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Dédié à Alexandre Grothendieck



Preface

The articles in this volume1 are an outgrowth of seminars and schools of Impanga.
Impanga is an algebraic geometry group operating since 2000 at the Institute of
Mathematics of Polish Academy of Sciences in Warsaw. Besides seminars Impanga
organized the following schools at the Banach Center in Warsaw:

• Characteristic classes of singular varieties, April 2002,

• Stratifications of moduli spaces, May 2002,

• Schubert varieties, May 2003, and

• Hommage à Grothendieck, January 2004.

More information about the Impanga seminars and schools2 can be found on:
http://www.impan.gov.pl/∼pragacz/impanga.htm

Impanga also co-organized the school Algebraic geometry, algebra, and applications
in Borovetz, Bulgaria (September 2003).

Let us describe briefly the contents of the lecture notes in this volume3.

Paolo Aluffi discusses various characteristic classes generalizing classical
Chern classes for nonsingular varieties: the classes of Mather, Schwartz-MacPher-
son, and Fulton. A particular emphasis is put on concrete computations of these
classes, often with the help of Segre classes.

Michel Brion gives a comprehensive introduction to the geometry of flag va-
rieties and Grassmannians. A special emphasis is put on geometric properties of
Schubert varieties and their resolutions: Bott-Samelson schemes. Vanishing prop-
erties of line bundles over Schubert varieties are studied. Also Richardson varieties
together with their applications are discussed. One of the main goals is to present
a proof of Buch’s conjecture on the structure constants in the Grothendieck ring
of a flag variety.

1During the preparation of this volume, the Editor was partially supported by KBN grant No.
2P03A 024 23.
2The first three schools were partially supported by EAGER.
3The lecture notes by Aluffi and Schürmann stem from the first school, the notes by Brion, Buch,
and Tamvakis from the third school, the article by Pragacz opening the volume from the fourth

school, and the notes by Szyjewski from the school in Borovetz. The remaining contributions by
Duan, Kisisel, and Pragacz come from the seminars of Impanga.
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Anders Buch studies Grothendieck polynomials and their properties (follow-
ing the work of Lascoux-Schützenberger and Fomin-Kirillov). They are used to
show various combinatorial aspects of the Grothendieck ring of a Grassmannian
and K-theoretic formulas for “quiver degeneracy loci”.

Haibao Duan presents an elementary introduction to classical Morse theory,
and shows its applications to homogeneous spaces. In particular, “Morse functions
of Bott-Samelson type” are discussed together with Bott-Samelson cycles. Some
applications to Schubert calculus are also mentioned.

The starting point of the article by Ali Kisisel are completely integrable sys-
tems, in particular: KP and KdV hierarchies. Then the infinite Grassmannian of
Sato and Toda hierarchy are described. Finally, through the studies of random
matrices and enumeration of graphs, the article approaches the solution by Kont-
sevich of Witten’s conjecture, as well as some aspects of Gromov-Witten theory.

Piotr Pragacz shows a way of computing the structure constants for multipli-
cation of Schubert classes in the cohomology rings of generalized flag varieties G/P .

Jörg Schürmann presents stratified Morse theory for constructible functions
and its applications to characteristic classes of singular varieties. The point of
view of characteristic classes of Lagrangian cycles is emphasized and a Verdier-
type Riemann-Roch theorem is discussed.

Marek Szyjewski gives an introduction to higher K-groups of Quillen (and also
to those of Milnor). Computations of higher K-groups of fields and of projective
bundles, quadrics, and Severi varieties are presented. Some arithmetical aspects of
the theory are also discussed.

Harry Tamvakis studies quantum cohomology of homogeneous spaces, no-
tably of various Grassmannians. It is shown that three-point genus zero Gromov-
Witten invariants are equal to classical triple intersection numbers on homogeneous
spaces of the same Lie type. Quantum analogs of the Pieri and Giambelli formulas
are also presented.

We dedicate the whole volume to Alexander Grothendieck who remains for us
an unsurpassed master in cohomological studies of algebraic varieties. The opening
article by Piotr Pragacz discusses some aspects of his life and work.

Acknowledgments. The Editor wishes to thank the authors for their scientific con-
tributions. He is grateful to Andrzej Weber for his help with the Impanga schools.
Warm thanks go also to Dr. Thomas Hempfling from Birkhäuser-Verlag for his
invitation to publish this material in Trends in Mathematics and for a pleasant
cooperation during the preparation of this volume.

Warszawa, October 2004 The Editor
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Notes on the Life and Work of
Alexander Grothendieck*

Piotr Pragacz**

When I was a child I loved going to school. The same
instructor taught us reading, writing and arithmetic,
singing (he played upon a little violin to accompany us),
the archaeology of prehistoric man and the discovery
of fire. I don’t recall anyone ever being bored at school.
There was the magic of numbers and the magic of words,
signs, and sounds . . .

A. Grothendieck: Récoltes et Semailles

Abstract. This is a story of Alexander Grothendieck – a man who has changed
the face of mathematics during some 20 years of his work on functional anal-
ysis and algebraic geometry. Last year he turned 75. This paper, written in
April 2004, is based on a talk presented at the Hommage à Grothendieck
session of Impanga1, held at the Banach Centre in Warsaw (January 2004).

Alexander Grothendieck was born in Berlin in 1928. His father, Alexander Shapiro
(1890–1942) was a Russian Jew from a Hassidic town on a now Russian-Ukrainian-
Belorussian border. He was a political activist – an anarchist involved in all the
major European revolutions during 1905–1939. In the 20’s and 30’s he lived mostly
in Germany, operating in the left-wing movements against more and more power-
ful Nazis, and working as a street photographer. In Germany, he met Hamburg-
born Hanka Grothendieck (1900–1957). (The name Grothendieck comes from platt-
deutsch, a Northern German dialect.) Hanka Grothendieck worked on and off as a

∗Translated from the Polish by Janusz Adamus. This paper was originally published in
Wiadomości Matematyczne (Ann. Soc. Math. Pol.) vol. 40 (2004). We thank the Editors of
this journal for permission to reprint the paper.
∗∗Partially supported by Polish KBN grant No. 2 P03A 024 23.
1Impanga is an algebraic geometry group, operating since 2000 at the Institute of Mathematics
of the Polish Academy of Sciences. This session hosted the talks of: M. Cha�lupnik, Grothendieck
topologies and étale cohomology, T. Maszczyk, Toposes and the unity of mathematics, J. Gorski,
Grothendieck stacks on Mazovia plains, O. Kȩdzierski, Why the derived categories?, A. Weber,

The Weil conjectures, G. Banaszak, l-adic representations, P. Krasoń, Mordell-Weil groups of
Abelian varieties.
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journalist, but her true passion was writing. On March 28, 1928 she gave birth to
their son Alexander.

During 1928–1933 Alexander lived with his parents in Berlin. After Hitler’s
rise to power, Alexander’s parents immigrated to France, leaving their son (for
about 5 years) with the Heydorns, a surrogate family in Hamburg, where he went
to a primary and secondary school. In 1939 Alexander joined his parents in France.
His father was soon interned by the French Vichy police in the Vernet camp in the
Pyrenees, and then handed out to the Nazis occupiers. He was murdered in the
German concentration camp Auschwitz-Birkenau in 1942.

Very young Alexander Grothendieck

Hanka and Alexander Grothendieck did not survive the occupation without
problems. In the years 1940–1942 they were interned – as “undesirable dangerous
foreigners” – in the Rieucros camp near Mende in southern France. Hanka was
later transferred to the Gurs camp in the Pyrenees, whilst Alexander was allowed
to continue his education in Collège Cévenol in a Cévennes Mountains town of
Chambon-sur-Lignon in the southern Massif Central. The college, run by local
Protestants under the leadership of Pastor Trocmé, was a sanctuary to many
children (mainly Jews) whose lives were endangered during the war.

Already then, Alexander asked himself a question that showed the uniqueness
of his mind: How to accurately measure the length of a curve, area of a surface, or
volume of a solid? Continuing the reflection on these problems during his university
studies in Montpellier (1945–1948), he independently obtained results equivalent
to Lebesgue’s measure and integration theory. As expressed by J. Dieudonné in [D],
the university in Montpellier – in Grothendieck’s days – wasn’t a “proper place”
for studying great mathematical problems . . . . In the fall of 1948 Grothendieck
arrived in Paris, where he spent a year attending courses in the famous École
Normale Supérieure (ENS), the “birthplace” of most of the French mathematical
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elite. In particular, he took part in Cartan’s legendary seminar, that year devoted
to algebraic topology. (More information about this period of Grothendieck’s life,
his parents, and France of those days, can be found in [C2].)

Grothendieck’s interests, however, began focusing on functional analysis. Fol-
lowing Cartan’s advice, in October 1949 he comes to Nancy, a centre of functional
analysis studies, where J. Dieudonné, L. Schwartz, and others run a seminar on
Fréchet spaces and their direct limits. They encounter a number of problems which
they are unable to solve, and suggest Grothendieck to try and attack them. The
result surpasses all expectations. In less than a year, Grothendieck manages to
solve all the problems by means of some very ingenious constructions. By the time
of his doctorate, Grothendieck holds 6 papers, each of which could make a very
good doctoral thesis. The thesis, dedicated to his mother2:

Produits tensoriels topologiques et espaces nucléaires
————————

HANKA GROTHENDIECK in Verehrung und Dankbarkeit gewidmet

is ready in 1953. This dissertation, published in 1955 in the Memoirs of the
Amer. Math. Soc. [18] 3, is generally considered one of the most important events
in the post-war functional analysis4. The years 1950–1955 mark the period of
Grothendieck’s most intensive work on functional analysis. In his early papers
(written at the age of about 22) Grothendieck poses many questions concerning
the structure of locally convex linear topological spaces, particularly the complete
linear metric spaces. Some of them are related to the theory of linear partial differ-
ential equations and analytic function spaces. The Schwartz kernel theorem leads
Grothendieck to distinguishing the class of nuclear spaces5. Roughly speaking, the
kernel theorem asserts that “decent” operators on distributions are distributions
themselves, which Grothendieck expressed abstractly as an isomorphism of cer-
tain injective and projective tensor products. The main difficulty in introducing
the theory of nuclear spaces is the problem of equivalence of two interpretations
of kernels: as elements of tensor products, and as linear operators (in the case of
finite-dimensional spaces, matrices are in one-to-one correspondence with linear
transformations). This leads to the so-called approximation problem (a version of
which was first posed in S. Banach’s famous monograph [B]), whose deep study
takes a considerable part of the Red Book. Grothendieck discovers many beautiful

2Grothendieck was exceptionally attached to his mother, with whom he spoke in German. She

wrote poems and novels (presumably her best-known work is an autobiographical novel Eine
Frau).
3A complete list of Grothendieck’s mathematical publications is contained in [C-R], vol. 1, pp.
xiii–xx. When citing a Grothendieck’s publication here, we refer to an item on that list.
4And called Grothendieck’s (little) Red Book.
5All his life Grothendieck has been a fervent pacifist. He believed that the term “nuclear” should
only be used to describe abstract mathematical objects. During the Vietnam war he taught a

course on the theory of categories in a forest near Hanoi the same time that Americans were
bombarding the city.
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equivalences (some of the implications were earlier known to S. Banach and S.
Mazur); in particular, he shows that the approximation problem is equivalent to
problem 153 from the Scottish Book [Ma] posed by Mazur, and that, for reflexive
spaces, the approximation property is equivalent to the so-called metric approxi-
mation property. Nuclear spaces are also related to the following 1950 Dvoretzky-
Rogers theorem (solving problem 122 from [Ma]): In every infinite-dimensional
Banach space, there exists an unconditionally convergent series that is not abso-
lutely convergent. Grothendieck showed that the nuclear spaces are precisely those
for which unconditional convergence is equivalent to the absolute convergence of
a series (see [Ma, problem 122 and remarks]). The fundamental importance of nu-
clear spaces comes from the fact that almost all non-Banach locally convex spaces
naturally occurring in analysis are nuclear. We mean here various spaces of smooth
functions, distributions, or holomorphic functions with their natural topologies –
in many cases their nuclearity was shown by Grothendieck himself.

Another important result of the Red Book is the equivalence of the prod-
uct definition of nuclear spaces with their realization as inverse limits of Banach
spaces with morphisms being nuclear or absolutely summable operators (which
Grothendieck calls left semi-integral operators). His study of various classes of
operators (Grothendieck has been the first to define them in a functorial way,
in the spirit of the theory of categories) yields deep results that gave rise to the
modern, so-called local theory of Banach spaces. The results are published in two
important papers [22, 26] in Bol. Soc. Mat. São Paulo, during his stay in that
city (1953–1955). He shows there, in particular, that operators from a measure
space into a Hilbert space are absolutely summable (a fact analytically equivalent
to the so-called Grothendieck inequality), and makes a conjecture concerning a
central problem in the theory of convex bodies, solved by A. Dvoretzky in 1959.
Many very difficult questions posed in those papers were later solved by: P. En-
flo (negative resolution of the approximation problem, in 1972), B. Maurey, G.
Pisier, J. Taskinen (“problème des topologies” on bounded sets in tensor prod-
ucts), U. Haagerup (non-commutative analogue of Grothendieck’s inequality for
C∗-algebras), J. Bourgain – a Fields medalist, and indirectly influenced the results
of another “Banach” Fields medalist, T. Gowers. Supposedly, of all the problems
posed by Grothendieck in functional analysis, there is only one left open to these
days, see [PB, 8.5.19].

To sum up, Grothendieck’s contributions to functional analysis include: nu-
clear spaces, topological tensor products, Grothendieck inequality, relations with
absolutely summable operators, and . . . many other dispersed results.6

In 1955 Grothendieck’s mathematical interests shift to homological algebra.
This is a time of the triumph of homological algebra as a powerful tool in algebraic
topology, due to the work of H. Cartan and S. Eilenberg. During his stay at the
University of Kansas in 1955, Grothendieck constructs his axiomatic theory of

6The above information about Grothendieck’s contribution to functional analysis comes mostly
from [P].
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Abelian categories. His main result asserts that the sheaves of modules form an
Abelian category with sufficiently many injective objects, which allows one to
define cohomology with values in such a sheaf without any constraints on the
sheaf or the base space (the theory appears in [28]).

After homological algebra, Grothendieck’s curiosity directs towards algebraic
geometry – to a large extent due to the influence of C. Chevalley and J.-P. Serre.
Grothendieck considers the former a great friend of his, and in later years partic-
ipates in his famous seminar in the ENS, giving a number of talks on algebraic
groups and intersection theory [81–86]. He also exploits J.-P. Serre’s extensive
knowledge of algebraic geometry, asking him numerous questions (recently, the
French Mathematical Society published an extensive selection of their correspon-
dence [CS]; this book can teach more algebraic geometry than many monographs).
Serre’s paper [S1], building the foundations of the theory of sheaves and their co-
homology in algebraic geometry, is of key importance to Grothendieck.

One of Grothendieck’s first results in algebraic geometry is a classification of
holomorphic bundles over the Riemann sphere [25]. It says that every such bundle
is the direct sum of a certain number of tensor powers of the tautological line
bundle. Some time after this publication it turned out that other “incarnations”
of this result were much earlier known to mathematicians such as G. Birkhoff, D.
Hilbert, as well as R. Dedekind and H. Weber (1892). This story shows, on the one
hand, Grothendieck’s enormous intuition for important problems in mathematics,
but on the other hand, also his lack of knowledge of the classical literature. Indeed,
Grothendieck wasn’t a bookworm; he preferred to learn mathematics through dis-
cussions with other mathematicians. Nonetheless, this work of Grothendieck initi-
ated systematic studies on the classification of bundles over projective spaces and
other varieties.

Algebraic geometry absorbs Grothendieck throughout the years 1956–1970.
His main motive at the beginning of this period is transformation of “absolute”
theorems (about varieties) into “relative” results (about morphisms). Here is an
example of an absolute theorem7:

If X is a complete variety and F is a coherent sheaf on X, then
dimHj(X,F) < ∞.

And this is its relative version:
If f : X → Y is a proper morphism, and F is a coherent sheaf on X,
then Rjf∗F is coherent on Y .

Grothendieck’s main accomplishment of that period is concerned with the relative
Hirzebruch-Riemann-Roch theorem. The original problem motivating the work
on this topic can be formulated as follows: given a connected smooth projective
variety X and a vector bundle E over X , calculate the dimension dim H0(X, E)

7In the rest of this paper we will use some standard algebraic geometry notions and notation (see
[H]). Unless otherwise implied, by a variety we will mean a complex algebraic variety. Cohomology

groups of such a variety – unless otherwise specified – will have coefficients in the field of rational
numbers.
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of the space of global sections of E. The great intuition of Serre told him that the
problem should be reformulated using higher cohomology groups as well. Namely,
Serre conjectured that the number∑

(−1)i dim Hi(X, E)

could be expressed in terms of topological invariants related to X and E. Natu-
rally, Serre’s point of departure was a reformulation of the classical Riemann-Roch
theorem for a curve X : given a divisor D and its associated line bundle L(D),

dimH0(X,L(D)) − dimH1(X,L(D)) = deg D +
1
2
χ(X) .

(An analogous formula for surfaces was also known.)
The conjecture was proved in 1953 by F. Hirzebruch, inspired by earlier

ingenious calculations of J.A. Todd. Here is the formula discovered by Hirzebruch
for an n-dimensional variety X :∑

(−1)i dimHi(X, E) = deg(ch(E)td X)2n , (∗)

where (−)2n denotes the degree 2n component of an element of the cohomology
ring H∗(X), and

ch(E) =
∑

eai , td X =
∏ xj

1− e−xj

(where the ai are the Chern roots of E 8, and the xj are the Chern roots of the
tangent bundle TX).

To formulate a relative version of this result, let a proper morphism f : X →
Y between smooth varieties be given. We want to understand the relationship
between

chX(−)tdX and chY (−)tdY,

“induced” by f . In the case of f : X → Y = point , we should obtain the Hirzebruch-
Riemann-Roch theorem. The relativization of the right-hand side of (∗) is easy:
there exists a well defined additive mapping of cohomology groups f∗ : H(X) →
H(Y ), and deg(z)2n corresponds to f∗(z) for z ∈ H(X). What about the left-
hand side of (∗)? The relative version of the Hj(X,F) are the coherent modules
Rjf∗F , vanishing for j � 0. In order to construct a relative version of the al-
ternating sum, Grothendieck defines the following group K(Y ) (now called the
Grothendieck group): It is the quotient group of a “very large” free Abelian group
generated by the isomorphism classes [F ] of coherent sheaves on Y , modulo the
relation

[F ] = [F ′] + [F ′′]

for each exact sequence
0 → F ′ → F → F ′′ → 0. (∗∗)

8These are the classes of divisors associated with line bundles, splitting E (see [H, p. 430]).
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The group K(Y ) has the following universal property: every mapping ϕ from⊕
Z[F ] to an Abelian group, satisfying

ϕ([F ]) = ϕ([F ′]) + ϕ([F ′′]), (∗ ∗ ∗)
factors through K(Y ). In our situation, we define

ϕ([F ]) :=
∑

(−1)j[Rjf∗F ] ∈ K(Y ) .

Observe that (∗ ∗ ∗) follows from the long exact sequence of derived functors

· · · −→ Rjf∗F ′ −→ Rjf∗F −→ Rjf∗F ′′ −→ Rj+1f∗F ′ −→ · · · ,

associated with the short exact sequence (∗∗) (see [H, Chap. III]). Thus, we obtain
an additive mapping

f! : K(X)→ K(Y ).

Now the relative Hirzebruch-Riemann-Roch theorem, discovered by Grothendieck
([102], [BS]) and being a sign of his genius, asserts the commutativity of the dia-
gram

K(X)
f!−−−−−−→ K(Y )⏐⏐⏐�chX(−)td X

⏐⏐⏐�chY (−)td Y

H(X)
f∗−−−−−−→ H(Y ) .

(Note that due to its additivity, the Chern character ch(−) is well defined in
K-theory.) More information about various aspects of the intersection theory, of
which the ultimate result is the above Grothendieck-Riemann-Roch theorem, can
be found in [H, Appendix A]9. The theorem has been applied in many specific
calculations of characteristic classes.

Grothendieck’s group K spurred the development of K-theory, marked with
the works of D. Quillen and many others. Note that K-theory plays an important
role in many areas of mathematics, from the theory of differential operators (the
Atiyah-Singer theorem) to the modular representation theory of finite groups (the
Brauer theorem).10

Following this spectacular result, Grothendieck is proclaimed a “superstar” of
algebraic geometry, and invited to the International Congress of Mathematicians
in Edinburgh in 1958, where he sketches a program to define a cohomology theory
for positive characteristics that should lead to a proof of the Weil conjectures, see
[32]. The Weil conjectures [W] suggested deep relations between the arithmetic of
algebraic varieties over finite fields, and the topology of complex algebraic vari-
eties. Let k = Fq be a finite field with q elements, and let k̄ be its algebraic closure.

9In fact, the Grothendieck-Riemann-Roch theorem was proved for varieties over any algebraically
closed field (of arbitrary characteristic) by taking the values of the Chern character in the Chow
rings (cf. [102], [BS]).
10Three contributions in the present volume: by M. Brion, A.S. Buch, and M. Szyjewski present
various developments of K-theory initiated by Grothendieck.
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Fix a finite collection of homogeneous polynomials in n + 1 variables with coeffi-
cients in k. Let X (resp. X̄) be the zero-set of this collection in the n-dimensional
projective space over k (resp. k̄). Denote by Nr the number of points in X̄ whose
coordinates lie in the field Fqr with qr elements, r = 1, 2, . . . . “Organize” the Nr

into a generating function, called the zeta function of X :

Z(t) := exp
( ∞∑

r=1

Nr
tr

r

)
.

The Weil conjectures, for a smooth variety X , concern the properties of Z(t),
as well as the relations with the classical Betti numbers of the complex variety
“associated” with X . The formulation of the Weil conjectures can be found in
1.1–1.4 of [H, Appendix C], or W1–W5 of [M, Chap. VI, § 12] (both lists begin
with the conjecture on rationality of the zeta function Z(t)). The above sources also
contain some introductory information about the Weil conjectures, as well as an
account of the struggle for their proof, which (besides Weil and the Grothendieck
school) involved mathematicians such as B. Dwork, J.-P. Serre, S. Lubkin, S. Lang,
Yu. Manin, and many others.

The Weil conjectures become the main motivation for Grothendieck’s work
in algebraic geometry during his stay at the IHES11. He begins working at the
IHES in 1959, and soon under his charismatic leadership, emerges the Séminaire
de Géométrie Algébrique du Bois-Marie (after the wood surrounding the IHES).
For the next decade, the seminar will become the world’s “capital” of algebraic
geometry. Working on mathematics 12 hours a day, Grothendieck generously shares
his ideas with his co-workers. The atmosphere of this exceptional seminar has been
captured in an interview [Du] with one of Grothendieck’s students, J. Giraud. Let
us concentrate now on the main ideas explored by Grothendieck at the IHES12.

Schemes are objects that allow for unification of geometry, commutative al-
gebra, and number theory. Let X be a set, and let F be a field. Consider the
ring

FX = {functions f : X → F}
with multiplication defined pointwise. For x ∈ X , define αx : FX → F by f �→
f(x). The kernel of αx being a maximal ideal, we can identify X with the set of all
maximal ideals in FX . Thus, we replace a simpler object, X by a more complicated
one, which is the set of all maximal ideals in FX . Variants of this idea appeared
in the work of M. Stone on the theory of Boolean lattices, as well as in papers of
I.M. Gelfand on commutative Banach algebras. In commutative algebra, similar
ideas were first exploited by M. Nagata and E. Kähler. In the late 50’s, many
mathematicians in Paris (Cartan, Chevalley, Weil, . . . ) intensively searched for a
generalization of the concept of variety over an algebraically closed field.

11IHES = Institut des Hautes Études Scientifiques: mathematical research institute in Bures-sur-
Yvette near Paris – a fantastic location for doing mathematics, also thanks to its lovely canteen

that will probably never run out of bread and wine.
12See also [D] for a more detailed account of the theory of schemes.
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Serre showed that the notion of localization of a commutative ring leads to a
sheaf over the maximal spectrum Specm of an (arbitrary) commutative ring. Note
that the mapping A→ Specm(A) is not a functor (the inverse image of a maximal
ideal need not be maximal). On the other hand,

A→ Spec(A) := {prime ideals in A}
is a functor. It seems that it was P. Cartier who in 1957 first proposed the following:
a proper generalization of the classical algebraic variety is a ringed space (X,OX)
locally isomorphic to Spec(A) (although it was a result of speculations of many
algebraic geometers). Such an object was called a scheme.

The music pavilion of the IHES, Bures-sur-Yvette;

venue of the first algebraic geometry seminars.

Grothendieck was planning to write a 13-volume course in algebraic geometry
EGA13 based on the concept of schemes and culminating in the proof of the Weil
conjectures. He managed to publish 4 volumes, written together with Dieudonné.
But in fact, most of the material to appear in the later volumes was covered by
SGA14 – publications of the algebraic geometry seminar at the IHES. (The text
[H], to which we often refer here, is a didactic recapitulation of the most useful
parts of EGA concerning schemes and cohomology.)

Let us now turn to constructions in algebraic geometry that make use of
representable functors. Fix an object X in the category C. We associate with it a
contravariant functor from C to the category of sets,

hX(Y ) := MorC(Y, X).

13EGA – Éléments de Géométrie Algébrique, published by the Publ. IHES and Springer Verlag
[57–64].
14SGA – Séminaire de Géometrie Algébrique, published by the Springer Lecture Notes in Math-
ematics and (SGA 2) by North-Holland [97–103].
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At first sight, it is hard to see any use of such a simple assignment. However,
the knowledge of this functor gives us a unique (up to isomorphism) object X
that “represents” it (a fact known as the Yoneda Lemma). It is thus natural to
make the following definition: A contravariant functor from C to the category of
sets is called representable (by X) if it is of the form hX for some object X in
C. Grothendieck masterfully exploits the properties of representable functors to
construct various parameter spaces. Such spaces are often encountered in algebraic
geometry, a key example being the Grassmannian parametrizing linear subspaces
of a given dimension in a given projective space. A natural question is whether
there exist more general schemes parametrizing subvarieties of a given projective
space, and having certain fixed numerical invariants.

Let S be a scheme over a field k. A family of closed subschemes of Pn with
the base S is a closed subscheme X ⊂ Pn×k S together with the natural morphism
X → S. Fix a numerical polynomial P . Grothendieck considers the functor ΨP

from the category of schemes to the category of sets, that assigns to S the set ΨP (S)
of flat families of closed subschemes of Pn with base S and Hilbert polynomial P .
If f : S′ → S is a morphism, then

ΨP (f) : ΨP (S)→ ΨP (S′)

assigns to a family X → S the family X ′ = X×SS′ → S′. Grothendieck proves that
the functor ΨP is representable by a scheme (called a Hilbert scheme) that is pro-
jective [74]15. This is a (very) ineffective result – for example, estimating the num-
ber of irreducible components of the Hilbert scheme of curves in three-dimensional
projective space, with a given genus and degree, is still an open problem. Nonethe-
less, in numerous geometric considerations it suffices to know that such an object
exists, which makes this theorem of Grothendieck useful in many applications.
More generally, Grothendieck constructs a so-called Quot-scheme parametrizing
(flat) quotient sheaves of a given coherent sheaf, with a fixed Hilbert polynomial
[73]. Quot-schemes enjoy many applications in constructions of moduli spaces of
vector bundles. Yet another scheme, constructed by Grothendieck in the same
spirit, is the Picard scheme [75, 76].

In 1966 Grothendieck receives the Fields Medal for his contributions to func-
tional analysis, the Grothendieck-Riemann-Roch theorem, and the work on the
theory of schemes (see [S2]).

The most important subject of Grothendieck’s research at the IHES is, how-
ever, the theory of étale cohomology. Recall that, for the purpose of the Weil
conjectures, the issue is to construct an analogue of the cohomology theory of
complex varieties for algebraic varieties over a field of positive characteristic (but
with coefficients in a field of characteristic zero, so that one could count the fixed
points of a morphism as a sum of traces in cohomology groups, à la Lefschetz).
Earlier efforts to exploit the classical topology used in algebraic geometry – the

15In fact, Grothendieck proves a much more general result for projective schemes over a base
Noetherian scheme.
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Zariski topology (closed subsets = algebraic subvarieties), turned out unsuccessful,
the topology being “too poor” for homological needs. Grothendieck observes that
a “good” cohomology theory can be built by considering a variety together with
all its unramified coverings (see [32] for details on the context of this discovery).
This is the beginning of the theory of étale topology, developed together with
M. Artin and J.-L. Verdier. Grothendieck’s brilliant idea was the revolutionary
generalization of the notion of topology, differing from the classical topological
space in that the “open sets” need not be all contained in the same set, but do
have some basic properties that allow one to build a “satisfactory” cohomology
theory of sheaves.

Alexander Grothendieck

The origins of these ideas are sketched in the following discussion of Cartier
[C1]. When using sheaves on a variety X or studying cohomology of X with co-
efficients in sheaves, the key role is played by the lattice of open subsets of X
(the points of X being of secondary importance). In our considerations, we can
thus, without any harm, “replace” the variety by the lattice of its open subsets.
Grothendieck’s idea was to adapt B. Riemann’s concept of multivalued holomor-
phic functions that actually “live” not on open subsets of the complex plane, but
rather on suitable Riemann surfaces that cover it (Cartier uses a suggestive term
“les surfaces de Riemann étalées”). Between these Riemann surfaces there are pro-
jections, and hence they form objects of a certain category. A lattice is an example
of a category in which between any two objects there is at most one morphism.
Grothendieck suggests then to replace the lattice of open sets with the category of
open étale sets. Adapted to algebraic geometry, this concept allows one to resolve
the fundamental difficulty of the lack of an implicit function theorem for algebraic
functions. Also, it allows us to view the étale sheaves in a functorial way.
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To continue our discussion in a more formal way, suppose that a category C is
given, which admits fibre products. A Grothendieck topology on C is an assignment
to every object X ∈ C of a set Cov(X) of a families of morphisms {fi : Xi →
X}i∈I , called the coverings of X , satisfying the following conditions:

1) {id : X → X} ∈ Cov(X);
2) if {fi : Xi → X} ∈ Cov(X), then, induced by a base change Y → X , the

family {Xi ×X Y → Y } belongs to Cov(Y );
3) if {Xi → X} ∈ Cov(X) and, for all i, {Xij → Xi} ∈ Cov(Xi), then the

bi-indexed family {Xij → X} belongs to Cov(X).

If C admits direct sums – and let us suppose so – then a family {Xi → X} can be
replaced with a single morphism

X ′ =
∐

i

Xi → X .

Having coverings, one can consider sheaves and their cohomology. A contravariant
functor F from C to the category of sets is called a sheaf of sets if, for every
covering X ′ → X , have

F (X) = {s′ ∈ F (X ′) : p∗1(s
′) = p∗2(s

′)} ,

where p1, p2 are the two projections from X ′×X X ′ onto X ′. A canonical topology
in the category C is the topology “richest in coverings” in which all the repre-
sentable functors are sheaves. If in turn, every sheaf in a canonical topology is
a representable functor, then the category C is called a topos. More information
about the Grothendieck topologies can be found for instance in [BD].

Let us return to geometry. Very importantly: the above fi need not be em-
beddings! The most significant example of a Grothendieck topology is the étale
topology, where the fi : Xi → X are étale morphisms16 that induce a surjection∐

i Xi → X . Grothendieck’s cohomological machinery applied to this topology
yields the construction of the étale cohomology Hi

ét(X,−). Although the basic
ideas are relatively simple, the verification of many technical details regarding the
properties of étale cohomology required many years of hard work, which involved
the “cohomological” students of Grothendieck: P. Berthelot, P. Deligne, L. Illusie,
J.-P. Jouanolou, J.-L. Verdier, and others, successively filling up the details of new
results sketched by Grothendieck. The results of the Grothendieck school’s work
on étale cohomology are published in [100]17.

The proof of the Weil conjectures required a certain variant of étale coho-
mology – the l-adic cohomology. Its basic properties, particularly a Lefschetz-type
formula, allowed Grothendieck to prove some of the Weil conjectures, but the most
difficult one – the analogue of the Riemann Hypothesis – remained unsolved. In

16These are smooth morphisms of relative dimension zero. For smooth varieties, étale morphisms
are precisely those that induce isomorphisms of the tangent spaces at all points – naturally, such

morphisms need not be injective. A general discussion of étale morphisms can be found in [M].
17A didactic exposition of étale cohomology can be found in [M].
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the process of proving the conjecture, Grothendieck has played a role similar to
that of the biblical Moses, who led the Israelis off Egypt and towards the Promised
Land, was their guide for the most part of the trip, but was not supposed to reach
the goal himself. In the case of the Weil-Riemann conjecture, the goal was reached
by Grothendieck’s most brilliant student – Deligne [De]. (Grothendieck’s plan to
prove the Weil-Riemann conjecture by first proving the so-called standard conjec-
tures has not been realized to these days – the conjectures are discussed in [44].)

In 1970 Grothendieck accidentally discovers that the IHES finances are par-
tially supported by military sources, and leaves the IHES instantly. He receives a
prestigious position at the Collège de France, however by that time (Grothendieck
is about 42) there are things that interest him more than mathematics: one has to
save the endangered world! Grothendieck cofounds an ecological group called Sur-
vivre et Vivre (Survive and Live). In this group he is accompanied by two outstand-
ing mathematicians and friends: C. Chevalley and P. Samuel. The group publishes
in 1970–1975 a magazine under the same name. Typically for his temperament,
Grothendieck engages wholly in this activity, and soon his lectures at the Collège
de France have little to do with mathematics, concerning instead the issues like
. . . how to avoid the world war and live ecologically. Consequently, Grothendieck
needs to find himself a new job. He receives an offer from his “home” university in
Montpellier, and soon settles down on a farm near the city and works as an “ordi-
nary” professor (with teaching duties) at the university. Working in Montpellier,
Grothendieck writes a number of (long) sketches of new mathematical theories
in an effort to obtain a position in the CNRS18 and talented students from the
ENS to work with. He “receives” no students, but for the last four years before
retirement (at the age of 60) is employed by the CNRS. The sketches are currently
being developed by several groups of mathematicians; it is a good material for a
separate article.

In Montpellier Grothendieck writes also his mathematical memoirs Récoltes
et Semailles (Harvests and Sowings) [G1], containing marvellous pieces about his
perspectives on mathematics, about “male” and “female” roots in mathematics,
and hundreds of other fascinating things. The memoirs contain also a detailed
account of Grothendieck’s relationship with the mathematical community, as well
as a very critical judgement of his former students . . . . But let us talk about
more pleasant things. Speaking of a model mathematician, Grothendieck without
hesitation names E. Galois. Of the more contemporary scientists, Grothendieck
very warmly recalls J. Leray, A. Andreotti, and C. Chevalley. It is symptomatic
how greatly important to Grothendieck is the human aspect of his contacts with
other mathematicians. He writes in [G1]:

If, in “Récoltes et Semailles” I’m addressing anyone besides myself, it isn’t
what’s called a “public”. Rather I’m addressing that someone who is prepared to
read me as a person, and as a solitary person.

18CNRS – Centre National de la Recherche Scientifique, French institution employing scientists
without formal didactic duties.
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Maybe it was the loneliness experienced in all his life that made him so
sensitive about it?

In 1988 Grothendieck refuses to accept a prestigious Crafoord Prize, awarded
to him, jointly with Deligne, by the Royal Swedish Academy of Sciences (huge
money!). Here is a quote of the most important, in my opinion, part of Grothen-
dieck’s letter to the Swedish Academy in regard to the prize (see [G2]):

I am convinced that time is the only decisive test for the fertility of new ideas
or views. Fertility is measured by offspring, not by honors.

Let us add that the letter contains also his extremely critical opinion on the
professional ethic of the mathematical community of the 70’s and 80’s . . .

It is time for some summary. Here are the 12 most important topics of
Grothendieck’s work in mathematics, reproduced after [G1]:

1. Topological tensor products and nuclear spaces;
2. “Continuous” and “discrete” dualities (derived categories, the “six opera-

tions”);
3. The Riemann-Roch-Grothendieck yoga (K-theory and its relationship to in-

tersection theory);
4. Schemes;
5. Topos theory;

(Toposes, as pointed out before, realize (as opposed to schemes) a “geometry
without points” – see also [C1] and [C2]. Grothendieck “admired” toposes
more than schemes. He valued most the topological aspects of geometry that
led to the right cohomology theories.)

6. Étale cohomology and l-adic cohomology;
7. Motives, motivic Galois groups (⊗-Grothendieck categories);
8. Crystals, crystalline cohomology, yoga of the De Rham coefficients, the Hodge

coefficients;
9. “Topological algebra”: ∞-stacks; derivations; cohomological formalism of

toposes, inspiring a new conception of homotopy;
10. Mediated topology;
11. The yoga of Anabelian algebraic geometry. Galois-Teichmüller theory;

(This point Grothendieck considered the hardest and “the deepest”. Recently,
important results on this subject were obtained by F. Pop.)

12. Schematic or arithmetic viewpoints on regular polyhedra and in general all
regular configurations.
(This subject was developed by Grothendieck after moving from Paris to
Montpellier, in his spare time at a family vineyard.)

The work of numerous mathematicians who carried on 1.–12. has made up a sig-
nificant chunk of the late XX century mathematics. Many of the Grothendieck’s
ideas are being actively developed nowadays and will certainly have a significant
impact on the mathematics of the XXI century.
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Let us name the most important continuators of Grothendieck’s work (among
them, a few Fields medalists):

1. P. Deligne: complete proof of the Weil conjectures in 1973 (to a large extent
based on techniques of SGA);

2. G. Faltings: proof of the Mordell conjecture in 1983;
3. A. Wiles: proof of Fermat’s Last Theorem in 1994;

(it is hard to imagine 2. and 3. without EGA)
4. V. Drinfeld, L. Lafforgue: proof of the Langlands reciprocity for general linear

groups over function fields;
5. V. Voevodsky: theory of motives and proof of Milnor’s conjecture.

The last point is related to the following Grothendieck’s “dream”: there should
exist an “Abelianization” of the category of algebraic varieties – a category of
motives together with the motivic cohomology, from which one could read the
Picard variety, the Chow groups, etc. A. Suslin and V. Voevodsky constructed
motivic cohomology satisfying the postulates of Grothendieck.

In August 1991 Grothendieck suddenly abandons his house and, without
a word, leaves to an unknown location somewhere in the Pyrenees. He devotes
himself to philosophical meditations (free choice, determinism, and the existence
of . . . the devil in the world); earlier, he wrote an interesting text La clef des songes
describing his argument for the existence of God based on a dream analysis, and
writes texts on physics. He wishes no contacts with the outside world.

We come to the end. Here is a handful of reflections.
The following words of Grothendieck, from [G1], describe what interested

him most in mathematics:

That is to say that, if there is one thing in mathematics which (no doubt this
has always been so) fascinates me more than anything else, it is neither “number”,
nor “magnitude” but above all “form”. And, among the thousand and one faces
that form chooses in presenting itself to our attention, the one that has fascinated
me more than any other, and continues to fascinate me, is the structure buried
within mathematical objects.

It is truly amazing that resulting from this reflection of Grothendieck on the
“form” and “structure” are theories that provide tools (of unparalleled precision)
for calculating specific numerical quantities and finding explicit algebraic relations.
An example of such a tool in algebraic geometry is the Grothendieck-Riemann-
Roch theorem. Another, less known example, is the language of Grothendieck’s
λ-rings [102], that allows one to treat symmetric functions as operators on poly-
nomials. This in turn provides a uniform approach to numerous classical polyno-
mials (e.g., symmetric, orthogonal) and formulas (e.g., interpolation formulas or
those of the representation theory of general linear groups and symmetric groups).
The polynomials and formulas are often related to the famous names such as:
E. Bézout, A. Cauchy, A. Cayley, P. Chebyshev, L. Euler, C.F. Gauss, C.G. Ja-
cobi, J. Lagrange, E. Laguerre, A.-M. Legendre, I. Newton, I. Schur, T.J. Stieltjes,
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J. Stirling, J.J. Sylvester, J.M. Hoene-Wroński, and others. What’s more, the lan-
guage of λ-rings allows one to establish useful algebro-combinatorial generaliza-
tions of the results of these classics, see [L]. The work of Grothendieck shows that
there is no essential dichotomy between the quantitative and qualitative aspects
of mathematics.

Undoubtedly, Grothendieck’s point of view explained above helped him to
accomplish the enormous work towards the unification of important subjects in
geometry, topology, arithmetic, and complex analysis. It also relates to Grothen-
dieck’s fondness for studying mathematical problems in their full generality.

Grothendieck’s work style is well described in the following tale of his, from
[G1]. Suppose one wants to prove a conjecture. There are two extreme methods
to do this. First: by force. As with opening a nut: one cracks the shell with a
nutcracker and gets to the fruit inside. But there is also another way. One can
put a nut into a softening liquid and wait patiently until it suffices to gently
press the shell and it opens all by itself. Anyone who read Grothendieck’s works
would have no doubt that it was the latter approach he used when working on
mathematics. Cartier [C1] gives a yet more suggestive characterization of this
method: it is the Joshua way of conquering Jericho. One wants to get to Jericho
guarded by tall walls. If one compasses the city sufficiently many times, thus
weakening their construction (by resonance), then eventually it will suffice to blow
with the trumpets and shout with a great shout and . . . the walls of Jericho shall
fall down flat!

Let us share the following piece of advice, especially with young mathemati-
cians. Grothendieck highly valued writing down his mathematical considerations.
He regarded the process of writing and editing of mathematical papers itself an
integral part of the research work, see [He].

Finally, let us listen to Dieudonné, a faithful witness of Grothendieck’s work,
and a mathematician of an immense encyclopedic knowledge. He wrote (see [D])
on the occasion of Grothendieck’s 60’th birthday (that is, some 15 years ago):

There are few examples in mathematics of a theory that monumental and
fruitful, done by a single man in such a short time.

He is accompanied by the editors of The Grothendieck Festschrift [C-R]
(where [D] was published), who say in the introduction:

It is difficult to grasp fully the magnitude of Alexander Grothendieck’s con-
tribution to and influence on twentieth century mathematics. He has changed the
very way we think about many branches in mathematics. Many of his ideas, revo-
lutionary when introduced, now seem so natural as to have been inevitable. Indeed,
there is a whole new generation of mathematicians for whom these ideas are part of
the mathematical landscape, a generation who cannot imagine that Grothendieck’s
ideas were ever absent.
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During the preparation of this article I asked a couple of my French friends
whether Grothendieck was still alive. Their answers could be summarized as fol-
lows: “Unfortunately, the only news we will have about Grothendieck will be the
notice of his death. Since we still haven’t got any, he must be alive.” On March
28, 2004 Grothendieck turned 76.

The bibliography of Grothendieck’s work is huge and obviously stretches
beyond the scope of this modest exposition. We cite only those bibliographical
items to which we refer directly in the text. One can find there more detailed
references to papers of Grothendieck and other authors writing about him and his
work. We heartily recommend visiting the website of the Grothendieck Circle:

http://www.grothendieck-circle.org/

containing much interesting mathematical and biographical material about Gro-
thendieck and his parents.
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Warszawa, 1932.
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Śniadeckich 8
PL-00-956 Warszawa, Poland
e-mail: P.Pragacz@impan.gov.pl



Trends in Mathematics:
Topics in Cohomological Studies of Algebraic Varieties, 1–32
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Characteristic Classes of Singular Varieties

Paolo Aluffi

Preface

These five lectures aim to explain an algebro-geometric approach to the study of
different notions of Chern classes for singular varieties, with emphasis on results
leading to concrete computations.

My main goal in the lectures was not to summarize the history or to give
a complete, detailed treatment of the subject; five lectures would not suffice for
this purpose, and I doubt I would be able to accomplish it in any amount of time
anyway. My goal was simply to provide enough information so that interested
listeners could start working out examples on their own. As these notes are little
more than a transcript of my lectures, they are bound to suffer from the same
limitations. In particular, I am certainly not quoting here all the sources that
should be quoted; I offer my apologies to any author that may feel his or her
contribution has been neglected.

The lectures were given in the mini-school with the same title organized by
Professors Pragacz and Weber at the Banach Center. Jörg Schürmann gave a
parallel cycle of lectures at the same mini-school, on the same topic but from a
rather different viewpoint. I believe everybody involved found the counterpoint
provided by the accostment of the two approaches very refreshing. I warmly thank
Piotr Pragacz and Andrzej Weber for giving us the opportunity to present this
beautiful subject.

1. Lecture I

1.1. Cardinality of finite sets vs. Euler characteristic
vs. Chern-Schwartz-MacPherson classes

Let Fin denote the category of finite sets. I want to consider a functor C from Fin
to abelian groups, defined as follows: for S a finite set, C(S) denotes the group of
functions S → Z.
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Note: we could see C(S) as the group of linear combinations
∑

V mV 1V ,
where V runs over the subsets of S, mV ∈ Z, and 1V is the constant 1 on V and
0 in the complement of V . We could even select V to be the singletons {s}, with
s ∈ S, if we wanted.

How do we make C into a functor? For f : S → T a map of finite sets, we
have to decide what C(f) does; and for this it is enough to decide what function
T → Z

C(f)(1V )
should be, for every subset V ⊂ S; and for this, we have to decide the value of

C(f)(1V )(t)

for t ∈ T . Here is the definition:

C(f)(1V )(t) = #(f−1(t) ∩ V )

where # denotes ‘number of elements’. Exercise: this makes C into a functor.
This trivial observation is the source of equally trivial, but rather interesting

properties of the counting function. Note that C({p}) = Z, and for the constant
map κ : S → {p},

C(κ)(1S) = #S.

So if S1, S2 are two subsets of S and S = S1 ∪ S2, thinking about the covariance
for

S1 � S2 → S = S1 ∪ S2 → {p}
tells us that

#(S1 ∪ S2) = #S1 + #S2 −#(S1 ∩ S2);
and, more generally, the ‘inclusion-exclusion’ counting principle follows.

A much more remarkable observation is that the topological Euler character-
istic satisfies the same properties. If S admits a structure of CW complex, define
χ(S) to be the number of vertices, minus the number of edges, plus the number
of faces, . . . . Then whenever S1, S2, S all admit such a structure one verifies
immediately that

χ(S1 ∪ S2) = χ(S1) + χ(S2)− χ(S1 ∩ S2);

and, more generally, an inclusion-exclusion principle for χ holds. So we could think
of the Euler characteristic as a ‘counting’ function.

The main character in these lectures will be ‘the next step’ in this philosophy:
the Chern-Schwartz-MacPherson class of a variety V , cSM(V ), will be an even
fancier analog of ‘counting’, in the sense that it will satisfy the same ‘inclusion-
exclusion’ principle. In fact, the Euler characteristic will be part of the information
carried by the CSM class: for V a compact complex algebraic variety, χ(V ) will be
the degree

∫
cSM(V ) of cSM(V ), that is, the degree of the zero-dimensional part of

cSM(V ). The class cSM(V ) will live in a homology theory for V .
My emphasis will be: how do we concretely compute such classes?
But maybe the first question should be: what does ‘computing’ mean?


