygun and Andreas Schmidt

On the Formation of Operational Transport Collaboration Systems .. 191
Melanie Bloos and Herbert Kopfer
Adaptive RBAC in Complex Event-Driven BPM Systems
Bernardo N. Yahya and Hyerim Bae

A Preliminary Investigation on a Bottleneck Concept in Manufacturing Control
Bernd Scholz-Reiter, Katja Windt and Huaxin Liu

Part III Information, Communication, Autonomy, Adaption and Cognition

Synchronization of Material and Information Flows in Intermodal Freight Transport: An Industrial Case Study
Jannicke Baalsrud Hauge, Valentina Boschian and Paolo Pagenelli

EURIDICE: Platform Architecture in Logistics for “The Internet of Things”
Jens Schumacher, Manfred Gschweidl and Mathias Rieder

Initial Benefits of Using Intelligent Cargo Technology in Fresh Fishing Logistics Chain
Donatella Vedovato, Tatjana Bolic, Marco Della Puppa and Marco Mazzarino

Autonomous Co-operation of “Smart-Parts”: Contributions and Limitations to the Robustness of Complex Adaptive Logistics Systems
Michael Hülsmann, Benjamin Korsmeier, Christoph Illigen and Philip Cordes

Decentralisation and Interaction Efficiency in Cooperating Autonomous Logistics Processes
Arne Schuldt

Design Aspects of Cognitive Logistic Systems
Carsten Beth, Jens Kamenik, Dennis Ommen and Axel Hahn

Autonomous Units for Solving the Traveling Salesperson Problem Based on Ant Colony Optimization
Sabine Kuske, Melanie Luderer and Hauke Tönnies
Part IV Radio Frequency Identification

Dynamic Management of Adaptor Threads for Supporting Scalable RFID Middleware .. 301
Chungkyu Park, Junho Lee, Wooseok Ryu, Bonghee Hong and Heung Seok Chae

Tag-to-Tag Mesh Network Using Dual-Radio RFID System for Port Logistics ... 311
Jinhwan Kim, Hyocheol Jeong, Myungjae Kim, Haosong Gou, Munseok Choi and Younghwan Yoo

Automation of Logistic Processes by Means of Locating and Analysing RFID-Transponder Data ... 323
Bernd Scholz-Reiter, Wolfgang Echelmeyer, Harry Halfar and Anne Schweizer

Auto-Triggering of RFID-based Logistic Process in Inter-Workflow Using Complex Event .. 329
Hyerim Bae and Yeong-Woong Yu

Selectivity of EPC Data for Continuous Query Processing on RFID Streaming Events .. 341
Mikyung Choi, Byungjo Chu, Gihong Kim and Bonghee Hong

Criticality Based Decentralised Decision Procedures for Manufacturing Networks Exploiting RFID and Agent Technology . . 351
Hermann Küehnle, Arndt Läder and Michael Heinze

The Application of the EPCglobal Framework Architecture to Autonomous Control in Logistics .. 365
Karl A. Hribernik, Carl Hans and Klaus-Dieter Thoßen

Design of Middleware Architecture for Active Sensor Tags 375
Haipeng Zhang, Bonghee Hong and Woosok Ryu

Part V Production Logistics

Investigation of the Influence of Capacities and Layout on a Job-Shop-System’s Dynamics ... 389
Bernd Scholz-Reiter, Christian Toonen and Jan Topi Tervo
Modelling Packaging Systems in the Furniture Industry 399
Dennis Reinking and Hans Brandt-Pook

Monitoring Methodology for Productive Arrangements
(Supply Chain) ... 409
Breno Barros Telles do Carmo, Marcos Ronaldo Albertin,
Dmontier Pinheiro Aragão Jr. and Nadja G. S. Dutra Montenegro

Complexity-Based Evaluation of Production Strategies Using
Discrete-Event Simulation 423
Reik Donner, Uwe Hinrichs, Christin Schicht and Bernd Scholz-Reiter

Converting Knowledge into Performance Within Global
Production and Logistic Systems 433
Enzo Morosini Frazzon and Bernd Scholz-Reiter

Dynamic Scheduling of Production and Inter-Facilities
Logistic Systems .. 443
Bernd Scholz-Reiter, Antônio G. N. Novaes, Thomas Makuschewitz
and Enzo Morosini Frazzon

Part VI Ports, Container Terminals, Regions and Services

How can Electronic Seals Contribute to the Efficiency of
Global Container System? ... 457
Kateryna Daschkovska and Bernd Scholz-Reiter

Resolution of the Berth Allocation Problem through a Heuristic
Model Based on Genetic Algorithms 469
Vanina Macowski Durski Silva, Antônio G. Novaes and
Antônio Sérgio Coelho

Development of a Genetic Algorithm for the Maritime
Transportation Planning of Car Carriers 481
Jae Un Jung, Moo Hong Kang, Hyung Rim Choi, Hyun Soo Kim,
Byung Joo Park and Chang Hyun Park

A Model of Wireless Sensor Networks Using Opportunistic Routing
in Logistic Harbor Scenarios 489
Vo Que Son, Bernd-Ludwig Wenning, Andreas Timm-Giel and
Carmelita Görg
Logistics Service Providers in Brazil: A Comparison Between Different Developed Regions 501
Mônica Maria Mendes Luna, Carlos Ernani Fries and Dmontier Pinheiro Aragão Júnoir

Adapting Dynamic Logistics Processes and Networks: Advantages Through Regional Logistics Clusters 513
Ralf Elbert, Hans-Dietrich Haasis, Robert Schönberger and Thomas Landwehr

Quotation Behaviour of Profit Centres for Offers on Dynamic Logistic Services .. 529
Bernd Pokrandt, Marcus Seifert and Stefan Wiesner

Long Haul Trucks Dynamic Assignment with Penalties 539
Antonio Martins Lima Filho and Nicolau D. Fares Gualda
Part I
Mathematical Modeling in Transport and Production Logistics
1 Introduction

Third party logistic providers are the middle men between producers and their customers. They typically have contracts with a producer to take over whatever is produced in a certain factory during a certain time window and to provide all customers with the goods that they require. In that way, third party logistic providers relieve both the customer and the producer from keeping large inventories to balance fluctuations in production and demand. Simultaneously, the third party logistic provider assumes the distribution risk, both in terms of aggregating shipments from and to different sources and for delays in the actual deliveries.

The logistic network and flows resulting from such a business model are significantly different from a usual supply network. In particular, there is only a general framework specifying the location and number of producers as well as their average production rate and the location, number and demand rate of their customers. In contrast to a supply or a distribution network, there are no demands funneled up the supply chain from the customer to the producer. Here, producers request pickup of finished goods and customers request delivery at a certain time
and it is the job of the third party logistic provider to store excess production and deliver requests on time. While there are long term contractual obligations to service specific producers and their customers, the actual quantities fluctuate stochastically and are only known a few days ahead of actual delivery. A typical scenario is the just in time (JIT) production common in the automobile industry. Parts are produced by a big plastics company at different locations throughout Europe and needed at different assembly plants in Europe. Neither the plastics producer nor the assembly factory keep any sizeable inventory—however the customers expect delivery JIT for assembly. Keeping the right size inventory and shipping on time is the business of the third party provider.

There are three management levels to operate a third party logistic provider:

1. At the **strategic level** the number of warehouses, their geographic location and the geographic range of the logistic network have to be determined.
2. At the **tactical level** transportation links between the established set of customers, producers and warehouses are set up.
3. At the **operational level** size and direction of shipments are established.

These three levels correspond to different timescales—warehouses and geographic operations correspond to long term plans and investments, the operational level covers day to day operations and the tactical level lives on a monthly to yearly timescale.

The current paper is specifically concerned with the tactical level. We assume that the strategic decisions have been made and we assume a fixed set of warehouses, producers and customers. We are studying the network of links. In particular, we focus on the influence of the operational level on the network structure, i.e. we are interested to determine the topology of the network as a function of the operational parameters.

We will study the influence of the following operational parameters on the tactical logistics networks:

- **Cost of delivery at the wrong time.** Typically there are contractual penalties for early or late delivery.
- **The actual transportation costs.** We assume costs that are linear in the amount that is shipped.
- **Variation in demand and production.**

To determine the network structure we develop an optimization scheme that optimizes the operational level. Given a network structure, transportation cost coefficients, missed delivery penalties and given stochastic production and demand rates over a time interval, we will determine the optimal allocation of shipments to direct shipping and to warehousing. We then repeat the optimization for a network with a smaller number of links and continue this process until the costs for the logistic provider go up significantly. Establishing transportation links is costly: local shippers have to be contracted, customs and other licensing issues may arise, etc. A reduction in the number of links reduces the complexity of the network and with that the complexity of the organizational task of the third party logistic provider.
In addition reducing the number of links pushes the flow of goods into the remaining links leading to thicker flows which lead to economy of scales (more fully loaded trucks or railroad wagons). In principle, the economy of scales and the costs of establishing links could be put into a cost function and an optimal link structure could be derived. However, the resulting optimization scheme will become extremely complicated and very hard to solve for any reasonable size network. In addition, the structural costs of establishing a link are very hard to quantify.

Our study shows:

- The cost of operating a third party logistic network can be quantified and optimized.
- A heuristics is developed that reduces the number of links based on their usage.
- As the number of links in a network is reduced the cost of running the operation on the network stays almost constant. Most links are redundant and can be deleted without any influence on the operation of the network until a critical network size and structure is reached. At that point the operational cost explode by several orders of magnitude reminiscent of a physical phase transition. Hence there exists a network with a very limited number of links that has close to optimal operational cost called the reduced network.
- The reduced network is largely insensitive to variations in the production and the demand rate.
- The parameters of the operational cost function determine the topological structure of the reduced network. In particular, JIT shipping requires direct links between some producers and some customers whereas time insensitive deliveries lead to a network where all links go through warehouses.

This paper gives a short summary of our work: details on the connection between the heuristics and exact optimization via a branch and bound algorithm, about the relationship between continuous production flows and transportation via trucks leading to a stepwise cost function, on extensions to more than one product flow and other issues can be found in Hendriks et al. (2008).

2 Related Approaches

Some related work focuses on optimizing the strategic level: for instance Meepetchdee and Shah (2007) determines the optimal number and location of warehouses, given the location of a plant producing one type of product and given the number and location of the customers. Results show that there is a tradeoff between the robustness of the network and its efficiency and its complexity (Cordeau et al. 2008). Typical studies investigating supply chain policies place orders to manufacturing facilities to keep inventory positions in warehouses at a desired level and to satisfy customer demand (Kwon et al. 2006; Hax and Candea 1984; Wasner and Zapfel 2004). While the decision space on an operational level in a supply chain network is crucially different from the decision space for a third
party logistic provider, some of the approaches are similar to ours. For instance Tsiakis et al. (2001) studies the strategic design of a multi-echelon, multi-product supply chain network under demand uncertainty. The objective is to minimize total costs taking infrastructure as well as operational costs into consideration. A finite set of demand scenarios is generated and the objective function is expanded by adding weighted costs for each of the possible scenarios. A process very similar to our heuristic process is employed in Kwon et al. (2006) to determine the number and locations of transshipment hubs in a supply chain network as a function of the product flows. The costs of operational activities in a network in which all potential hubs are present are minimized. Deleting one hub at a time the decrease in cost is determined and the hub which causes the largest decrease is deleted from the network. This process is continued until deleting a hub does not significantly affect the costs.

The dependency of the operational costs in a multi-echelon supply chain on the number of warehouses connected to each customer is studied in Cheung and Powell (1996). In a standard distribution network, each customer desires to be connected to one warehouse for practical reasons. The study suggests that large improvements are made when a portion of the customers is served by two warehouses (and the rest by one). An interesting recommendation for future research which we pick up in this paper, is to investigate the sensitivity of the optimal network to the ratio of different operating costs.

The most interesting work on optimizing the operations of a third party logistic provider is Topaloglu (2005). Here a company owns several production plants and has to distribute its goods to different regional markets. In each time period, a random (uncontrollable) amount of goods becomes available at each of these plants. Before the random amount of the customers becomes available, the company has to decide which proportion of the goods should be shipped directly and which proportion should be held at the production plants. Linear costs are assigned to transportation, storage and backlog. A look-ahead mechanism is introduced by using approximations of the value function and improving these approximations using samples of the random quantities. It is numerically shown that the method yields high quality solutions. Again it is found that improvements for the operational costs are made when a part of the customers is served by two plants, while the other part is served by one.

3 Methodology

To fix ideas we consider the graph in Fig. 1: production facilities supply goods and push them into the network while customers have a demand for them. Goods can be either sent directly from manufacturer(s) to customer(s) or stored temporarily in warehouses. We do not allow shipments from one warehouse to another.

We consider the following problem: given m production facilities for the same product, n warehouses, c customers and their spatial location, and given a time series
of daily production and daily demands at each location over a time period T, determine a network topology such that both, the costs of operating the network, and the number of links are close to minimal. We assume the total supply to be equal to the total demand over the time period T. The time series for production and demand are fixed and randomly generated. However, they are only known to the third party logistic provider (the optimization scheme) over a time horizon S where $S \ll T$.

We will set up a linear programming (LP) scheme, which describes the flows through such a logistics network for a fixed topology. The decision variables of this model are the flows each day through each of the links. The modeling is in discrete time (days) and is based on the following conservation laws:

- Every day the production at each factory has to be distributed among the links, connected to that particular factory.
- The storage level in a warehouse is updated daily, dependent on incoming and outgoing flows. Flows going through a warehouse incur a delay: products arriving in a warehouse at a certain time instance are shipped out 1 day later.

An objective function is constructed by assigning costs per unit of goods per day for transportation, storage and early and late delivery. The amount of goods, which are not delivered to a certain customer at a certain time instance, is added to the original demand of that particular customer for the next time instance. The conservation laws are equality constraints for this optimization problem. Since forecasts of supplies and demands are available over the time horizon S, routing decisions are based on this time horizon. This leads to a model predictive control (MPC) scheme with receding time horizon which is executed each day during the
time period T to determine the most cost-effective routing schedule for the given period T and the fixed network topology.

Since the number of possible topologies grows very large when realistic values for m, n and c are considered, we propose a heuristic to determine the network that has the lowest number of links while still generating a close to optimal schedule.

4 Optimization Scheme for the Operational Level

Let $k = 0, 1, 2, 3...$ represent time in days, $u_{ij}(k)$ is the amount of goods transported from node i to node j on day k, and $w_p(k)$ is the inventory position in warehouse p on day k. Although the total supply on day k can differ from the total demand on day k, we require that the following conservation law holds for period T:

\[
\sum_{k=0}^{T} \sum_{i=1}^{m} M_i(k) = \sum_{j=1}^{c} C_j(k). \tag{1}
\]

Here $M_i(k)$ is the production of supplier i on day k and $C_j(k)$ is the demand of customer j on day k. This assumption implies that the total amount of goods produced and consumed over the time period T is balanced. In addition

\[
M_i(k) = \sum_{j \in S_i} u_{ij}(k), \tag{2}
\]

where the set S_i contains the indices of all the nodes to which manufacturing facility i is connected. A similar constraint exists for the warehouse:

\[
w_p(k) = w_{p-1}(k) + \sum_{i \in I_p} u_{ij}(k - 1) - \sum_{j \in O_p} u_{pj}(k), \tag{3}
\]

where the set I_p contains the indices of all the suppliers of warehouse p and O_p contains the indices of all the nodes that are its customers. The total cost $A(u)(k)$ of operating the logistic enterprise at day k for the flows $u_{ij}(k)$ represented by u consists of the sum of the transportation costs, the warehouse costs and the backlog costs

\[
A(u)(k) = \sum_{j=1}^{c} b_j B_j^2(k) + \sum_{i,j \in U} a_{ij} u_{ij}(k) + \sum_{p \in W} s_p w_p(k); \tag{4}
\]

where b_j is the backlog cost per item per day for customer j, a_{ij} represents the unit cost of transportation from location i to location j, and s_p is the unit cost per day of storing an item in warehouse p. $B_j(k)$ is the backlog at customer j on day k given by

\[
B_j(k) = D_j(k) - \sum_{i \in Q_i} u_{ij}(k) \tag{5}
\]
where \(Q_j \) is the set of all nodes connecting to customer \(j \) and
\[
D_j(k) = C_j(k) + B_j(k - 1). \tag{6}
\]

Hence old backlog is added to the original customer demand. Note that we are penalizing early and late delivery equally which is most certainly not the case in reality but makes our calculations much easier.

Equation (4) reflects the cost on 1 day. However, forecasts of supplies and demands are available over a time horizon of length \(S \) and hence routing decisions should be made based on the time interval \([k, k + S]\). To do this we use MPC with rolling horizon (MPC) (Garcia et al. 1989) and have the following cost function:
\[
\min_{u(k), \ldots, u(k+S-1)} \sum_{q=0}^{S-1} A(u)(k + q) \tag{7}
\]
subject to all the previous constraints over the time interval \([k, k + S]\).

The above MPC determines the optimal routing schedule for day \(k \). Subsequently the MPC for day \(k + 1 \) is executed, rolling the time horizon forward. To find the most cost-effective routing schedule for the time period \(T \) thus entails solving the optimization problem (Eq. 7) \(T \) times leading to a total minimal cost over that time period.

5 Optimization Scheme for the Network Topology

The MPC presented in the previous section uses a fixed topology to make the best operational decisions given a set of time series for supply and demand. For small enough networks we can now change the network topology and determine the best network for the optimal operational decisions. A branch and bound method is described in Hendriks et al. (2008). However, since the problem has integer state variables (i.e. whether a link exists or not) we can only solve rather small problems. We therefore introduce the following heuristics:

- Start with a fully connected network and run the MPC.
- Until the network is minimally connected (i.e. each supplier has at least one customer, each customer has at least one supplier), do:
 - delete all links whose total flow over the time period \(T \) is below a threshold.
 - Run the MPC for the truncated network.

Plot the costs of the optimal operation against the number of deleted links. Figure 2 shows a typical result for a network of 8 suppliers, 4 warehouses and 75 customers over a time interval of \(T = 100 \) and a horizon of \(S = 3 \). The operating costs for the optimal operations are minimal for the fully connected network, since we do not figure in the economics of scale. Typically about 95% of the links can be deleted without changing the operational cost. At some critical
link number the costs explode. Choosing a network that stays just below this critical link number allows us to find a network whose operational cost are very close to optimal and at the same time have a very small number of links. We call such a network the reduced network.

We show in Hendriks et al. (2008) that the reduced network has costs that are very close to the costs of the optimal network and that the topology of the reduced network is equivalent to the topology of the optimal network determined by a branch and bound method.

6 The Influence of the Cost Parameters on the Topology of the Reduced Network

We study the dependence of the reduced network topology on the ratio of backlog costs to transportation cost. This reflects different business scenarios: high backlog costs are associated with JIT production methods or with the delivery of very time sensitive material, e.g. pharmaceutical products. Low backlog costs are associated with the delivery of commodity items.

Figures 3 and 4 show the resulting close to optimal network topologies for a test case with 20 suppliers, 4 warehouses, and 25 customers for low backlog costs and high backlog costs, respectively. Two differences between the structures are very obvious: (1) low backlog costs contains far fewer links than the topology for the JIT-product, (2) low backlog costs generate a near optimal topology that has only indirect links, while a lot of direct links are present for the JIT scenario. A posteriori it is not hard to interpret these topologies: JIT production needs both, the speed of the direct links as well as the buffering capacity of the warehouses. That also leads to a significant increase of links. In a scenario with negligible backlog costs, the network is determined by the structure of the transportation
costs which here favor the links through the warehouses since they are the ones with the thick flows. We have to stress here that for relatively small backlog costs goods are still delivered to the customers. Although it might be cheaper to not satisfy customer demands rather than shipping goods from warehouses to customers, high future storage costs, forecasted over the time window S induce the system to ship goods out of the warehouses.

It is instructive to study how the topology changes as the ratio of backlog/transportation cost changes. We generate 60 different supply and demand samples and run the MPC and subsequent heuristics for each of these samples. The number and type of links (either through a warehouse or through direct links) are determined for each of these samples as a function of the cost ratio. Figure 5 shows the mean number of direct and indirect links and a 95% confidence interval for the 60 samples. Figure 6 shows the average number of links (with confidence interval) as

Fig. 3 The reduced network for a backlog/transportation cost ratio of 10,000/1

Fig. 4 The reduced network for a backlog cost/transportation cost ratio of 0.0001/1
a function of the cost ratios. In all cases we used 4 suppliers, 3 warehouses and 30 customers.

We find that

- There is a clear crossover between systems that are dominated by direct links and systems that are dominated by indirect links. The crossover occurs approximated when backlog costs and transportation costs are equal.
- The number of direct (indirect) links increases (decrease) monotonically with the backlog to transportation cost ratio.
- For extremely low backlog costs, the number of direct links is zero and the number of indirect links is minimal, i.e. everybody has one connection with a warehouse which provides all the redundancy.
- For JIT networks, the redundancy is provided by more than one link on average to every customer and most of these links are direct links.

7 Conclusions

We have studied the structure of the distribution networks for a third party logistic provider. Using MPC and a linear program we find optimal operational decisions
that allow us to heuristically trim underused links in networks until the operational cost explode. A network just before the transition is called the reduced network and is the target of our study. It combines low cost operations with a small number of links. The typical number of links of the reduced network does not exceed 5% of a minimally connected network. Experimental results reported in Hendriks et al. (2008) suggest that the reduced network is insensitive to the second and higher moments of the supply and demand distributions. This suggests that a robust reduced network can be found by a random choice of supply and demand distributions with the correct means. Very plausible topological structures for the reduced networks have been created for the extreme cases of JIT delivery and commodity delivery. Open problems include the study of the evolution of the topology of these networks as the cost parameters change continuously, the inclusion of transshipments between warehouses, the inclusion of multiple type products and the possibility of high cost and low cost links (airfreight and trucks).

Acknowledgments This study was supported by the Koninklijke Frans Maas Groep. D. A. was supported by NSF grant DMS 0604986 and a grant by the Stiftung Volkswagenwerk under the program on Complex Networks.

References

Development of a Computational System to Determine the Optimal Bus-stop Spacing in order to Minimize the Travel Time of All Passengers

Homero F. Oliveira, Mirian B. Gonçalves, Eduardo S. Cursi and Antonio G. Novaes

1 Introduction

One of the main concerns regarding urban planning nowadays is public transportation. The great number of vehicles in the main cities has been causing many problems, from infrastructure (number of vehicles over street capability), through safety (high accident rates) and environmental issues (high pollution rates), among others. In infrastructure, one of the problems caused by the large number of vehicles on the streets is the travel time between two locations.

These problems aggravate specially in big cities, where traffic jams have already become part of the urban landscape.

However, one of the main aspects to be considered in a public transportation system is the travel time of the passenger using a bus line. The number of stops affects the total travel time deeply. In this manner, the number stops must be chosen very carefully, in a way that the bus lines become more appealing to the

H. F. Oliveira (✉)
Universidade Estadual do Oeste do Paraná–Campus de Toledo, Caixa Postal 520, Toledo, Paraná, CEP 85903-000, Brazil
e-mail: homero2@uol.com.br

M. B. Gonçalves and A. G. Novaes
Departamento de Engenharia de Produção e Sistemas, Universidade Federal de Santa Catarina–UFSC, Florianópolis, SC, Brazil

M. B. Gonçalves
e-mail: mirianbuss@deps.ufsc.br

A. G. Novaes
e-mail: novaes@deps.ufsc.br

E. S. Cursi
Laboratoire de Mécanique de Rouen (LMR), Institut National des Sciences Appliquées de Rouen–INSA Rouen, 76801 Saint-Étienne-du-Rouvray Cedex, France
e-mail: eduardo.souza@insa-rouen.fr
users. With a large number of stops, the user walks very little, but it makes the trip too long and unpleasant for those who travel a long distance in that line. On the other hand, too few stops make the trip faster, but the passengers also have to walk more to get to the bus-stop, as well as to the final destination.

Ammons (2001) studied various spacing patterns between bus-stops around the world and concluded that the average spacing is from 200 to 600 m in urban areas. Reilly (1997) noticed that the European traffic departments have different standards to determine the spacing between bus-stops. In Europe, there are 2–3 stops per kilometer, which means that the spacing is from 330 to 500 m, in opposition to United States standards, where the stops are spaced from 160 to 250 m.

These studies show that the distance between stops does not follow a scientific procedure, or even based on predefined methodological studies. According to Kehoe (2004), in many routes along the USA, the bus-stops were defined trough time, as a result of user’s requests to authorities and/or bus companies. Because the stops were based on citizen’s needs, altering the distance between stops becomes a complicated process, for the population has already grown accustomed to the original spacing.

These remarks lead to the following question:

How will the ideal number of stops be determined in order to optimize the line for the users?

To answer this question we combined the concepts of non-linear programming (Frielander 1994) and Voronoi diagram. Voronoi diagrams has been around for at least four centuries, and many relevant material can be found in many areas, such as anthropology, archeology, astronomy, biology, cartography, chemistry, computational geometry, ecology, geography, geology, marketing, meteorology, operations research, physics, remote sensing, statistics, and urban and regional planning (Novaes 2000).

The concept of Voronoi Diagram is very simple. Given a finite set of distinct, isolated points in a continuous space, we associate all locations in that space with the closest member of the point set. The result is a partitioning of the space in a set of regions where each region is related to only one of the points of the original set.

Since the 1970s, algorithms for computing Voronoi diagrams of geometric primitives have been developed in computational geometry and related areas. There are several ways to construct a Voronoi diagram. One of the most practical is the incremental method, described in Novaes (2000). This method is also one of the most powerful in the subject of numerical robustness. The total time complexity for this method is of $O(n^2)$. However, the average time complexity can be decreased to $O(n)$ by the use of special data structures as described in Novaes (2000), p. 264.

2 Concepts of Voronoi Diagram

In this section we will define the main concepts and some properties of Voronoi Diagrams. The concepts presented in this section were based in Okabe et al. (1992).
2.1 Definition of a Planar Ordinary Voronoi Diagram

Given a set of two or more but a finite number of distinct points in the Euclidian plane, we associate all locations in that space with the closest member(s) of the point set with respect to the Euclidean distance. The result is a tessellation off the plane into a set of regions associated with members off the point set (Okabe et al. 1992).

The mathematical definition is the following:

\[V(p_i) = \{ x \mid \| x - x_i \| \leq \| x - x_j \| \text{ for } j \neq i, j \in I_n \} \]

where \(V \) is the planar ordinary Voronoi diagram associated with \(p_i \) and the set given by:

\[V^o = \{ V(p_1), \ldots, V(p_n) \} \]

An example of an ordinary Voronoi diagram is presented in Fig. 1.

2.2 Definition of a Multiplicatively Weighted Voronoi Diagram

In the ordinary Voronoi diagram, we assume that all generator points have the same weight. But, in many practical applications, we may have to assume that they have different weights in order to represent, for example the population of a city, or the level of hazardousness that an accident at a point can cause.

Voronoi diagrams for the weighted distance are more complicated to analyze. The sides of the polygons are no longer straight lines but are arcs of circles.

The multiplicative weighted Voronoi diagram is characterized by the weighted distance calculated by

Fig. 1 Example of ordinary Voronoi diagram
where w_i is the weight associated with each point i. After a few steps of calculation, we obtain a bisector that is defined by

$$b(p_i, p_j) = \left\{ x : \left\| x - \frac{w_i^2}{w_i^2 - w_j^2} x_j + \frac{w_j^2}{w_i^2 - w_j^2} x_i \right\| = \frac{w_i w_j}{w_i^2 - w_j^2} \left\| x_j - x_i \right\| \right\}$$

(4)

This bisector is the set of points that satisfy the condition that the distance from p to the point defined by

$$\frac{w_i^2 x_j}{w_i^2 - w_j^2} - \frac{w_j^2 x_i}{w_i^2 - w_j^2}$$

(5)

is constant. The bisector is a circle in \mathbb{R}^2. So, the dominance region of p_i over p_j with the weighted distance is written by:

$$\text{Dom}(p_i, p_j) = \left\{ x : \frac{1}{w_i} \| x - x_i \| \leq \frac{1}{w_j} \| x - x_j \| \right\}, \quad i \neq j$$

(6)

Figure 2 is an example of a multiplicatively weighted Voronoi Diagram with the coordinates of the points inside the parenthesis and the weights associated to them outside.

2.3 Definition of an Additively Weighted Voronoi Diagram

Similarly to the multiplicative weighted Voronoi diagram, the additively weighted Voronoi diagram (Fig. 3) is characterized by the weighted distance calculated by