Automotive Transmissions

Second Edition

Harald Naunheimer · Bernd Bertsche · Joachim Ryborz · Wolfgang Novak

Automotive Transmissions

Fundamentals, Selection, Design and Application

In Collaboration with Peter Fietkau

Second Edition

With 487 Figures and 85 Tables

Dr.-Ing. Harald Naunheimer Vice President Corporate Research and Development ZF Friedrichshafen AG Graf-von-Soden-Platz 1 88046 Friedrichshafen Germany harald.naunheimer@zf.com

Dr.-Ing. Joachim Ryborz Project Manager Development Transmission for Light Commercial Vehicle ZF Friedrichshafen AG Alfred-Colsman-Platz 1 88045 Friedrichshafen Germany joachim.ryborz@zf.com

In Collaboration with Dipl.-Ing. Peter Fietkau Scientific Employee Universität Stuttgart Institute of Machine Components Pfaffenwaldring 9 70569 Stuttgart Germany peter.fietkau@ima.uni-stuttgart.de Professor Dr.-Ing. Bernd Bertsche Director Universität Stuttgart Institute of Machine Components Pfaffenwaldring 9 70569 Stuttgart Germany bernd.bertsche@ima.uni-stuttgart.de

Dr.-Ing. Wolfgang Novak Development Engineer Daimler AG Mercedesstraße 119 70546 Stuttgart Germany wolfgang.novak@daimler.com

Translator Aaron Kuchle Foreign Language Institute Yeungnam University 214-1 Dae-dong Gyeongsan, Gyeongbuk Korea 712-749 aaronkuchle@yahoo.com

ISBN 978-3-642-16213-8 e-ISBN 978-3-642-16214-5 DOI 10.1007/978-3-642-16214-5 Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2010937846

© Springer-Verlag Berlin Heidelberg 1994, 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Cover design: eStudio Calamar S.L.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface to the Second Revised and Expanded Edition

"Automotive Transmissions" was first published in Germany in May 1994. It was so well received that we decided to publish the book in English in 1999. Since then much has happened in the automotive and transmission sectors.

Imperatives imposed upon the development of automotive transmissions are improving driving performance, increasing driving comfort and ease of use, increasing reliability and service life, reducing weight and installation space, raising efficiency levels, profiling the brand image, reducing costs and, above all, reducing fuel consumption and pollutant emissions. Markets and market mechanisms for passenger cars and commercial vehicles differ and the emphasis placed on these requirements differs in turn. Common to all cases is that a variety of requirements leads by necessity to a conflict of goals. Approaches that can help to solve the goal conflicts are individual usage-optimised transmission solutions, higher integration of submodules, introducing more functionality and generating superordinate functions by means of networking with other vehicle components.

In the case of passenger cars, the trend toward individualised designs has caused strong segmentation with numerous vehicle classes. This has also lead to a massive diversification among transmission designs, with individual solutions and competing concepts: manual transmissions (MT), automated manual transmissions (AMT), dual clutch transmissions (DCT), conventional automatic transmissions (AT), continuously variable transmissions (CVT) and hybrid drives. The "black and white", manual vs. automatic situation existing back in 1990 no longer applies. In the case of commercial vehicle transmissions, the mechanical geared transmission with 6 to 16 speeds of either single-range or multi-range design are standard. In the heavy-duty truck segment, AMT have become successful in Europe. Their path led from semi-automatic designs right up to fully automated transmissions. Increasing integration of peripheral parts and submodules into the transmission has led to lighter, more compact and more reliable aggregates.

Electrics and electronics, actuator technology and sensor technology have played a defining role in many innovations in the area of automotive transmissions. Software is responsible for many of the functions of transmission systems, and thus for much of their customer benefit. The increase in function content and networking with other components of the vehicle leads to changes in the chain of responsibility between vehicle and transmission manufacturers.

The correct evaluation of trends in the market, in engineering and technology has taken on greater importance. The tasks now are to recognize and evaluate future demands early on, to derive new strategies and products from this basis and to develop and finally to produce these products for the market cost-effectively while maintaining a high level of quality. The goal of this book is to provide some of the tools required to do this. It intends to show the process of product development for automotive transmissions in its entirety. The second edition integrates innovations in automotive transmissions into the systematic framework established in the first edition. Approximately 40% of the content of the second edition is either entirely new or revised with new data. As with the first edition, however, the goal is not to introduce the most current developments or to be exhaustive in details, but to provide the reader with lines of reasoning and to demonstrate approaches. Theoretical principles and concepts are explained that are of general validity and hence of enduring relevance. Therefore beside current designs, transmission systems that are no longer in production are also presented.

In order to strengthen the relation to praxis, the second edition has consolidated the knowledge of experts from different sub-disciplines. Our thanks go to them: history: Hans-Jörg Dach (ZF); passenger car MT/AMT: Christian Hoffmann (Getrag); passenger car DCT: Michael Schäfer (VW), Michael Kislat (VW), Michael Ebenhoch (ZF); passenger car AT: Christoph Dörr (Mercedes-Benz); passenger car/commercial vehicle hvbrid: Stefan Kilian (ZF); passenger car CVT: Peter Schiberna (Audi); commercial vehicle AMT: Carsten Gitt (Mercedes-Benz); commercial vehicle CVT: Karl Grad (ZF); gearing: Franz Joachim (ZF); operational fatigue strength: Karl-Heinz Hirschmann (Uni Rostock): acoustics: Martin Hildebrand (Ford); external gearshift system: Andreas Giefer (ZF); multi-plate clutches: Dietmar Frey (ZF); dry clutches: Benedikt Schauder (ZF Sachs); wet dual clutches: Johannes Heinrich (BorgWarner); bearings: Oskar Zwirlein (FAG); seals: Werner Haas (Uni Stuttgart); retarders: Reinhold Pittius (Voith); all-wheel drive: Dieter Schmidl (Magna Powertrain), Andreas Allgöwer (Getrag), Hubert Gröhlich (VW); electronic transmission control: Josef Schwarz (ZF); calculation tools: Marco Plieske (ZF); driving simulation: Friedemann Jauch (ZF); manufacturing: Christian Wagner (ZF); testing: Peter Brodbeck (Porsche) - and many others who supported us with their advice and expertise.

We would like to thank the following companies for up-to-date and realistic illustrations: Allison, Audi, BMW, BorgWarner, Eaton, Ford, Getrag, Honda, LuK, Magna Powertrain, Mercedes-Benz, Opel, Porsche, Toyota, Voith and VW. Special thanks are due to ZF for all their support during the development of this book.

This English language edition could not have come to fruition without the assistance of many contributors. We are particularly indebted to Dipl.-Ing. Peter Fietkau as the manager and co-ordinator of the project, and to his assistants at the Institute of Machine Components (IMA), University of Stuttgart. We thank Springer-Verlag for their good cooperation. Our special thanks go to our families for their great patience, understanding and support during the three years spent preparing this book.

In 2002, Professor Dr.-Ing. Gisbert Lechner passed away. He was the initiator and author of the first English edition of "Automotive Transmissions". We see the second edition as a continuation of his excellent work.

Friedrichshafen and Stuttgart, May 2010 Harald Naunheimer, Joachim Ryborz Bernd Bertsche, Wolfgang Novak

Preface

It was in 1953 that H. Reichenbächer wrote the first book on motor vehicle transmission engineering. At that time, the German motor industry produced 490 581 vehicles including cars, vans, trucks, busses and tractor-trailer units. In 1992, production had reached 5.2 million. The technology at that time only required coverage of certain aspects, and Mr Reichenbächer's book accordingly restricted itself to basic types of gearbox, gear step selection, gear sets with fixed axles, epicyclic systems, Föttinger clutches and hydrodynamic transmissions.

Automotive engineering and the technology of mechanism design have always been subject to evolution. The current state of the art is characterised by the following interrelations:

Environment - Traffic - Vehicle - Transmission.

Questions such as economy, environment and ease of use are paramount. The utility of a transmission is characterised by its impact on the traction available, on fuel consumption and reliability, service life, noise levels and the user-friendliness of the vehicle.

There are new techniques which now have to be taken into account, relating to development methodology, materials technology and notably strength calculation. Examples include operational fatigue strength calculations, the introduction of specific flank corrections, taking account of housing deformation, and the need for light-weight construction.

Transmission design engineering bas been enriched by numerous variants. The manual two-stage countershaft transmission, preferred for longitudinal engines, and the single-stage countershaft transmission preferred for transverse engines now have many sub-variants, e.g. automatic transmissions, continuously variable transmissions, torque converter clutch transmissions, dual clutch transmissions, and transmissions for all-wheel drive.

The engine and transmission must increasingly be considered as one functional unit. The terms used are "powertrain matching" and "engine/transmission management". This can only be achieved by an integrated electronic management system covering the mechanical components in both engine and transmission.

The technique of systematic design developed in the 1960s, and the increasing use of computers for design, simulation and engineering (CAD) are resulting in ever-reducing development cycles. This trend is reinforced by competitive pressures. Systematic product planning is another significant factor in this regard.

It was therefore necessary to create an entirely new structure for the present book "Automotive Transmissions". Modern developments have to be taken into account. The great diversity and range of issues in developing transmissions made it difficult to select the material for this completely new version of "Automotive Transmissions", especially within the prevailing constraints. Not every topic could be covered in detail. In those places where there is an established literature, the authors have chosen to rely on it in the interests of brevity.

The purpose of this book is to describe the development of motor vehicle transmissions as an ongoing part of the vehicle development system. Only by actively taking this interaction into account is it possible to arrive at a fully viable transmission design. The aim is to highlight the basic interrelations between the drive unit, the vehicle and the transmission on the one hand, and their functional features such as appropriate gear selection, correct gear step, traction diagram, fuel consumption, service life and reliability on the other. Of course, another major concern was to represent the various engineering designs of modern vehicle transmissions in suitable design drawings.

The book is addressed to all engineers and students of automotive engineering, but especially to practitioners and senior engineers working in the field of transmission development. It is intended as a reference work for all information of importance to transmission development, and is also intended as a guide to further literature in the field.

Without the assistance of numerous people this book would not have been written. We would like to thank Dr Heidrun Schröpel, Mr Wolfgang Elser, Dr Ekkehard Krieg, Dr Winfried Richter, Mr Thomas Spörl, Mr Thilo Wagner, Dr Georg Weidner and Professor Lothar Winkler for researching and revising chapters. We also wish to acknowledge the contribution of numerous assistants and postgraduates for important work on specific aspects.

We wish to thank Christine Häbich for her professional editing. We would like to thank many employees and scientific assistants of the IMA (Institute of Machine Components) for reviewing and checking various parts of the text.

Such a book cannot be published without current practical illustrations. The publishers wish to acknowledge their gratitude to numerous companies for making illustrations available: Audi AG, BMW AG, Eaton GmbH, Fichtel & Sachs AG, Ford Werke AG, GETRAG, Mercedes-Benz AG, Adam Opel AG, Dr.-Ing. h.c. Porsche AG, and Volkswagen AG. We are particularly indebted to ZF Friedrichshafen AG who have always been most forthcoming in responding to our numerous requests for graphic material.

We are also indebted to Springer-Verlag for publishing this book. We would particularly like to thank Mr M Hofmann, whose faith in our project never wavered, and whose gentle but firm persistence ensured that the book did indeed reach completion. Dr Merkle then prepared the work for printing. We must also thank the publisher of the "Design Engineering Books" series, Professor Gerhard Pahl for his patience and advice. Our thanks especially to our families for their understanding and support.

Stuttgart, May 1994 Gisbert Lechner Harald Naunheimer

Contents

Те	rms a	und Syn	nbols	XVII
1	Intr	oductio	on	1
	1.1	Prefac	e	1
	1.2	Histor	y of Automotive Transmissions	7
		1.2.1	Basic Innovations	7
		1.2.2	Development of Vehicles and Drive Units	9
		1.2.3	Stages in the Development of Automotive Transmissions	10
		1.2.4	Development of Gear-Tooth Systems and other	
			Transmission Components	20
		1.2.5	Development of Torque Converters and Clutches	23
		1.2.6	Investigation of Phenomena: Transmission Losses and	
			Efficiency	24
		1.2.7	Historical Overview	26
2	Ove	erview o	f the Traffic – Vehicle – Transmission System	28
	2.1	Funda	mental Principles of Traffic and Vehicle Engineering	28
		2.1.1	The Significance of Motor Vehicles in our Mobile World	30
		2.1.2	Trends in Traffic Engineering	34
		2.1.3	Passenger and Goods Transport Systems	36
		2.1.4	Alternative Transport Concepts	40
	2.2	The M	larket and Development Situation for Vehicles, Gearboxes	
		and C	omponents	41
		2.2.1	Market Situation and Production Figures	41
		2.2.2	Development Situation	46
	2.3	Basic	Elements of Vehicle and Transmission Engineering	46
		2.3.1	Systematic Classification of Vehicles and Vehicle Use	47
		2.3.2	Why do Vehicles Need Gearboxes?	49
		2.3.3	Main and Auxiliary Functions of Vehicle Transmissions,	
			Requirements Profile	51
		2.3.4	Interrelations: Direction of Rotation, Transmission Ratio,	
			Torque	52
		2.3.5	Road Profiles, Load Profiles, Typical Vehicle Use and	
			Driver Types	56
	2.4	Funda	mental Performance Features of Vehicle Transmissions	58
		2.4.1	Service Life and Reliability of Transmissions	58
		2.4.2	Centre Distance Characteristic Value	60

		2.4.3	Gearbox Mass Characteristic Value	
		2.4.4	Gearbox Cost Characteristic Value	64
		2.4.5	Gearbox Noise	
		2.4.6	Gearbox Losses and Efficiency	
	2.5	Trends	s in Transmission Design	
3	Mee	liating	the Power Flow	73
	3.1	Power	Requirement	73
		3.1.1	Wheel Resistance	73
		3.1.2	Adhesion, Dynamic Wheel Radius and Slip	75
		3.1.3	Air Resistance	77
		3.1.4	Gradient Resistance	
		3.1.5	Acceleration Resistance	
		3.1.6	Total Driving Resistance	
		3.1.7	Efficiency Map	
	3.2	Divers	sity of Prime Movers	
		3.2.1	Overview	
		3.2.2	Electric Drive with Electric Energy Accumulator	
		3.2.3	Electric Drive with Fuel Cell	
		3.2.4	Hybrid Drive	
	3.3	Power	Output, Combustion Engine Characteristic	
		3.3.1	Torque/Engine Speed Characteristic	
		3.3.2	Engine Spread, Throttle Map	
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		3.3.3	Consumption Map	
4	Pow	3.3.3 ver Con	version: Selecting the Ratios	
4	<b>Pow</b> 4.1	3.3.3 ver Con Power	version: Selecting the Ratios	
4	<b>Pow</b> 4.1 4.2	3.3.3 ver Con Power Total I	version: Selecting the Ratios train	
4	<b>Pow</b> 4.1 4.2	3.3.3 ver Con Power Total I 4.2.1	version: Selecting the Ratios         train         Ratio and Overall Gear Ratio         Overall Gear Ratio i _{G,tot}	
4	<b>Pow</b> 4.1 4.2	3.3.3 ver Con Power Total I 4.2.1 4.2.2	version: Selecting the Ratios         train         Ratio and Overall Gear Ratio         Overall Gear Ratio i _{G,tot} Selecting the Largest Powertrain Ratio i _{A,max}	
4	<b>Pow</b> 4.1 4.2	3.3.3 <b>ver Con</b> Power Total I 4.2.1 4.2.2 4.2.3	version: Selecting the Ratios         train         Ratio and Overall Gear Ratio         Overall Gear Ratio i _{G,tot} Selecting the Largest Powertrain Ratio i _{A,max} Selecting the Smallest Powertrain Ratio i _{A,min}	
4	<b>Pow</b> 4.1 4.2	3.3.3 <b>ver Con</b> Power Total I 4.2.1 4.2.2 4.2.3 4.2.4	version: Selecting the Ratios         train         Ratio and Overall Gear Ratio         Overall Gear Ratio $i_{G,tot}$ Selecting the Largest Powertrain Ratio $i_{A,max}$ Selecting the Smallest Powertrain Ratio $i_{A,min}$ Final Ratio	
4	<b>Pow</b> 4.1 4.2	5.3.3 <b>ver Con</b> Power Total I 4.2.1 4.2.2 4.2.3 4.2.4 Selecti	version: Selecting the Ratios         train         Ratio and Overall Gear Ratio         Overall Gear Ratio $i_{G,tot}$ Selecting the Largest Powertrain Ratio $i_{A,max}$ Selecting the Smallest Powertrain Ratio $i_{A,min}$ Final Ratio         ing the Intermediate Gears	
4	<b>Pow</b> 4.1 4.2 4.3	5.3.3 <b>ver Com</b> Power Total I 4.2.1 4.2.2 4.2.3 4.2.4 Selecti 4.3.1	<b>version: Selecting the Ratios</b> train Ratio and Overall Gear Ratio Overall Gear Ratio $i_{G,tot}$ . Selecting the Largest Powertrain Ratio $i_{A,max}$ Selecting the Smallest Powertrain Ratio $i_{A,min}$ . Final Ratio	
4	<b>Pow</b> 4.1 4.2 4.3	3.3.3 <b>ver Con</b> Power Total I 4.2.1 4.2.2 4.2.3 4.2.4 Selecti 4.3.1 4.3.2	version: Selecting the Ratios         train         Ratio and Overall Gear Ratio         Overall Gear Ratio $i_{G,tot}$ Selecting the Largest Powertrain Ratio $i_{A,max}$ Selecting the Smallest Powertrain Ratio $i_{A,min}$ Final Ratio         ing the Intermediate Gears         Velocity/Engine-Speed Diagram         Geometrical Gear Steps	
4	<b>Pow</b> 4.1 4.2 4.3	3.3.3 <b>ver Com</b> Power Total I 4.2.1 4.2.2 4.2.3 4.2.4 Selecti 4.3.1 4.3.2 4.3.3	<b>version: Selecting the Ratios</b> train Ratio and Overall Gear Ratio	
4	Pow 4.1 4.2 4.3	5.3.3 <b>ver Com</b> Power Total I 4.2.1 4.2.2 4.2.3 4.2.4 Selecti 4.3.1 4.3.2 4.3.3 Ratio	version: Selecting the Ratios         train         Ratio and Overall Gear Ratio         Overall Gear Ratio $i_{G,tot}$ Selecting the Largest Powertrain Ratio $i_{A,max}$ Selecting the Smallest Powertrain Ratio $i_{A,min}$ Final Ratio         ing the Intermediate Gears         Velocity/Engine-Speed Diagram         Geometrical Gear Steps         Progressive Gear Steps         Variation in Continuously Variable Transmissions	
4	Pow 4.1 4.2 4.3 4.4 Mat	5.3.3 ver Com Power Total I 4.2.1 4.2.2 4.2.3 4.2.4 Selecti 4.3.1 4.3.2 4.3.3 Ratio V tching E	<b>version: Selecting the Ratios</b> train         Ratio and Overall Gear Ratio         Overall Gear Ratio $i_{G,tot}$ Selecting the Largest Powertrain Ratio $i_{A,max}$ Selecting the Smallest Powertrain Ratio $i_{A,min}$ Final Ratio         ing the Intermediate Gears         Velocity/Engine-Speed Diagram         Geometrical Gear Steps         Progressive Gear Steps         Variation in Continuously Variable Transmissions	
4	Pow 4.1 4.2 4.3 4.4 Mat 5.1	5.3.3 <b>ver Con</b> Power Total I 4.2.1 4.2.2 4.2.3 4.2.4 Selecti 4.3.1 4.3.2 4.3.3 Ratio <b>tching F</b> Tractic	<b>version:</b> Selecting the Ratios         train         Ratio and Overall Gear Ratio         Overall Gear Ratio $i_{G,tot}$ Selecting the Largest Powertrain Ratio $i_{A,max}$ Selecting the Smallest Powertrain Ratio $i_{A,min}$ Final Ratio         ing the Intermediate Gears         Velocity/Engine-Speed Diagram         Geometrical Gear Steps         Variation in Continuously Variable Transmissions         Cngine and Transmission	
4	Pow 4.1 4.2 4.3 4.4 Mat 5.1	5.3.3 <b>ver Con</b> Power Total I 4.2.1 4.2.2 4.2.3 4.2.4 Selecti 4.3.1 4.3.2 4.3.3 Ratio <b>tching F</b> Tractio 5.1.1	<b>version:</b> Selecting the Ratios         train         Ratio and Overall Gear Ratio         Overall Gear Ratio $i_{G,tot}$ Selecting the Largest Powertrain Ratio $i_{A,max}$ Selecting the Smallest Powertrain Ratio $i_{A,min}$ Final Ratio         ing the Intermediate Gears         Velocity/Engine-Speed Diagram         Geometrical Gear Steps         Progressive Gear Steps         Variation in Continuously Variable Transmissions         Cngine and Transmission         Deriving a Traction Diagram (Example)	
4	Pow 4.1 4.2 4.3 4.4 Mat 5.1	5.3.3 <b>ver Com</b> Power Total I 4.2.1 4.2.2 4.2.3 4.2.4 Selecti 4.3.1 4.3.2 4.3.3 Ratio V <b>tching E</b> Tractic 5.1.1 5.1.2	version: Selecting the Ratios         train         Ratio and Overall Gear Ratio         Overall Gear Ratio $i_{G,tot}$ Selecting the Largest Powertrain Ratio $i_{A,max}$ Selecting the Smallest Powertrain Ratio $i_{A,min}$ Final Ratio         ing the Intermediate Gears         Velocity/Engine-Speed Diagram         Geometrical Gear Steps         Progressive Gear Steps         Variation in Continuously Variable Transmissions         Cngine and Transmission         Deriving a Traction Diagram (Example)         Engine Braking Force	
4	Pow 4.1 4.2 4.3 4.4 Mat 5.1	5.3.3 <b>ver Con</b> Power Total I 4.2.1 4.2.2 4.2.3 4.2.4 Selecti 4.3.1 4.3.2 4.3.3 Ratio V <b>tching E</b> Tractic 5.1.1 5.1.2 5.1.3	<b>version:</b> Selecting the Ratios         train         Ratio and Overall Gear Ratio         Overall Gear Ratio $i_{G,tot}$ Selecting the Largest Powertrain Ratio $i_{A,max}$ Selecting the Smallest Powertrain Ratio $i_{A,min}$ Final Ratio         ing the Intermediate Gears         Velocity/Engine-Speed Diagram         Geometrical Gear Steps         Progressive Gear Steps         Variation in Continuously Variable Transmissions         Congine and Transmission         Deriving a Traction Diagram (Example)         Engine Braking Force         Geared Transmission with Dry Clutch	
4	Pow 4.1 4.2 4.3 4.4 Mat 5.1	5.3.3 <b>ver Con</b> Power Total I 4.2.1 4.2.2 4.2.3 4.2.4 Selecti 4.3.1 4.3.2 4.3.3 Ratio V <b>tching E</b> Tractic 5.1.1 5.1.2 5.1.3 5.1.4	<b>version:</b> Selecting the Ratios         train         Ratio and Overall Gear Ratio         Overall Gear Ratio $i_{G,tot}$ Selecting the Largest Powertrain Ratio $i_{A,max}$ Selecting the Smallest Powertrain Ratio $i_{A,min}$ Final Ratio         ing the Intermediate Gears         Velocity/Engine-Speed Diagram         Geometrical Gear Steps         Progressive Gear Steps         Variation in Continuously Variable Transmissions         Congine and Transmission         Deriving a Traction Diagram (Example)         Engine Braking Force         Geared Transmission with Dry Clutch         Geared Transmission with Torque Converter	
4	Pow 4.1 4.2 4.3 4.3 4.4 <b>Mat</b> 5.1	5.3.3 <b>ver Com</b> Power Total I 4.2.1 4.2.2 4.2.3 4.2.4 Selecti 4.3.1 4.3.2 4.3.3 Ratio <b>tching F</b> Tractic 5.1.1 5.1.2 5.1.3 5.1.4 Vehicl	<b>version:</b> Selecting the Ratios         train         Ratio and Overall Gear Ratio         Overall Gear Ratio $i_{G,tot}$ Selecting the Largest Powertrain Ratio $i_{A,max}$ Selecting the Smallest Powertrain Ratio $i_{A,min}$ Final Ratio         ing the Intermediate Gears         Velocity/Engine-Speed Diagram         Geometrical Gear Steps         Progressive Gear Steps         Variation in Continuously Variable Transmissions         Confine and Transmission         Deriving a Traction Diagram (Example)         Engine Braking Force         Geared Transmission with Dry Clutch         Geared Transmission with Torque Converter	

		5.2.2	Climbing Performance	.127
		5.2.3	Acceleration Performance	.128
	5.3	Fuel C	Consumption	.128
		5.3.1	Calculating Fuel Consumption (Example)	. 129
		5.3.2	Determining Fuel Consumption by Measurement	.131
		5.3.3	Reducing Fuel Consumption	.133
		5.3.4	Continuously Variable Transmissions	.134
	5.4	Emiss	ions	.134
	5.5	Dynar	nic Behaviour of the Powertrain, Comfort	. 138
6	Veh	icle Tra	ansmission Systems: Basic Design Principles	.140
	6.1	Arran	gement of the Transmission in the Vehicle	. 140
		6.1.1	Passenger Cars	. 140
		6.1.2	Commercial Vehicles	. 143
		6.1.3	All-Wheel Drive Passenger Cars	. 146
		6.1.4	Transverse and Longitudinal Dynamics with All-Wheel	150
	60	Trong	DIIVE	151
	0.2	621	Transmission Format	152
		0.2.1	Transmission Docion	152
	62	0.2.2 Decio	Coerboy Concent	154
	0.3	6 2 1	Shifting with Dower Intermetion	155
		0.3.1	Shifting without Dower Interruption	156
		6.2.2	Continuously Variable Transmissions without Power	. 150
		0.3.3	Interruption	.157
	6.4	Gear S	Sets with Fixed Axles, Countershaft Transmissions and	
		Epicy	clic Gears	.158
	6.5	Soluti	on Principles for Part Functions, Evaluation	.160
		6.5.1	Reverse Gear as Example	.161
	6.6	Passer	nger Car Transmissions	.163
		6.6.1	Manual Passenger Car Transmissions (MT)	.164
		6.6.2	Automated Manual Passenger Car Transmissions (AMT)	. 169
		6.6.3	Dual Clutch Passenger Car Transmissions (DCT)	.172
		6.6.4	Automatic Passenger Car Transmissions (AT)	.174
		6.6.5	Passenger Car Hybrid Drives	.182
		6.6.6	Continuously Variable Passenger Car Transmissions (CVT).	.186
	6.7	Comn	nercial Vehicle Transmissions	. 189
		6.7.1	Manual Commercial Vehicle Transmissions (MT)	. 192
		6.7.2	Automated Manual Commercial Vehicle Transmissions	
			(AMT)	.207
		6.7.3	Commercial Vehicle Torque Converter Clutch	
			Transmissions (TCCT)	.213
		6.7.4	Automatic Commercial Vehicle Transmissions (AT)	.215
		6.7.5	Commercial Vehicle Hybrid Drives	.216
		6.7.6	Continuously Variable Commercial Vehicle Transmissions	
			(CVT)	.219

	6.8	Final I	Drives	
		6.8.1	Axle Drives for Passenger Cars	223
		6.8.2	Axle Drives for Commercial Vehicles	
		6.8.3	Differential Gears and Locking Differentials	
		6.8.4	Hub Drives for Commercial Vehicles	
		6.8.5	Transfer Gearboxes	
	6.9	Power	Take-Offs	
7	Desi	ign of G	Gearwheel Transmissions for Vehicles	
	7.1	Gearw	heel Performance Limits	
		7.1.1	Causes and Types of Damage	
		7.1.2	Calculating the Tooth Root Load Capacity	
		7.1.3	Calculating the Pitting Load Capacity	
		7.1.4	Calculating the Scuffing Load Capacity	
	7.2	Estima	ating Centre Distance	
	7.3	Estima	ating Face Widths	
	7.4	Opera	tional Fatigue Strength and Service Life	
		7.4.1	The Wöhler Curve	
		7.4.2	Load Profile and Counting Procedure	
		7.4.3	Damage Accumulation Hypothesis	
	7.5	Devel	oping Low-Noise Transmissions	
		7.5.1	Transmission Noise and Its Causes	
		7.5.2	How Noise Reaches the Ear	
		7.5.3	Assessment Criteria	
		7.5.4	Countermeasures	
8	Spe	cificatio	on and Design of Shafts	
	8.1	Typica	al Requirements in Vehicle Transmissions	
		8.1.1	Configuration of Shafts in Vehicle Transmissions	
		8.1.2	Designing for Stress and Strength	279
		8.1.3	Deflection	
		8.1.4	Vibration Problems	
	8.2	Genera	al Design Guidelines	
	8.3	Transr	mission Drive Shaft Strength Design	
		0 2 1	Looding	
		8.3.1	Loading	
		8.3.1 8.3.2	Bearing Reactions	
		8.3.1 8.3.2 8.3.3	Bearing Reactions	
		8.3.1 8.3.2 8.3.3 8.3.4	Bearing Reactions Spatial Beam Deflection Shear Force and Bending Moment Diagrams	283 286 286 287
		8.3.1 8.3.2 8.3.3 8.3.4 8.3.5	Bearing Reactions Spatial Beam Deflection Shear Force and Bending Moment Diagrams Critical Cross-Section	283 286 286 287 289
		8.3.1 8.3.2 8.3.3 8.3.4 8.3.5 8.3.6	Bearing Reactions Spatial Beam Deflection Shear Force and Bending Moment Diagrams Critical Cross-Section Stresses	283 286 286 287 289 290
		8.3.1 8.3.2 8.3.3 8.3.4 8.3.5 8.3.6 8.3.7	Bearing Reactions Spatial Beam Deflection Shear Force and Bending Moment Diagrams Critical Cross-Section Stresses Preliminary Specification of the Shaft Diameter	283 286 286 287 289 290 290 293
		8.3.1 8.3.2 8.3.3 8.3.4 8.3.5 8.3.6 8.3.7 8.3.8	Bearing Reactions Spatial Beam Deflection Shear Force and Bending Moment Diagrams Critical Cross-Section Stresses Preliminary Specification of the Shaft Diameter Designing for Endurance Strength	283 286 286 287 289 290 293 294
		8.3.1 8.3.2 8.3.3 8.3.4 8.3.5 8.3.6 8.3.7 8.3.8 8.3.9	Loading         Bearing Reactions         Spatial Beam Deflection         Shear Force and Bending Moment Diagrams         Critical Cross-Section         Stresses         Preliminary Specification of the Shaft Diameter         Designing for Endurance Strength         Designing for Operational Fatigue Strength	283 286 286 287 289 290 290 293 294 294
		8.3.1 8.3.2 8.3.3 8.3.4 8.3.5 8.3.6 8.3.7 8.3.8 8.3.9 8.3.10	Loading         Bearing Reactions         Spatial Beam Deflection         Shear Force and Bending Moment Diagrams         Critical Cross-Section         Stresses         Preliminary Specification of the Shaft Diameter         Designing for Endurance Strength         Designing for Operational Fatigue Strength         Common Shaft Materials	
	8.4	8.3.1 8.3.2 8.3.3 8.3.4 8.3.5 8.3.6 8.3.7 8.3.8 8.3.9 8.3.10 Calcul	Bearing Reactions Spatial Beam Deflection Shear Force and Bending Moment Diagrams Critical Cross-Section Stresses Preliminary Specification of the Shaft Diameter Designing for Endurance Strength Designing for Operational Fatigue Strength Common Shaft Materials	283 286 286 287 289 290 293 294 294 294 296 296

9	Gea	rshifting	g Mechanisms	300
	9.1	System	natic Classification of Shifting Elements	302
		9.1.1	Shifting Elements for Transmissions with Power	
			Interruption	303
		9.1.2	Shifting Elements for Transmissions without Power	
			Interruption	306
		9.1.3	Shift-by-Wire	309
	9.2	Layout	t and Design of Synchronizers	310
		9.2.1	Synchronizer Functional Requirements	310
		9.2.2	The Synchronizing Process	316
		9.2.3	Design of Synchronizers	321
		9.2.4	The Tribological System of Synchronizers	334
		9.2.5	Engineering Designs	336
		9.2.6	Alternative Transmission Synchronizers	342
		9.2.7	Detail Questions	343
	9.3	Layout	t and Design of Multi-Plate Clutches	344
		9.3.1	Multi-Plate Clutch Requirements	346
		9.3.2	The Shifting Process	346
		9.3.3	Design of Multi-Plate Clutches	350
		9.3.4	Tribological System of Multi-Plate Clutches	355
		9.3.5	Engineering Designs	358
		9.3.6	Detail Questions	363
	9.4	Parkin	g Locks	365
		9.4.1	Mechanically Activated Parking Locks	366
		9.4.2	Electrically Activated Parking Locks	368
		9.4.3	Detail questions	369
10	Mov	ing-Off	'Elements	
10	10.1	Drv Cl	utches	
		10.1.1	Structure of Dry Clutches	374
		10.1.2	Design of Dry Clutches	385
		10.1.3	Dry Multi-Plate Clutches	387
	10.2	Wet C	lutches	388
	10.3	Dual C	lutches	390
	10.4	Hvdro	dynamic Clutches and Torque Converters	393
		10.4.1	Principles	394
		10.4.2	Hydrodynamic Clutches and their Characteristic Curves	397
		10.4.3	Torque Converters and their Characteristic Curves	
		10.4.4	Engine and Torque Converter Working Together	401
		10.4.5	Practical Design of Torque Converters	406
		10.4.6	Engineering Designs	406
		10.4.7	Design Principles for Increasing Efficiency	410
11	Desi	gn and	Configuration of Further Design Elements	420
-	11.1	Bearin	gs	
		11.1.1	Selecting Rolling Bearings	421

		11.1.2	Rolling Bearing Design	. 423
		11.1.3	Design of Rolling Bearings	.426
		11.1.4	Plain Bearings - Bearing Bushes and Thrust Washers	.428
	11.2	Lubrica	ation of Gearboxes, Gearbox Lubricants	.431
		11.2.1	Bearing Lubrication	.432
		11.2.2	Principles of Lubricating Gearwheel Mechanisms	.432
		11.2.3	Selecting the Lubricant	.435
		11.2.4	Selecting Lubricant Characteristics	.436
		11.2.5	Lifetime Lubrication in Vehicle Gearboxes	.440
		11.2.6	Testing the Scuffing Resistance of Gearbox Lubricants	.440
	11.3	Oil Sup	oply and Oil Pumps	.442
		11.3.1	Oil Supply	.442
		11.3.2	Oil Pumps	.445
		11.3.3	Detail Questions	.451
	11.4	Gearbo	ox Housing	.453
		11.4.1	Gearbox Housing Design	.453
		11.4.2	Venting Gearboxes	.456
	11.5	Gearbo	ox Sealing	.460
		11.5.1	Seals for Static Components	. 460
		11.5.2	Seals for Rotating Components	. 464
		11.5.3	Seals for Reciprocating Round Components	. 466
		11.5.4	Practical Examples	. 467
		11.5.5	Final Inspection for Detecting Leakage	. 468
	11.6	Vehicle	e Continuous Service Brakes	. 469
		11.6.1	Definitions	.470
		11.6.2	Engine Braking Systems	.471
		11.6.3	Retarders	.472
		11.6.4	Actuation and Use	.478
10	<b>.</b> .			470
12	1 ypi	cal Des	Igns of Vehicle Transmissions	.479
	12.1	Passen	ger Car Transmissions	.4/9
		12.1.1	Manual Passenger Car Transmissions (MT)	.481
		12.1.2	Automated Manual Passenger Car Transmissions (AMT)	. 494
		12.1.3	Automatic Dessenger Car Transmissions (DC1)	.498
		12.1.4	Automatic Passenger Car Transmissions (A1)	503
		12.1.5	Passenger Car Hydrid Drives	. 311 514
	122	12.1.0 Comm	continuously variable Passenger Car Transmissions (CVT).	520
	12.2	1221	Manual Commercial Vahiala Transmissions (MT)	. 520
		12.2.1	Automated Manual Commercial Vahiala Transmissions	. 321
		12.2.2	Automated Manual Commercial Venicle Transmissions	520
		1222	Commercial Vehicle Torque Converter Clutch	. 550
		12.2.3	Transmissions (TCCT)	538
		1224	Automatic Commercial Vehicle Transmissions (AT)	542
		12.2.4	Commercial Vehicle Hybrid Drives	546
		14.4.5		

		12.2.6 Continuously Variable Commercial Vehicle Transmissions	517
	10.0	(UVI)	
	12.3	Final Drives	
		12.3.1 Axie Drives for Passenger Cars	
		12.3.2 Axle and Hub Drives for Commercial Vehicles	. 331
	10.4	12.3.3 Differential Gears and Locking Differentials	
	12.4	All-Wheel Drives, Transfer Gearboxes	. 560
13	Elec	tronic Transmission Control	.573
	13.1	Networked Systems	. 573
	13.2	Electronic Transmission Control Unit (TCU)	. 574
		13.2.1 TCU Structure	. 575
		13.2.2 Operating Conditions and Construction Technologies	. 576
	13.3	Control Systems	. 577
		13.3.1 Transmission Actuator	.579
		13.3.2 Clutch Actuator	. 579
		13.3.3 Transmission Control Functions	.580
		13.3.4 Software	. 584
		13.3.5 Further Examples of Transmission Control Systems	. 585
	13.4	Transmission Calibration with Vehicle-Specific Software Data	
		Input	. 587
14	Com	puter-Aided Transmission Development	. 589
	14.1	Principles and Tools	. 590
	14.2	Driving Simulation	. 594
		14.2.1 Simulation of Vehicle Longitudinal Dynamics	. 595
		14.2.2 Route Data Set, Route Data Acquisition	. 599
15	The	Automotive Transmission Development Process	600
15	15.1	Product Life Cycle	601
	15.1	Product Strategy Product Planning	603
	15.2	Release Stages in the Product Development Process	604
	15.5	The Design Process and Systematic Design	606
	15.4	The Design Process and Systematic Design	.000
16	Trai	nsmission Manufacturing Technology	.615
	16.1	Process Chains for Steel Part Processing	.616
		16.1.1 Soft Machining Methods	.617
		16.1.2 Heat Treatment Methods	.617
		16.1.3 Hard Machining Methods	.617
	16.2	Process Chains for Cast Part Processing	.618
		16.2.1 Casting Methods	.619
		16.2.2 Machining Cast Parts	. 620
	16.3	Process Chains for Gear Machining	.621
		16.3.1 Soft Machining Methods	.621
		16.3.2 Hard Machining Methods	.623
	16.4	Process Chains for Sheet Metal Machining	. 623

		16.4.1	Sheet Separation	624
		16.4.2	Sheet Forming	625
	16.5	Manufa	acturing and Factory Management	626
		16.5.1	Work Preparation and Planning	626
		16.5.2	Production Systems	626
		16.5.3	Statistical Process Control in Manufacture	627
17	Relia	ability a	nd Testing of Automotive Transmissions	631
]	17.1	Princip	les of Reliability Theory	632
		17.1.1	Definition of Reliability	632
		17.1.2	Statistical Description and Representation of the Failure	
			Behaviour of Components	633
		17.1.3	Mathematical Description of Failure Behaviour using the	
			Weibull Distribution	636
		17.1.4	Reliability with Systems	641
		17.1.5	Availability of Systems	642
	17.2	Reliabi	lity Analysis of Vehicle Transmissions	643
		17.2.1	System Analysis	644
		17.2.2	Qualitative Reliability Analysis	646
		17.2.3	Quantitative Reliability Analysis	648
	17.3	Testing	g to Ensure Reliability	651
		17.3.1	Classifying Vehicle Transmission Test Programs	653
		17.3.2	Test Benches for the Test Programs	656
		17.3.3	Simulation during Bench Testing	658
Refe	renc	es		661
Inde	x of	Compa	nies/Transmissions	695
Inde	x of	Names		698
Subj	ject ]	[ndex		699
Abo	ut th	e Autho	0°S	717

# **Terms and Symbols**

A formula you cannot derive is a corpse in the brain /C. Weber/

Physical variables are related by mathematical formulae. These can be expressed in two different ways:

- quantity equations,
- unit equations.

#### Quantity equations

Quantity equations are independent of the unit used, and are of fundamental application. Every symbol represents a physical quantity, which can have different values:

Value of the quantity = numerical value  $\times$  unit .

*Example:* Power P is generally defined by the formula

 $P = T \,\,\omega\,,\tag{1}$ 

where T stands for torque and  $\omega$  stands for angular velocity.

#### Unit equations

If an equation recurs frequently or if it contains constants and material values, it is convenient to combine the units, in which case they are no longer freely selectable.

In unit equations, the symbols incorporate only the numerical value of a variable. The units in unit equations must therefore be precisely prescribed.

*Example:* In order to calculate the effective power P in kW at a given rotational speed n in 1/min, the above equation (1) becomes the unit equation

$$P = \frac{T n}{9550} \,. \tag{2}$$

The unit equation (2) applies where the prescript P is expressed in kW, T in Nm and n in 1/min.

## **Designation system for steels**

In several sections of this book, particular steels have been referred to according to German standard DIN EN 10027. Often there is no exact English equivalent. However it seemed important to provide an explanation of the type of steel being referred to. Therefore the basics of the specification will be explained.

The main symbol is the carbon content multiplied by 100 followed by the chemical composition of the material. The alloying elements are sorted by their alloy content, whereby the percentage of content is multiplied by a multiplier according to the following table. If there is no percentage of an element given in the specification, this means that there is just a small content of this element.

Multiplier	Alloying element
4	Mn, Si, Ni, W, Cr, Co
10	Al, Cu, Mo, Ta, Ti, V, Pb, Zr, Nb, Be
100	P, S, N, C
1000	В

Examples:

16MnCr5	0.16% carbon, 1.25% Cr, small content of Cr
42CrNiMo4-4	0.42% carbon, 1% Cr, 1% Ni, small content of Mo

# **Terms and Symbols**

(Only those which occur frequently; otherwise see text)

A	Surface area, vehicle cross-section = projection of vehicle frontal
	area
$A_{\rm R}$	Friction surface area
A(t)	Availability
$B_{10}$	System service life for a failure probability of 10%
$B_{\rm x}$	System service life for a failure probability of x%
С	Basic dynamic load rating, constant
CG	Constant gear
$CG_{\rm H}$	Front-mounted splitter unit constant high
$CG_{L}$	Front-mounted splitter unit constant low
$CG_{main}$	Main gearbox constant gear
$CG_{R}$	Range-change unit constant gear
D	Diameter, damage
$D_{\rm act}$	Actual damage sum

$D_{\rm prof}$	Damage sum of a load profile
$D_{\rm th}$	Theoretical damage sum
Ε	Modulus of elasticity
F	Force
$F_{\rm B}$	Braking force
$F_{\mathrm{H}}$	Manual effort, slope descending force
$F_{\mathrm{L}}$	Air resistance, bearing force
$F_{\Omega}$	Shear force (transverse force)
$\vec{F_R}$	Wheel resistance
$F_{\rm S}$	Lateral force
$\tilde{F_{St}}$	Gradient resistance
$F_{\mathrm{U}}$	Circumferential force
$\vec{F_z}$	Traction
$\vec{F}_{ZA}$	Available traction
$F_{ZB}$	Required traction
$F_{a}^{L,D}$	Acceleration resistance, axial force
$F_{ax}$	Pressure force of the pressure plate
$F_{n}$	Normal force
$F_{\rm r}^{\rm "}$	Radial force
F _t	Tangential force
F(t)	Distribution function, failure probability
GR	Wheel load
J	Moment of inertia
K _G	Transmission characteristic value
L	Service life, sound level
$M_{ m b}$	Bending moment
$M_{\rm t}$	Torsional moment
$M_{ m v}$	Reference moment
Ν	Number of load cycles, number of oscillation cycles to failure,
	component service life
Р	Power, equivalent bearing load
$P_{\rm A}$	Frictional power related to surface area
$P_{\rm Z,B}$	Power requirement at wheel
$P_{\rm m}$	Mean frictional power during synchronizer slipping
Q	Shear force (transverse force), flow rate
R	Reaction force, stress ratio
R _e	Yield strength
R _m	Tensile strength
<i>R</i> _{p0.2}	0.2% offset yield strength
R(t)	Survival probability, reliability
S	Safety factor, locking safety factor of synchronizers, slip, interlock
	value, taper disc radius
$S_{ m B}$	Brake slip
$S_{ m H}$	Rear-mounted splitter unit high
$S_{ m L}$	Rear-mounted splitter unit low
$S_{\mathrm{T}}$	Drive slip

Т	Torque, temperature, characteristic service life
$T_{\rm B}$	Acceleration torque (synchronizer), locking torque (differential)
$T_{\rm C}$	Clutch torque
$T_{\rm D}$	Drag torque
$T_{I}$	Load torque
$T_{\rm M}$	Engine torque
$T_{\rm P}$	Friction torque slip torque
$T_{7}$	Opening torque (synchronizer)
I I	Revolutions
V	Displacement volume (oil nump)
, V.,	Total swent volume
W H	Section modulus work absorbable work frictional work
W.	Frictional work related to surface area (specific frictional work)
W A	Section modulus under bending
w _b и/	Section modulus under tersion
<i>w</i> _t	Section modulus under torsion
	A
a	Acceleration, centre distance
Ь	Shape parameter, failure slope, pack length, width, fuel
1	consumption
$b_0$	Size factor
$b_{\rm e}$	Specific fuel consumption
$b_{\rm s}$	Fuel consumption per unit of distance, surface factor
С	Rigidity, absolute speed
$c_{ m W}$	Drag coefficient
Cm	Machine capability index
Cp	Process capability index
Cs	Tooth rigidity
$C_{\rm u}$	Circumferential component of absolute speed
$c_{\gamma}$	Meshing rigidity (average value of tooth rigidity over time)
d	Diameter
е	Eccentricity
f	Deflection, frequency
$f_{\rm R}$	Rolling resistance coefficient
f(t)	Density function
g	Gravitational acceleration
$\overline{h}_{\mathrm{i}}$	Number of stress oscillation cycles
i	Ratio
i _A	Powertrain ratio (from engine to wheels)
i _{CG}	Constant gear ratio
i _E	Final ratio
$\vec{i}_{\rm EA}$	Ratio of the axle drive
i _{FN}	Ratio of the hub drive
<i>i</i> _{FV}	Ratio of the transfer box
ic	Transmission ratio
i _{G tot}	Overall gear ratio, range of ratios
is	Moving-off element ratio
· 3	

$i_{\rm V}$	Variator ratio
j	Number of friction surfaces
k	Wöhler curve equation exponent
k(v)	Characteristic value of a torque converter
т	Gear module, mass, linear scale (converter)
$m_{\rm F}$	Vehicle mass
m _n	Standard module
n	Rotational speed, number, number of load cycles, number of
	bearings
n _M	Engine speed
р	Contact pressure, pressure, number of gear pairs, service life
	exponent
$p_{\rm me}$	Effective average pressure in the cylinder of a combustion engine
q	Gradient
$q^{\prime}$	Gradient in %
r	Radius, redundancy level of a system
<i>r</i> _{dyn}	Dynamic wheel radius
S	Travel, shift movement at the gearshift sleeve
s _{Fn}	Root thickness chord
t	Statistical variable, time
$t_0$	Failure free time
t _R	Slipping time, friction time
$t_{\rm S}$	Shifting time
и	Gear ratio, circumferential speed
v	Speed, flow rate
$v_{\rm F}$	Vehicle speed
$v_{ m W}$	Wind speed
$v_{ m th}$	Theoretical speed with slip $S = 0$
W	Absorbed work
x	Addendum modification coefficient
x, y, z	Co-ordinates
Ζ	Number of speeds, number of friction surfaces, number of teeth,
	number of load cycle passes
$z_{i}$	Number of teeth gear <i>i</i>
$\Delta$	Interval, difference
$\Delta S$	Wear path (synchronizer)
$\Delta V$	Wear (synchronizer)
α	Meshing angle, cone angle of a cone synchronizer, viscosity-
	pressure coefficient
$\alpha_0$	Effort ratio
$\alpha_{\rm St}$	Gradient angle
$\alpha_{\rm k}$	Stress concentration factor
α _n	Normal meshing angle
β	Helix angle at reference circle, opening angle of dogs

$\beta_{\rm k}$	Fatigue notch factor
δ	Reference cone angle, degree of pump irregularity (volumetric flow
	pulsation)
З	Total contact ratio
$\mathcal{E}_{\alpha}$	Transverse contact ratio
$\varepsilon_{\beta}$	Overlap ratio
ή	Efficiency, dynamic viscosity
9	Temperature
λ	Performance coefficient (converter, retarder), rotational inertia
	coefficient
$\lambda(t)$	Failure rate
μ	Torque ratio, torque conversion, coefficient of friction
$\mu_{ m stall}$	Stall torque ratio
$\mu_{ m H}$	Static coefficient of friction
ν	Speed ratio, speed conversion, kinematic viscosity
ρ	Density, radius of curvature
$\sigma$	Normal stress
$\sigma_{ m D}$	Endurance strength
$\sigma_{ m H}$	Hertzian stress
$\sigma_{ m b}$	Bending stress
$\sigma_{ m v}$	Reference stress
τ	Torsional stress, torque increase of a combustion engine
$\varphi$	Gear step, bending angle
$\varphi_1$	Base ratio change with progressive stepping
$\varphi_2$	Progression factor with progressive stepping
$arphi_{ m th}$	Gear step with geometrical stepping
ω	Angular velocity

# Subscripts

0	Nominal or initial state
1	

- 1 Pinion (= small gearwheel), input
- 2 Wheel (= large gearwheel), output
- 3 Frame

1, 2, 3,	At point	1,	2,	3,	
----------	----------	----	----	----	--

A	Available,	related to	o area,	powertrain,	axle
---	------------	------------	---------	-------------	------

AM Angular momentum

- B Required, brake, acceleration
- C Clutch
- CC Converter lock-up clutch
- CG Constant gear
- CS Countershaft
- D Endurance, endurance strength, deficit, direct, drag

E	Final ratio
Ex	Excess
F	Vehicle, tooth root
G	Gearbox, propeller shaft
Н	Static friction, main, main gearbox, ring gear, high (= fast),
	Hertzian, displacement, manual
IS	Input shaft
L	Air, load, low (= slow)
L, L1, L2	At bearing point, at bearing point 1, 2
M	Engine, model
MS	Main shaft
MSW	Main shaft wheel
N	Hub, rear-mounted range unit
OS	Output shaft
P	Pump pump wheel planetary gear
PV	Pump test
0	Transverse
R	Reverse gear roll slip friction wheel range-change unit reactor
IC .	rotor (retarder)
Roll	Roll
Rot	Rotation
S	Sun gear splitter unit stator (retarder) system lateral shifting
5	moving-off element
Sch	Pulsating (strength)
St	Gradient
т	Turbine drive
TC	Torque converter
IU U	Circumferential
V	Front-mounted range unit loss test variator transfer hox
w W/	Alternating (strength) wind
7	Traction opening
L	Traction, opening
а	Acceleration, axial, values at tip circle
abs	Absolute
act	Actual
ax	Axial
h	Bending
calc	Calculated
dyn	Dynamic
e	Fffective
exper	Experimental
f	Values at root circle
i	Inner input control variable $i = 1, 2, 3, n$
i i	At noint i i
id	Ideal
in	Innut
111	mpar

j	Control variable
k	Control variable, notching effect
m	Mean, machine, number of stress classes
main	Main
max	Maximum
min	Minimum
n	Nominal, normal, n-th gear, standard
0	Outer, output
out	Output
р	Process
perm	Permissible
r	Radial
red	Reduced
ref	Reference
rel	Relative
res	Resultant
S	Surface, distance
spec	Specific
stat	Static
t	Torsion, time, tangential
th	Theoretical
tot	Total
trans	Transverse
u	Circumferential
v	Reference
W	Pitch circle
x, y, z	In $x$ , $y$ , $z$ direction, around $x$ , $y$ , $z$ axis
Z	Highest gear, number of speeds

# **1** Introduction

Every vehicle needs a transmission!

#### 1.1 Preface

All vehicles, aircraft and watercraft included, require transmissions in order to convert torque and engine speed. Transmissions are distinguished in accordance with their function and purpose - e.g. selector gearboxes, steering boxes and power take-offs. This book deals exclusively with transmissions for road vehicles as well as for vehicles designed for both on-road and off-road use (Figure 1.1).

Figure 1.2 provides an overview of common transmission designs and their systematic classification. Further details can be found in Chapter 6 "Vehicle Transmission Systems". Dual clutch transmissions are assigned to automatic transmissions with various gear ratios due to their similarity with respect to control and functionality.



Fig. 1.1. Definition of the term "automotive transmission" as this book uses it



Fig. 1.2. Systematic classification of automotive transmission types



Fig. 1.3. The effect of the transmission on basic attributes of a vehicle



**Fig. 1.4.** Achievable increase in the practical value of a product by additional development effort

The task of a transmission is to convert the traction available from the drive unit, satisfying requirements placed on it by the vehicle, the road, the driver and the environment. Technical and economical competitiveness are essential here. In addition to the driving and transport performance of passenger and commercial vehicles, transmissions are of central importance with respect to reliability, fuel consumption, ease of operation and road safety (Figure 1.3).

Transmission	Number of speeds (forward)	Ratio 1st gear/overall gear ratio	Power (kW)	Input torque (Nm)	Mass (kg)	Specific power (kW/kg)
Industrial	1	12.5	330	2100	680	0.48
		_				100%
Commercial vehicle (AMT)		14.1				1.49
	16	17.0	397	2600	266	300%
Passenger car (MT)		4.2				6.39
	6	5.1	294	500	46	1300%

Table 1.1. Comparison between industrial and automotive transmissions



Fig. 1.5. Superordinate development goals for vehicle transmissions

Automotive transmissions are mass-produced products of a high technical and technological order. They are classified as highly developed technologies (Figure 1.4). What is remarkable is the specific power  $P_{\text{spec}}$  in kW/kg of commercial vehicle transmissions, which is more than three times more than that of industrial transmissions (Table 1.1), despite the fact that automotive transmissions have more speeds. On the other hand, industrial transmissions have to be designed for a longer service life.

Basic innovations in the field of automotive transmissions are no longer to be expected. Instead, we are witnessing a process of gradual evolution. This process is characterized by system thinking focused on the factors Environment  $\Leftrightarrow$  Traffic  $\Leftrightarrow$  Vehicle  $\Leftrightarrow$  Engine/Transmission and by the use of electronics for operational, control and monitoring processes. The superordinate design objectives for automotive transmissions resulting from these tendencies are shown in Figure 1.5.

Vehicle transmission development must be fast and market-oriented. Customers' preferences, especially in the case of commercial vehicles, must be accommodated flexibly. Legal conditions, kW/t-regulation or emission policies for example, must be met. Furthermore, emotional aspects like driving pleasure must also be taken into consideration.

The main goal when designing an automotive transmission is an optimal conversion of the traction available from the engine into the traction force of the vehicle over a wide range of road speeds. This must be done such that there is a favorable compromise between the number of speeds, the climbing and acceleration performance and fuel consumption. Further technical and technological developments should obviously be considered – reliability and service life as well. It is also essential to have regard for environmental and social considerations.

The design of vehicle transmissions should always stay within the planning horizon for new vehicles (Figure 1.6). During the developmental phase of a vehicle, a corresponding transmission must also be created or further developed. To this end, new manufacturing technologies for mass production must also be prepared and introduced.



Fig. 1.6. Time dimensions and planning horizons in the automotive industry, from [1.1]

After the end of the production phase, it should be guaranteed that spare parts are available. For this purpose, the life cycles of additional components, including semiconductor components, have to be taken into consideration.

This book seeks to present the automotive transmission development process as a whole (Figure 1.7). It should show ways of thinking that go beyond mere component design. Regardless of which product is at hand, it is always necessary to assess the total system in which that product will later be employed. Such a system overview is indispensable and will be presented in Chapter 2.



Fig. 1.7. The tasks involved in developing automotive transmissions, overview of chapters

Automotive transmissions are decisively influenced by the vehicle, the engine and the road profile. Without basic knowledge of these factors, meaningful developments are impossible.

Chapter 3 shows the interaction between power required and power available. The first development task focused directly on vehicle transmission is then selecting the range of ratios to be covered, the "overall gear ratio". In conjunction with selecting the number of speeds z, the gear ratio of the individual speeds, the resultant gear steps and the gear ratio of the final drive, the interaction of the vehicle and its transmission system can be evaluated and defined. Observing the road profile, it must be decided whether the vehicle is being sufficiently accelerated and whether the required climbing power and the specified maximum speed  $v_{max}$  are reached. We can then establish at the same time whether the transmission unit also permits economical driving – driving with low amounts of fuel consumption in particular. This is dealt with extensively in Chapters 4 and 5.

Creative design, which is indispensable, is complemented by systematic design. Here, a functional analysis is carried out during the conceptual phase. Solutions for individual functions must be found, evaluated and joined together to make an overall solution, i.e. the transmission design. Chapter 6 provides the information regarding the vehicle transmission systems necessary for this.

Following this in Chapters 7 to 11 are the layout and design of the most important components of a transmission: gearwheels, shafts, bearings, synchronizers, clutches, parking locks, pumps as well as hydrodynamic clutches and converters. A treatment of all the details involved in highly developed computation and simulation methods would go beyond the scope of this book. We have instead confined ourselves to the basics of calculation methodology and operations.

In Chapter 12, the structure of various transmission designs and important detailed solutions are explained with the help of a plentiful amount of design examples. Electronic transmission controls built with microprocessors have been the standard in automatic transmissions since 1982. They are among the most complex electronic components in the vehicle and are undergoing a very dynamic development with respect to both hardware and software. Chapter 13 explores this topic and deals with their integration and interconnection with other control devices in the vehicle.

Tools and parameters for the development of automotive transmissions are handled in the latter part of the book. Chapter 14 is dedicated to calculation and simulation tools. In Chapter 15, we take a look at the product development process. Manufacturing technology has a large influence on transmission design, competitiveness and quality. Chapter 16 provides insight into the broad and innovative field of machining, assembly and final inspection.

Quality is a decisive competitive factor. The final customers are interested above all in the reliability and service life of the overall system. Methods for planning and guaranteeing quality as well as corresponding testing programs and test stations are described in Chapter 17.

Of particular concern in this book is to show the reader different approaches and to supply data as amply as possible regarding practical development work on automotive transmissions. As Dudeck put it, "The task of engineering science is, among other things, to refine complicated models to the point of simplicity". This book strives towards that aim.

### 1.2 History of Automotive Transmissions

Knowledge of the past and of the state of the Earth adorns and nourishes the human spirit /Leonardo da Vinci/

Learn from the past for the future! Development engineers and designers should have a grasp of the historical development of their products. Then they can estimate what progress is still possible and what technological potential the current product development has already realized. Such knowledge compliments that of systematic design (see Chapter 15).

#### 1.2.1 Basic Innovations

Basic innovations are discoveries, inventions and new developments, without which products of today could not have been developed. They lead in turn to further discoveries, inventions, new developments and designs that culminate inevitably in new products (Figure 1.8).

In the course of such developments, certain phenomena should be explained and researched in order to guarantee that the product will function reliably.

4000	Mesopotamian vase with a picture	1829	Stephenson Rail vehicle, steam
BC	of a cart		locomotive
2500	Wheels made of two semicircular	1877	Otto Patent for four-stroke gas
BC	wooden discs, presumably with		engine with compression
	leather tyres	1885	Benz Three-wheeler with internal
2000-	Spur gears with pin wheel gear as		combustion engine
1000	drive element for water scoops	1897	Bosch Magneto-electric ignition
BC	(Sakie, Figure 1.10), worm gears	1905	Föttinger Hydrodynamic torque
	for cotton gins		converter
500	Greek scholars discover the	1907	Ford Mass production of
BC	principles of mechanics		model T; the passenger car
200	Lever, crank, roller, wheel, hoist,		becomes a mass-produced item
BC	worm gear and gearwheel are in	1923	Bosch Injection pump
	use	1925	Rieseler Automatic passenger
1754	Euler's law of gears for gear-		car transmission with torque con-
	wheels, involute toothing		verter and planetary gear set
1769	Watt Patent for steam engine		
1784	Watt Gearbox with constant-		
	mesh engagement		

 Table 1.2. Examples of fundamental innovations in automotives and automotive transmissions