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Preface

Charles François Sturm, through his papers published in the 1830’s, is considered
to be the founder of Sturm-Liouville theory. He was born in Geneva in Septem-
ber 1803. To commemorate the 200th anniversary of his birth, an international
colloquium in recognition of Sturm’s major contributions to science took place at
the University of Geneva, Switzerland, following a proposal by Andreas Hinz. The
colloquium was held from 15 to 19 September 2003 and attended by more than 60
participants from 16 countries. It was organized by Werner Amrein of the Depart-
ment of Theoretical Physics and Jean-Claude Pont, leader of the History of Science
group of the University of Geneva. The meeting was divided into two parts. In the
first part, historians of science discussed the many contributions of Charles Sturm
to mathematics and physics, including his pedagogical work. The second part of the
colloquium was then devoted to Sturm-Liouville theory. The impact and develop-
ment of this theory, from the death of Sturm to the present day, was the subject of
a series of general presentations by leading experts in the field, and the colloquium
concluded with a workshop covering recent research in this highly active area.

This drawing together of historical presentations with seminars on current
mathematical research left participants in no doubt of the degree to which Sturm’s
original ideas are continuing to have an impact on the mathematics of our own
times. The format of the conference provided many opportunities for exchange
of ideas and collaboration and might serve as a model for other multidisciplinary
meetings.

The organizers had decided not to publish proceedings of the meeting in the
usual form (a complete list of scientific talks is appended, however). Instead it
was planned to prepare, in conjunction with the colloquium, a volume containing
a complete collection of Sturm’s published articles and a volume presenting the
various aspects of Sturm-Liouville theory at a rather general level, accessible to
the non-specialist. Thus Jean-Claude Pont will edit a volume1 containing the col-
lected works of Sturm accompanied by a biographical review as well as abundant
historical and technical comments provided by the contributors to the first part of
the meeting.

The present volume is a collection of twelve refereed articles relating to the
second part of the colloquium. It contains, in somewhat extended form, the survey
lectures on Sturm-Liouville theory given by the invited speakers; these are the first

1The Collected Works of Charles François Sturm, J.-C. Pont, editor (in preparation).
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six papers of the book. To complement this range of topics, the editors invited
a few participants in the colloquium to provide a review or other contribution
in an area related to their presentation and which should cover some important
aspects of current interest. The volume ends with a comprehensive catalogue of
Sturm-Liouville differential equations. At the conclusion of the Introduction is a
brief description of the articles in the book, placing them in the context of the
developing theory of Sturm-Liouville differential equations. We hope that these
articles, besides being a tribute to Charles François Sturm, will be a useful resource
for researchers, graduate students and others looking for an overview of the field.

We have refrained from presenting details of Sturm’s life and his other sci-
entific work in this volume. As regards Sturm-Liouville theory, some aspects of
Sturm’s original approach are presented in the contributions to the present book,
and a more detailed discussion will be given in the article by Jesper Lützen and
Angelo Mingarelli in the companion volume. Of course, the more recent literature
concerned with this theory and its applications is strikingly vast (on the day of
writing, MathSciNet yields 1835 entries having the term “Sturm-Liouville” in their
title); it is therefore unavoidable that there may be certain aspects of the theory
which are not sufficiently covered here.

The articles in this volume can be read essentially independently. The authors
have included cross-references to other contributions. In order to respect the style
and habits of the authors, the editors did not ask them to use a uniform standard
for notations and conventions of terminology. For example, the reader should take
note that, according to author, inner products may be anti-linear in the first or in
the second argument, and deficiency indices are either single natural numbers or
pairs of numbers. Moreover, there are some differences in terminology as regards
spectral theory.

The colloquium would not have been possible without support from numerous
individuals and organizations. Financial contributions were received from various
divisions of the University of Geneva (Commission administrative du Rectorat,
Faculté des Lettres, Faculté des Sciences, Histoire et Philosophie des Sciences, Sec-
tion de Physique), from the History of Science Museum and the City of Geneva,
the Société Académique de Genève, the Société de Physique et d’Histoire Naturelle
de Genève, the Swiss Academy of Sciences and the Swiss National Science Foun-
dation. To all these sponsors we express our sincere gratitude. We also thank the
various persons who volunteered to take care of numerous organizational tasks
in relation with the colloquium, in particular Francine Gennai-Nicole who under-
took most of the secretarial work, Jan Lacki and Andreas Malaspinas for technical
support, Danièle Chevalier, Laurent Freland, Serge Richard and Rafael Tiedra de
Aldecoa for attending to the needs of the speakers and other participants. Special
thanks are due to Jean-Claude Pont for his enthusiastic collaboration over a period
of more than three years in the entire project, as well as to all the speakers of the
meeting for their stimulating contributions.

As regards the present volume, we are grateful to our authors for all the
efforts they have put into the project, as well as to our referees for generously
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giving of their time. We thank Norrie Everitt, Hubert Kalf, Karl Michael Schmidt,
Charles Stuart and Peter Wittwer who freely gave their scientific advice, Serge
Richard who undertook the immense task of preparing manuscripts for the pub-
lishers, and Christian Clason for further technical help. We are much indebted to
Thomas Hempfling from Birkhäuser Verlag for continuing support in a fruitful and
rewarding partnership.

The cover of this book displays, in Liouville’s handwriting, the original for-
mulation by Sturm and Liouville, in the manuscript of their joint 1837 paper,
of the regular second-order boundary value problem on a finite interval. The pa-
per, which is discussed here by W.N. Everitt on pages 47–50, was presented to
the Paris Académie des sciences on 8 May 1837 and published in Comptes ren-
dus de l’Académie des sciences, Vol. IV (1837), 675–677, as well as in Journal de
Mathématiques Pures et Appliquées, Vol. 2 (1837), 220–223. The original manu-
script, with the title “Analyse d’un Mémoire sur le développement des fonctions en
séries, dont les différents termes sont assujettis à satisfaire à une même équation
différentielle linéaire contenant un paramètre variable”, is preserved in the archives
of the Académie des sciences to whom we are much indebted for kind permission
to reproduce an extract.

Geneva, September 2004 Werner Amrein
Andreas Hinz
David Pearson
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Introduction

David Pearson

Charles François Sturm was born in Geneva on 29 September 18031. He received his
scientific education in this city, in which science has traditionally been of such great
importance. Though he was later drawn to Paris, where he settled permanently
in 1825 and carried out most of his scientific work, he has left his mark also on
the city of Geneva, where his name is commemorated by the Place Sturm and the
Rue Charles-Sturm. On the first floor of the Museum of History of Science, in its
beautiful setting with magnificent views over Lake Geneva, you can see some of
the equipment with which his friend and collaborator Daniel Colladon pursued his
research on the lake into the propagation of sound through water2.

Sturm’s family came to Geneva from Strasbourg a few decades before his
birth. He frequently moved house, and at least two of the addresses where he
spent some of his early years can still be found in Geneva’s old town3,4.

Not only did Charles Sturm leave his mark on Geneva, but his rich scientific
legacy is recognized by mathematicians and scientists the world over, and contin-
ues to influence the direction of mathematical development in our own times5. In

1This corresponds to the sixth day of the month of Vendémiaire in year XII of the French
revolutionary calendar then in use in the Département du Léman.
2Colladon was the physicist and experimentalist of this partnership, while Sturm played an
important role as theoretician. Their joint work on sound propagation and compressibility of
fluids was recognized in 1827 by the award of the Grand Prix of the Paris Academy of Sciences.
3The address 29, Place du Bourg-de-Four was home to ancestors of Charles Sturm in 1798. The
present building appears on J.-M. Billon’s map of Geneva, dated 1726, which is the earliest extant
cadastral map of the city. The home of Charles Sturm in 1806, with his parents and first sister,
was 11, Rue de l’Hôtel-de-Ville. The building now on this site was constructed in 1840. The two
houses are in close proximity.
4For details on Sturm’s life, see the biographical notice by J.-C. Pont and I. Benguigui in The
Collected Works of Charles François Sturm, J.-C. Pont, editor (in preparation), as well as Chap-
ter 21 of the book by P. Speziali, Physica Genevensis, La vie et l’oeuvre de 33 physiciens genevois,
Georg, Chêne-Bourg (1997).
5Sturm was already judged by his contemporaries to be an outstanding theoretician. Of the
numerous honours which he received during his lifetime, special mention might be made of the
Grand Prix in Mathematics of the Paris Academy, in 1834, and membership of the Royal Society
of London as well as the Copley Medal, in 1840. The citation for membership of the Royal Society
was as follows: “Jacques Charles François Sturm, of Paris, a Gentleman eminently distinguished
for his original investigations in mathematical science, is recommended by us as a proper person
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bringing together leading experts in the scientific history of Sturm’s work with
some of the major contributors to recent and contemporary mathematical devel-
opments in related fields, the Sturm Colloquium provided a unique opportunity
for the sharing of knowledge and exchange of new ideas.

Interactions of this kind between individuals from different academic back-
grounds can be of great value. There is, of course, a powerful argument for mathe-
matics to take note of its history. Mathematical results, concepts and methods do
not spring from nowhere. Often new results are motivated by existing or potential
applications. Some of Sturm’s early work on sound propagation in fluids is a good
example of this, as are his fundamental contributions to the theory of differential
equations, which were partly motivated by problems of heat flow. Some of the
later developments in areas that Sturm had initiated proceeded in parallel with
one of the revolutions in twentieth century physics, namely quantum mechanics.
New ideas in mathematics need to be considered in the light of the mathematical
and cultural environment of their time.

Sturm’s mathematical publications covered diverse areas of geometry, alge-
bra, analysis, mechanics and optics. He published textbooks in analysis and me-
chanics, both of which were still in use as late as the twentieth century6.

To most mathematicians today, Sturm’s best-known contributions, and those
which are usually considered to have had the greatest influence on mathematics
since Sturm’s day, have been in two main areas.

The first of Sturm’s major contributions to mathematics was his remarkable
solution, presented to the Paris Academy of Sciences in 1829 and later elaborated
in a memoir of 18357, of the problem of determining the number of roots, on a given
interval, of a real polynomial equation of arbitrary degree. Sturm found a complete
solution of this problem, which had been open since the seventeenth century. His
solution is algorithmic; a sequence of auxiliary polynomials (now called Sturm

to be placed on the list of Foreign members of the Royal Society”. The Copley Medal was in
recognition of his seminal work on the roots of real polynomial equations and was the second
medal awarded that year, the first having gone to the chemist J. Liebig. The citation for the
Medal was: “Resolved, by ballot. – That another Copley Medal be awarded to M. C. Sturm,
for his “Mémoire sur la Résolution des Equations Numériques,” published in the Mémoires des
Savans Etrangers for 1835”. Sturm is also one of the few mathematicians commemorated in the
series of plaques at the Eiffel tower in Paris.
6Both of these books were published posthumously, Sturm having died on 18 December 1855.
The analysis text went through 15 editions, of which the last printing was as late as 1929. A

reference for the first edition is: Cours d’analyse de l’École polytechnique (2 vols.), published by
E. Prouhet (Paris, 1857–59). The text was translated into German by T. Fischer as: Lehrbuch
der Analysis (Berlin, 1897–98). The first edition of the mechanics text was: Cours de mécanique

de l’École polytechnique (2 vols.), published by E. Prouhet (Paris, 1861). The fifth and last
edition, revised and annotated by A. de Saint-Germain, was in print at least until 1925.
7The full text of Sturm’s resolution of this problem is to be found in: Mémoire sur la résolution
des équations numériques, in the journal Mémoires présentés par divers savans à l’Académie
Royale des Sciences de l’Institut de France, sciences mathématiques et physiques 6 (1835), 271–

318 (also cited as Mémoires Savants Étrangers). See also The Collected works of Charles François
Sturm, J.-C. Pont, editor (in preparation) for further discussion of this work.
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functions), is calculated, and the number of roots on an interval is determined by
the signs of the Sturm functions at the ends of the intervals. Sturms work on zeros
of polynomials undoubtedly influenced his work on related problems for solutions
of differential equations, which was to follow.

His second major mathematical contribution, or rather a whole series of con-
tributions, was to the theory of second-order linear ordinary differential equations.
In 1833 he read a paper to the Academy of Sciences on this subject, to be followed
in 1836 by a long and detailed memoir in the Journal de Mathématiques Pures et
Appliquées. This memoir was one of the first to appear in the journal, which had
recently been founded by Joseph Liouville, who was to become a collaborator and
one of Sturm’s closest friends in Paris. It contained the first full treatment of the
oscillation, comparison and separation theorems which were to bear Sturm’s name,
and was succeeded the following year by a remarkable short paper, in the same
journal and in collaboration with Liouville, which established the basic principles
of what was to become known as Sturm-Liouville theory8. The problems treated in
this paper would be described today as Sturm-Liouville boundary value problems
(second-order linear differential equations, with linear dependence on a parame-
ter) on a finite interval, with separated boundary conditions. Sturm’s earlier work
had shown that such problems led to an infinity of possible values of the param-
eter. The collaboration between Sturm and Liouville took the theory some way
forward by proving the expansion theorem, namely that a large class of functions
could be represented by a Fourier-type expansion in terms of the family of solu-
tions to the boundary value problem. In modern terminology, the solutions would
later be known as eigenfunctions and the corresponding values of the parameter
as eigenvalues.

The 1837 memoir, published jointly by Sturm and Liouville, was to become
the foundation of a whole new branch of mathematics, namely the spectral the-
ory of differential operators. Sturm-Liouville theory is central to a large part of
modern analysis. The theory has been successively generalized in a number of
directions, with applications to Mathematical Physics and other branches of mod-
ern science. This volume provides the reader with an account of the evolution of
Sturm-Liouville theory since the pioneering work of its two founders, and presents
some of the most recent research. The companion volume will treat aspects of the
work of Sturm and his successors as a branch of the history of scientific ideas.
We believe that the two volumes together will provide a perspective which will
help to make clear the significant position of Sturm-Liouville theory in modern
mathematics.

Sturm-Liouville theory, as originally conceived by its founders, may be re-
garded, from a modern standpoint, as a first, tentative step towards the develop-
ment of a spectral theory for a class of second-order ordinary differential operators.

8For a more extended treatment of the early development of Sturm-Liouville theory, with detailed

references, see the paper on Sturm and differential equations by J. Lützen and A. Mingarelli in
the companion volume, as well as the first contribution by Everitt to this volume.
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Liouville had already covered in some detail the case of a finite interval with two
regular endpoints and boundary conditions at each endpoint. He regarded the re-
sulting expansion theorem in terms of orthogonal eigenfunctions9 as an extension
of corresponding results for Fourier series, and the analysis was applicable only
to cases for which, in modern terminology, the spectrum could be shown to be
pure point. In fact the term “spectrum” itself, in a sense close to its current mean-
ing, only began to emerge at the end of the nineteenth and the beginning of the
twentieth century, and is usually attributed to David Hilbert.

The first decade of the twentieth century was a period of rapid and highly
significant development in the concepts of spectral theory. A number of math-
ematicians were at that time groping towards an understanding of the idea of
continuous spectrum. Among these was Hilbert himself, in Göttingen. Hilbert was
concerned not with differential equations (though his work was to have a profound
impact on the spectral analysis of second-order differential equations) but with
what today we would describe as quadratic forms in the infinite-dimensional space
l2. Within this framework, he was able to construct the equivalent of a spectral
function for the quadratic form, in terms of which both discrete and continuous
spectrum could be defined. Examples of both types of spectrum could be found,
and from these examples emerged the branch of mathematics known as spectral
analysis. For the first time, spectral theory began to make sense even in cases
where the point spectrum was empty. The time was ripe for such developments,
and the theory rapidly began to incorporate advances in integration and measure
theory coming from the work of Lebesgue, Borel, Stieltjes and others.

As far as Sturm-Liouville theory itself is concerned, the most significant
progress during this first decade of the twentieth century was undoubtedly due
to the work of the young Hermann Weyl. Weyl had been a student of Hilbert in
Göttingen, graduating in 1908. (He was later, in 1930, to become professor at the
same university.) His 1910 paper10 did much to revolutionise the spectral theory
of second-order linear ordinary differential equations. Weyl’s spectrum is close to
the modern definition via resolvent operators, and his analysis of endpoints based
on limit point/limit circle criteria anticipates later ideas in functional analysis in
which deficiency indices play the central role. For Weyl, continuous spectrum was
not only to be tolerated, but was totally absorbed into the new theory. The expan-
sion theorem, from 1910 onwards, was to cover contributions from both discrete
and continuous parts of the spectrum. Weyl’s example of continuous spectrum,
corresponding to the differential equation −d2f(x)/dx2 − xf(x) = λf(x) on the

9Liouville’s proof of the expansion theorem was not quite complete in that it depended on as-
sumptions involving some additional regularity of eigenfunctions. Later extensions of this theory,
as well as a full and original proof of completeness of eigenfunctions, can be found in the article
by Bennewitz and Everitt in this volume.
10A full discussion of Weyl’s paper and its impact on Sturm-Liouville theory is to be found in
the first contribution by Everitt to this volume.
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half line [0,∞) , could hardly have been simpler11. And, perhaps most importantly,
with Weyl’s 1910 paper complex function theory began to move to the center stage
in spectral analysis.

The year 1913 saw a further advance through the publication of a research
monograph by the Hungarian mathematician Frigyes Riesz12, in which he contin-
ued the ideas of Hilbert, with the new point of view that it was the linear operator
associated with a given quadratic form, rather than the form itself, which was to
be the focus of analysis. In other words, Riesz shifted attention towards the spec-
tral theory of linear operators. In doing so he was able to arrive at the definition
of spectrum in terms of the resolvent operator, to define a functional calculus for
linear operators, and to explore the idea of what was to become the resolution
of the identity for bounded self-adjoint operators. An important consequence of
these results was that it became possible to incorporate many of Weyl’s results on
Sturm-Liouville problems into the developing theory of functional analysis. Thus,
for example, the role of boundary conditions in determining self-adjoint extensions
of differential operators could then be fully appreciated.

The modern theory of Sturm-Liouville differential equations, which grew from
these beginnings, was profoundly influenced by the emergence of quantum me-
chanics, which also had its birth in the early years of the twentieth century. At
the heart of the development of a mathematical theory to meet the demands of
the new physics was John von Neumann13.

Von Neumann joined Hilbert as assistant in Göttingen in 1926, the very year
that Schrödinger first published his fundamental wave equation. The Schrödinger
equation is, in fact, a partial differential equation, but, in the case of spherically
symmetric potentials such as the Coulomb potential, the standard technique of
separation of variables reduces the equation to a sequence of ordinary differential
equations, one for each pair of angular momentum quantum numbers. In this
way, under the assumption of spherical symmetry, Sturm-Liouville theory can be
applied to the Schrödinger equation.

Von Neumann found in functional analysis the perfect medium for under-
standing the foundations of quantum mechanics. Quantum theory led in a natural
way to a close correspondence (one could almost say identification, though that
would not quite be true) of the physical objects of the theory with mathematical
objects drawn from the theory of linear operators (usually differential operators) in
Hilbert space. The state of a quantum system could be described by a normalized
element (or vector, or wave function) in the Hilbert space. Corresponding to each

11Later it was to emerge that examples of this kind could be interpreted physically in terms of
a quantum mechanical charged particle moving in a uniform electric field.
12F. Riesz, Les systèmes d’équations linéaires à une infinité d’inconnues, Gauthier-Villars, Paris
(1913). See also J. Dieudonné, History of functional analysis, North-Holland, Amsterdam (1981).
With Riesz we begin to see the development of an “abstract” operator theory, in which the special
example of Sturm-Liouville differential operators was to play a central role.
13Von Neumann established a mathematical framework for quantum theory in his book Mathe-
matische Grundlagen der Quantenmechanik, Springer, Berlin (1932). An English translation ap-
peared as Mathematical Foundations of Quantum Mechanics, Princeton University Press (1955).
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quantum observable was a self-adjoint operator, the spectrum of which represented
the range of physically realizable values of the observable. Both point spectrum
and continuous spectrum were important – in the case of the hydrogen atom the
energy spectrum had both discrete and continuous components, the discrete points
(eigenvalues of the corresponding Schrödinger operator) agreeing closely with ob-
served energy levels of hydrogen, and the continuous spectrum corresponding to
states of positive energy.

Von Neumann quickly saw the implications for quantum mechanics of the new
theory, and played a major part in developing the correspondence between physical
theory and the analysis of operators and operator algebras. Physics and mathe-
matical theory were able to develop in close parallel for many years, greatly to the
advantage of both. He developed to a high art the spectral theory of self-adjoint
and normal operators in abstract Hilbert space. A complete spectral analysis of
self-adjoint operators in Hilbert space, generalizing the earlier results of Riesz, was
just one outcome of this work, and a highly significant one for quantum theory.
Similar results were independently discovered by Marshall Stone, who expounded
the theory in his book published in 1932. (See the first article by Everitt.)

Of central importance for the future development of applications to mathe-
matical physics, particularly in scattering theory which existed already in embry-
onic form in the work of Heisenberg, was the realization that the Lebesgue decom-
position of measures into its singular and absolutely continuous (with respect to
Lebesgue measure) components led to an analogous decomposition of the Hilbert
space into singular and absolutely continuous subspaces for a given self-adjoint op-
erator. Moreover, these two subspaces are mutually orthogonal. The singular sub-
space may itself be decomposed into two orthogonal components, namely the sub-
space of discontinuity, spanned by eigenvectors, and the subspace of singular conti-
nuity. Physical interpretations have been found for all of these subspaces, though in
most applications only the discontinuous and absolutely continuous subspaces are
non-trivial. In the case of the Hamiltonian (energy operator) for a quantum particle
subject to a Coulomb force, the discontinuous subspace is the subspace of nega-
tive energy states and describes bound states of the system, whereas the absolutely
continuous subspace corresponds to scattering states, which have positive energy.

The influence of the work of Charles Sturm and his close friend and collab-
orator Joseph Liouville may be found in the numerous modern developments of
the theory which bears their names. A principal aim of this volume is to follow in
detail the evolution of the theory since its early days, and to present an overview
of the most important aspects of the theory as it stands today at the beginning of
the twenty-first century.

We are grateful indeed to Norrie Everitt for his contributions to this volume,
as author of two articles and coauthor of another. Over a long mathematical career,
he has played an important role in the continuing progress of Sturm-Liouville
theory.

The first of Norrie’s articles in this volume deals with the development of
Sturm-Liouville theory up to the year 1950, and covers in particular the work of
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Weyl, Stone and Titchmarsh, of whom Norrie was himself a one-time student. (He
also had the good fortune, on one occasion, to have encountered Weyl, who was
visiting Titchmarsh at the time.)

Don Hinton’s article is concerned with a series of results which follow from
Sturm’s original oscillation theorems developed in 1836 for second-order equations.
Criteria are obtained for the oscillatory nature of solutions of the differential equa-
tion, and implications for the point spectrum are derived. Extensions of the theory
to systems of equations and to higher-order equations are described.

Joachim Weidmann’s contribution considers the impact of functional analysis
on the spectral theory of Sturm-Liouville operators. Starting from ideas of resol-
vent convergence, it is shown how spectral behavior for singular problems may
in appropriate cases be derived through limiting arguments from an analysis of
regular problems. Conditions are obtained for the existence (or non-existence) of
absolutely continuous spectrum in an interval.

Spectral properties of Sturm-Liouville operators are often derived, directly or
indirectly, as a consequence of an established link between large distance asymp-
totic behavior of solutions of the associated differential equation and spectral prop-
erties of the corresponding differential operator. In the case of complex spectral
parameter, the existence of solutions which are square-integrable at infinity may
be described by the values of an analytic function, known as the Weyl-Titchmarsh
m-function or m-coefficient, and spectral properties of Sturm-Liouville operators
may be correlated with the boundary behavior of the m-function close to the real
axis. The article by Daphne Gilbert explores further the link between asymptotics
and spectral properties, particularly through the concept of subordinacy of solu-
tions, an area of spectral analysis to which she has made important contributions.

A useful resource for readers of this volume, particularly those with an inter-
est in numerical approaches to spectral analysis, will be the catalogue of Sturm-
Liouville equations, compiled by Norrie Everitt with the help of colleagues. More
than 50 examples are described, with details of their Weyl limit point/limit circle
endpoint classification, the location of eigenvalues, other spectral information, and
some background on applications. This collection of examples from an extensive
literature should also provide a reference to some of the sources in which the in-
terested reader can find further details of the theory and its applications, as well
as numerical data on spectral properties.

In collaboration with Christer Bennewitz, Everitt has contributed a new ver-
sion of the proof of the expansion theorem for general Sturm-Liouville operators,
incorporating both continuous and discontinuous spectra.

The article by Barry Simon presents some recent results related to Sturm’s
oscillation theory for second-order equations. The cases of both Schrödinger op-
erators and Jacobi matrices (which may be regarded as a discrete analogue of
Schrödinger operators) are considered. A focus of this work is the establishment
of a connection between the dimension of spectral projections and the number
of zeros of appropriate functions defined in terms of solutions of the Schrödinger
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equation. Some deep results in spectral theory follow from this analysis, and there
are links with the theory of orthogonal polynomials on the unit circle.

Yoram Last has provided a review of progress over recent years in spectral
theory for discrete and continuous Schrödinger operators. Of particular interest
has been the progress in analysis of spectral types, with a finer decomposition of
spectral measures than hitherto, and the development of new ways of characteriz-
ing absolutely continuous and singular continuous spectrum.

Rafael del Rı́o’s article is an exposition of recent results relating to the in-
fluence of boundary conditions on spectral behavior. For Schrödinger operators, a
change of boundary condition will not affect the location of absolutely continuous
spectrum, whereas the nature of singular spectrum may be profoundly influenced
by choice of boundary conditions.

In view of the major influence that Sturm-Liouville theory has had over the
years on the development of spectral theory for linear differential equations, it is
not surprising that there have been many attempts to extend the ideas and meth-
ods to nonlinear equations. Chao-Nien Chen describes some recent results in the
nonlinear theory, with particular emphasis on the characterization of nodal sets,
an area related to Sturm’s original ideas on oscillation criteria in the linear case.

Another productive area of research into Sturm-Liouville theory is the exten-
sion of the theory to partial differential equations. Sturm had himself published
results on zero sets for parabolic linear partial differential equations in a paper
of 1836. In their contribution to this volume, Victor Galaktionov and Petra Har-
win survey recent progress in this area, including extensions to some quasilinear
equations.

A continuing and flourishing branch of spectral theory, with applications in
many areas, is that of inverse spectral theory. The aim of inverse theory is to derive
the Sturm-Liouville equation from its spectral properties. An early example of this
kind of result was the proof, due originally to Borg in 1946, that for the Schrödinger
equation with potential function q over a finite interval and subject to boundary
conditions at both endpoints, the spectrum for the associated Schrödinger operator
for two distinct boundary conditions at one endpoint (and given fixed boundary
condition at the other endpoint) is sufficient to determine q uniquely. This result
has been greatly extended over recent years, for example to systems of differential
equations, and some of the more recent developments are treated in the survey by
Mark Malamud.

We believe that the contents of this book will confirm that Sturm-Liouville
theory has, indeed, a very rich Past and a most active and influential Present. It
is our hope, too, that the book will help to contribute to a continuing productive
Future for this fundamental branch of mathematics and its applications.
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Abstract. We examine how Sturm’s oscillation theorems on comparison, sep-
aration, and indexing the number of zeros of eigenfunctions have evolved. It
was Bôcher who first put the proofs on a rigorous basis, and major tools of
analysis where introduced by Picone, Prüfer, Morse, Reid, and others. Some
basic oscillation and disconjugacy results are given for the second-order case.
We show how the definitions of oscillation and disconjugacy have more than
one interpretation for higher-order equations and systems, but it is the defini-
tions from the calculus of variations that provide the most fruitful concepts;
they also have application to the spectral theory of differential equations. The
comparison and separation theorems are given for systems, and it is shown
how they apply to scalar equations to give a natural extension of Sturm’s
second-order case. Finally we return to the second-order case to show how
the indexing of zeros of eigenfunctions changes when there is a parameter in
the boundary condition or if the weight function changes sign.
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1. Introduction

In a series of papers in the 1830’s, Charles Sturm and Joseph Liouville studied the
qualitative properties of the differential equation

d

dx

(
K

dV

dx

)
+ GV = 0, for x ≥ α (1.1)

where K, G, and V are real functions of the two variables x, r. Their work began
research into the qualitative theory of differential equations, i.e., the deduction of
properties of solutions of the differential equation directly from the equation and
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without benefit of knowing the solutions. However, it was half a century before
significant interest in the qualitative theory took hold. In (1.1) and elsewhere, we
consider only real solutions unless otherwise indicated.

In more modern notation (for spectral theory it is convenient to have the
leading coefficient negative; for the oscillation results of Sections 2 and 3, we return
to the convention of positive leading coefficient), (1.1) would be written as

−(py′)′ + qy = 0, x ∈ I, (1.2)

or as (when eigenvalue problems are studied )

−(py′)′ + qy = λwy, x ∈ I, (1.3)

where the real functions p, q, w satisfy

p(x), w(x) > 0 on I , 1/p, q, w ∈ Lloc(I), (1.4)

where Lloc(I) denotes the locally Lebesgue integrable functions on I. These are
the minimal conditions the coefficients must satisfy for the initial value problem,

−(py′)′ + qy = 0, x ∈ I, y(a) = y0, y′(a) = y1,

to have a unique solution. Sturm imposed no conditions on his coefficients, but
was perhaps thinking of continuous coefficients. It is fair to say that thousands
of papers have been written concerning the properties of solutions of (1.2), and
hundreds more are published each year. Tony Zettl has called (1.2) the world’s
most popular differential equation. A recent check in math reviews shows 8178
entries for the word “oscillatory”, 3284 entries for “disconjugacy”, 1412 entries
for “non-oscillatory”, and even 62 for “Picone identity”. The applications of (1.2)
and (1.3) are ubiquitous. Their appearance in problems of heat flow and vibra-
tions were well known since the work of Fourier. They play an important role in
quantum mechanics where the problems are singular in the sense that I is an in-
terval of infinite extent or where at a finite endpoint a coefficient fails to satisfy
certain integrability conditions. Today we can find numerically with computers
the solutions of (1.2) or the eigenvalues and eigenfunctions associated with (1.3).
However, even with current technology, there are still problems which give com-
putational difficulty such as computing two eigenvalues which are close together.
Codes such as SLEIGN2 [9] (developed by Bailey, Everitt, and Zettl) or the NAG
routines give quickly and accurately the eigenvalues and eigenfunctions of large
classes of Sturm-Liouville problems. The recent text by Pryce [85] is devoted to
the numerical solution of Sturm-Liouville problems.

For (1.1), Sturm imposed a condition (h(r) is a given function),

K(α, r)
V (α, r)

∂V (α, r)
∂x

= h(r), (1.5)

and obtained the following central result [94] (after noting that when the values of
V (α, r), ∂V (α, r)/∂x are given, the solution V (x, r) is uniquely determined). We
have also used Lützen’s translation [74].
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Theorem A. If V is a nontrivial solution of (1.1) and (1.5), and if for all x ∈
[α, β],

1. K > 0 for all r and K is a decreasing function of r,
2. G is an increasing function of r,
3. h(r) is a decreasing function of r,

then
(

K
V

∂V
∂x

)
is a decreasing function of r for all x ∈ [α, β].

Here decreasing or increasing means strictly. If V (α, r) = 0, then h(r) de-
creasing means ∂V/∂x ·∂V/∂r < 0 at x = α. Sturm’s method of proof of Theorem
A was to differentiate (1.1) with respect to r, multiply this by V , and then sub-
tract this from ∂V/∂r times (1.1). After an integration by parts over [α, x], the
resulting equation obtained is(

−V 2 ∂

∂r

(
K

V

∂V

∂x

))
(x) =

(
−V 2(α, r)

dh

dr

)
+
∫ x

α

[
∂G

∂r
V 2 − ∂K

∂r

(
∂V

∂r

)2
]

, (1.6)

where we have used

−V 2 ∂

∂r

(
K

V

∂V

∂x

)
= K

∂V

∂x

∂V

∂r
− V

∂

∂r

(
K

∂V

∂x

)
. (1.7)

If we solve this equation for the term ∂
∂r

(
K
V

∂V
∂x

)
(x), then we get

∂

∂r

(
K

V

∂V

∂x

)
(x, r) < 0, (1.8)

which completes the proof.
An examination of the above proof shows that the same conclusion can be

reached with less restrictive hypotheses. With K > 0, an examination of the right-
hand side of (1.6) shows that it is positive, and hence (1.8) holds under any one
of the following three conditions.

∂G

∂r
> 0,

∂K

∂r
≤ 0,

dh

dr
≤ 0, (1.9)

∂G

∂r
≥ 0,

∂K

∂r
≤ 0,

dh

dr
< 0, (1.10)

∂G

∂r
≥ 0,

∂K

∂r
< 0,

dh

dr
≤ 0, V is not constant. (1.11)

Theorem A has immediate consequences. The first is that if x(r) denotes a
solution of V (x, r) = 0, then by implicit differentiation, we get from (1.7) and (1.8)
that

dr

dx
= −∂V

∂x
/
∂V

∂r
< 0. (1.12)

Note that this implies under the conditions of Theorem A, that the roots x(r) of
V (x, r) are decreasing with respect to r. With K > 0 the same conclusion may be
reached by replacing the hypothesis of Theorem A with (1.9), (1.10), or (1.11).
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By considering two equations, (KiV
′
i )′ + GiVi = 0, i = 1, 2, with G2(x) ≥

G1(x), K2(x) ≤ K1(x) and embedding the functions h1, h2, G1, G2 and K1, K2

into a continuous family, e.g., one can define

Ĝ(r, x) = rG2(x) + (1 − r)G1(x), 0 ≤ r ≤ 1,

and similarly for K, Sturm was able to prove comparison theorems. In particular
he proved

Theorem B (Sturm’s Comparison Theorem). For i = 1, 2 let Vi be a nontrivial
solution of (KiV

′
i )′ + GiVi = 0. Suppose further that with hi = (KiV

′
i /Vi)(α),

h2 < h1, G2(x) ≥ G1(x), K2(x) ≤ K1(x), x ∈ [α, β].

Then if α, β are two consecutive zeros of V1, the open interval (α, β) will contain
at least one zero of V2.

In case Vi(α) = 0, the proper interpretation of infinity must be made.
This version of comparison corresponds to using the hypothesis (1.10). Other

versions may be proved by using either (1.9) or (1.11). Perhaps the most widely
stated version of Sturm’s comparison theorem (not the version he proved) may be
stated as follows.

Theorem B*. For i = 1, 2 let Vi be a nontrivial solution of (KiV
′
i )′ + GiVi = 0 on

α ≤ x ≤ β. Suppose further that the coefficients are continuous and for x ∈ [α, β],

G2(x) ≥ G1(x), with G2(x0) > G1(x0) for some x0, K2(x) ≤ K1(x).

Then if α, β are two consecutive zeros of V1, the open interval (α, β) will contain
at least one zero of V2.

Sturm’s methods also yielded (in modern terminology):

Theorem C (Sturm’s Separation Theorem). If V1, V2 are two linearly independent
solutions of (KV ′)′ +GV = 0 and a,b are two consecutive zeros of V1, then V2 has
a zero on the open interval (a, b).

The final result of Sturm that we wish to quote concerns the zeros of eigen-
functions and is proved in his second memoir [95]. Here he considered the eigen-
value problem,

(k(x)V ′(x))′ + [λg(x)− l(x)]V (x) = 0, α ≤ x ≤ β, (1.13)

with separated boundary conditions,

k(α)V ′(α)− hV (α) = 0, k(β)V ′(β) + HV (β) = 0. (1.14)

Further the functions k, g, and l are assumed positive. Some properties he estab-
lished are:

Theorem D. There are infinitely many real simple eigenvalues λ1, λ2, . . . of (1.13)
and (1.14), and if V1, V2, . . . are the corresponding eigenfunctions, then for n =
1, 2, . . . ,

1. Vn has exactly n− 1 zeros in the open interval (α, β),
2. between two consecutive zeros of Vn+1 there is exactly one zero of Vn.
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Theorem D relates to the spectral theory of the operator associated with
(1.13) and (1.14). For (1.2) considered on an infinite interval I = [a,∞), an
eigenvalue problem, in order to define a self-adjoint operator, may only require
one boundary condition at a (limit point case at infinity), or it may require two
boundary conditions involving both a and infinity (limit circle case at infinity).
This dichotomy was discovered by Weyl. In the limit point case with w ≡ 1, a
self-adjoint operator is defined in the Hilbert space L2(a,∞) of Lebesgue square
integrable functions by

Lα[y] = −(py′)′ + qy, y ∈ D,

where

D = {y ∈ L2(a,∞) : y, py′ ∈ ACloc, Lα[y] ∈ L2(a,∞),

y(a) sin α− (py′)(a) cosα = 0}, (1.15)

and ACloc denotes the locally absolutely continuous functions.
Unlike the case (1.13) and (1.14) for the compact interval, the spectrum for

the infinite interval may contain essential spectrum, i.e., numbers λ such that
Lα − λI has a range that is not closed, and Theorem D does not apply. However
in the case of a purely discrete spectrum bounded below, a version of Theorem D
carries over to the operator Lα above in the relation of the index of the eigenvalue
to the number of zeros of the eigenfunction in (a,∞) [22]. In general, one can say
that the number of points in the spectrum of Lα below a real number λ0 is infinite
if and only if the equation −(py′)′ + qy = λ0y is oscillatory, i.e., the solutions
have infinitely many zeros on [a,∞). This same result carries over to self-adjoint
equations of arbitrary order if the definition of oscillation in Section 4 is used
[80, 99]. This basic connection has been used extensively in spectral theory. Note
that if −(py′)′ + qy = λ0y is non-oscillatory for every λ0, then the spectrum of Lα

consists only of a sequence of eigenvalues tending to infinity. Theorem D and its
generalizations have also important numerical consequences. When an eigenvalue
is computed, it allows one to be sure which eigenvalue it is, i.e., just count the
zeros of the eigenfunction. It also allows the calculation of an eigenvalue without
first calculating the eigenvalues that precede it. This feature is built into some
eigenvalue codes.

A number of monographs deal almost exclusively with the oscillation theory
of linear differential equations and systems. The books of Coppel [24] and Reid
[88] emphasize linear Hamiltonian systems, but also contain substantial material
on the second-order case. Coppel contains perhaps the most concise treatment
of Hamiltonian systems; Reid is the most comprehensive development of Sturm
theory. The book of Elias [29] is based on the oscillation and boundary value
problem theory for two term ordinary differential equations, while Greguš [38]
deals entirely with third-order equations. The text by Kreith [62] includes abstract
oscillation theory as well as oscillation theory for partial differential equations.
Finally the classic book by Swanson [96] has special chapters on second, third,
fourth-order ordinary differential equations as well as results for partial differential
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equations. The reader is also referred to the survey papers of Barrett [10] and
Willett [100]. The books by Atkinson [8], Glazman [37], Hartman [44], Ince [53],
Kratz [61], Müller-Pfeiffer [80], and Reid [86] contain many results on oscillation
theory.

As noted, the literature on the Sturm theory is voluminous. There are exten-
sive results on difference equations, delay and functional differential equations, and
partial differential equations. The Sturm theory for difference equations is similar
to that of ordinary differential equations, but contains many new twists. The book
by Ahlbrandt and Peterson [6] details this theory (see also the text by B. Simon in
the present volume). Oscillation results for delay and functional equations as well
as further work on difference equations can be found in the books by Agarwal,
Grace, and O’Regan [1, 2], I. Gyori and G. Ladas [39], and L. Erbe, Q. Kong, and
B. Zhang [31]. We confine ourselves to the case of ordinary differential equations
and at that we are only able to pursue a few themes.

The comparison and oscillation theorems of Sturm have remained a topic of
considerable interest. While the extensions and generalizations have much intrinsic
interest, we believe their continued relevance is due in no small part to their
intimate connection with problems of physical origin. Particularly the connections
with the minimization problems of the calculus of variations and optimal control as
well as the spectral theory of differential operators are important. We will discuss
some of these connections below. We will trace some of the developments that
have occurred with respect to the comparison and separation theorems as well
as other developments related to Theorem D. The tools introduced by Picone,
Prüfer, and the variational methods will be discussed and their applications to
second-order equations as well as to higher-order equations and systems. Sample
results will be stated and a few short and elegant proofs will be given. The problem
of extending Sturm’s results to systems was only considered about one hundred
years after Sturm; the work of Morse was fundamental in this development. It is
interesting that it was variational theory which gave the most natural and fruitful
generalization of the definitions of oscillation. In a very loose way, we show that
the theme of largeness of the coefficient q in (py′)′ + qy = 0 leads to oscillation
in not only the second-order, but also higher-order equations, while q ≤ 0, or |q|
small leads to disconjugacy.

2. Extensions and more rigor

Sturm’s proofs of course do not meet the standards of modern rigor. They meet
the standards of his time, and are in fact correct in method and can without too
much trouble be made rigorous. The first efforts to do this are due to Bôcher
in a series of papers in the Bulletin of the AMS [17] and are also contained in
his book [18]. Bôcher [17] remarks that “the work of Sturm may, however, be
made perfectly rigorous without serious trouble and with no real modification of
method”. The conditions placed on the coefficients were to make them piecewise
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continuous. Bôcher used Riccati equation techniques in some of his proofs; we note
that Sturm mentions the Riccati equation, but does not employ it in his proofs.
Riccati equation techniques in variational theory go back at least to Legendre who
in 1786 gave a flawed proof of his necessary condition for a minimizer of an integral
functional. A correct proof of Legendre’s condition using Riccati equations can be
found in Bolza’s 1904 lecture notes [19]. Bolza attributes this proof to Weierstrass.

Bôcher was also motivated by the oscillation theorem of Klein [58] which is
a multiparameter version of Sturm’s existence proof for eigenvalues. Bôcher [17]
noted that Klein “had given rough geometrical proofs which however made no
pretence at rigor”. The general form of Klein’s problem may be stated as follows,
see Ince [53, p. 248]. Suppose in (1.2), q is of the form

q(x) = −l(x) + [λ0 + λ1x + · · ·+ λnxn]g(x),

where p, l, g are continuous with p(x), g(x) > 0. Further let there be n+1 intervals
[a0, b0], . . . , [an, bn] with a0 < b0 < a1 < · · · < an < bn. Suppose ms, s = 0, . . . , n
are given nonnegative integers and on each interval [as, bs], separated boundary
conditions of the form (1.14) are given. Then there exist a set of simultaneous
characteristic numbers λ0, . . . , λn and corresponding functions y0, . . . , yn such that
on each [as, bs], ys has ms zeros in (as, bs) and satisfies the boundary conditions
for [as, bs]. Klein was interested in the two parameter Lamé equation

y′′ +
1
2

[
1

x− e1
+

1
x− e2

+
1

x− e3

]
y′ − Ax + B

4(x− e1)(x − e2)(x− e3)
y = 0

because of its application to physics. The text by Halvorsen and Mingarelli [40]
deals with the oscillation theory of the two parameter case.

The proofs of Sturm’s theorems depend on existence-uniqueness results for
(1.2), and Norrie Everitt has brought to our attention that it was Dixon [25] who
first proved that these are valid under only the assumption that the coefficients
1/p, q are Lebesgue integrable functions. The details of Dixon’s work may be
found in N. Everitt’s text in the present volume. Later Carathéodory generalized
the concept of a solution of a system of differential equations to only require
the equation hold almost everywhere. When (1.2) is written in system form, the
Dixon and Carathéodory conditions are the same. Richardson [89, 90] extended
the results of counting zeros of eigenfunctions further by allowing the weight g(x)
in (1.13) to not be of constant sign and called this the non-definite case. We will
return to his case in Section 5. Part (1) of Theorem D, which is for the separated
boundary conditions (1.14), was extended by Birkhoff [16] to the case of arbitrary
self-adjoint boundary conditions.

To simplify our discussion, we will henceforth assume that all coefficients and
matrix components are real and piecewise continuous unless otherwise stated.

Thinking of examples like y′′ + ky = 0, k > 0, whose solutions are sines and
cosines or the Euler equation y′′ + kx−2y = 0 which has oscillatory solutions if
and only if k > 1/4, it is natural to pose the problem:

When are all solutions of (py′)′ + qy = 0 oscillatory on I? (2.1)
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We use the term oscillatory (non-oscillatory) here in the sense of infinitely (finitely)
many zeros for all nontrivial solutions. Because of the Sturm separation theorem,
if one nontrivial solution has infinitely many zeros, then all do, but this property
fails for nonlinear equations. A second problem, not quite so obvious, but which
arose naturally from the calculus of variations, is

When is the equation (py′)′ + qy = 0 disconjugate on I? (2.2)

The term disconjugate is used here to mean that no nontrivial solution has more
than one zero on I. If a nontrivial solution of (py′)′ + qy = 0 has a zero at a, then
the first zero of y to the right of a is called the first right conjugate point of a; if
there are no zeros to the right of a, then we say the equation is right disconjugate.
Successive zeros are isolated and hence yield a counting of conjugate points. If y
satisfies y′(a) = 0, then the first zero of y to the right of a is called the first right
focal point of a. If y has no zeros to the right of a, then (py′)′+qy = 0 is called right
disfocal. Similar definitions are made to the left. The simplest criterion for both
right disconjugate and disfocal is for q(x) ≤ 0, for then an easy argument shows y
is monotone if y(a) ≥ 0, y′(a) ≥ 0. On a compact or open interval I disconjugacy
is equivalent to there being a solution of (py′)′ + qy = 0 with no zeros on I [24,
p.5]. For a half-open interval (py′)′ + qy = 0 can be disconjugate without there
being a solution with no zeros as is shown by the equation y′′ + y = 0 on [0, π)
which is disconjugate, but every solution has a zero in [0, π).

A major advance was made by Picone [83] in his 1909 thesis. He discovered
the identity[u

v
(vpu′ − uPv′)

]′
= u(pu′)′ − u2

v
(Pv′)′ + (p− P )u′2 + P

(
u′ − u

v
v′
)2

(2.3)

which holds when u, v, pu′, and Pv′ are differentiable and v(x) �= 0. In case u, v
are solutions of the differential equations

(pu′)′ + qu = 0, (Pv′)′ + Qv = 0,

(2.3) reduces to[u
v

(vpu′ − uPv′)
]′

= (Q− q)u2 + (p− P )u′2 + P
(
u′ − u

v
v′
)2

. (2.4)

With this identity one can give an elementary proof of Sturm’s comparison
Theorem B* which we now give. Suppose p(x) ≥ P (x), Q(x) ≥ q(x) with Q(x0) >
q(x0) at some x0, α, β are consecutive zeros of a nontrivial solution u of (pu′)′ +
qu = 0, and that v is a solution of (Pv′)′+Qv = 0 with no zeros in the open interval
(α, β). Note the quotient u(x)/v(x) has a limit at the endpoints. For example the
limit at α is zero if v(α) �= 0, and the limit is u′(α)/v′(α) if v(α) = 0. Integration
of (2.4) over [α, β] yields that the left-hand side integrates to zero while the right-
hand side integrates to a positive number. This contradiction proves the theorem.

Another major advance was made by Prüfer [84] with the use of trigonometric
substitution. In the equation (pu′)′ + (q + λw)u = 0, he made the substitution

u = ρ sin θ, pu′ = ρ cos θ,



Sturm’s 1836 Oscillation Results 9

and then proved that ρ, θ satisfy the differential equations

θ′ =
1
p

cos2 θ + (q + λw) sin2 θ, ρ′ = (
1
p
− q − λw)(sin θ cos θ)ρ.

The zeros of the solution u are given by the values of x such that θ(x) = nπ for
some integer n. The equation for θ is independent of ρ, and by using a first-order
comparison theorem for nonlinear equations, it is possible to establish Sturm’s
comparison theorem. Prüfer used the equation for θ to establish the link stated in
Theorem D between the number of zeros of an eigenfunction and the corresponding
eigenvalue. These equations can also be used to prove the existence of infinitely
many eigenvalues. This is the method used in most textbooks today for the proof
of Theorem D.

Note that with Prüfer’s transformation, the equation (py′)′ + qy = 0, a ≤
x <∞, is oscillatory if and only if θ(x)→∞ as x→∞. It also follows easily from
this transformation that∫ ∞

a

[
1
p

+ |q|
]

dx <∞⇒ non-oscillation,

∫ ∞

a

[
1
p

+ |q|
]

dx < π ⇒ disconjugacy.

Kamke [56] used the trigonometric substitution technique to prove a Sturm
type comparison theorem for a system of first-order equations

y′ = Py + Qz, z′ = Ry + Sz

where the coefficients are continuous functions.
Klaus and Shaw [57] used the Prüfer transformation to study the eigenvalues

of a Zakharov-Shabat system. One of their results shows that the first-order system

v′1 = sv1 + q(t)v2, v′2 = −sv2 − q(t)v1,

is (in our terminology ) right disfocal on −d ≤ t ≤ d if
∫ d

−d
|q(t)|dt ≤ π/2; moreover

the constant π/2 is sharp. Extension is then made to the interval (−∞,∞) and for
complex-valued q. Application is made to the nonexistence of eigenvalues (s is the
eigenparameter) of the Zakharov-Shabat system, and hence to the nonexistence of
soliton solutions of an associated nonlinear Schrödinger equation.

Sturm’s comparison Theorem B* has been generalized to include integral
comparisons of the coefficients. Consider the two equations, for a ≤ x <∞,

y′′ + q1(x)y = 0, (2.5)

y′′ + q2(x)y = 0. (2.6)

Then we may phrase Sturm’s comparison theorem by:

If q1(x) ≤ q2(x), a ≤ x <∞, then (2.6) disconjugate⇒ (2.5) disconjugate.
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This result was extended by Hille [50] (as generalized by Hartman [44, p. 369]) to
read:

If
∫ ∞

t

q1(x)dx ≤
∫ ∞

t

q2(x)dx, a ≤ t <∞,

then (2.6) disconjugate⇒ (2.5) disconjugate.

Further results of this nature were given by Levin [67] and Stafford and Heidel [92].

3. Some basic oscillation results

The first major attack on problem (2.1) seems to have been made in 1883 by
Kneser [59] who studied the higher-order equation y(n) + qy = 0, and proved that
all solutions oscillate an infinite number of times provided that xmq(x) > k > 0
for all sufficiently large values of x, where n ≥ 2m > 0 and n is even. Of course
for n = 2, this follows immediately from the Sturm comparison theorem applied
to the oscillatory Euler equation y′′ + kx−2y = 0, k > 1/4, since k/x2 ≤ k/x for
x ≥ 1. Hubert Kalf has noted that Weber [98] refined Kneser’s result to decide on
oscillation or non-oscillation in the case where x2q(x) tends to a limit as x tends
to infinity. The Kneser criterion has recently been extended by Gesztesy and Ünal
[36].

A result which subsequently received a lot of attention was proved by Fite
[33] in studying the equation y(n) + py(n−1) + qy = 0 on a ray x ≥ x1. Fite’s result
was if q ≥ 0,

∫∞
x1

qdx =∞ and y is a solution of y(n) + qy = 0, then y must change
sign an infinite number of times in case n is even, and in case n is odd such a
solution must either change sign an infinite number of times or not vanish at all
for x ≥ x1. For n = 2 we then have a sufficient condition for (2.1), i.e.,

q(x) ≥ 0,

∫ ∞

x1

q(x)dx =∞⇒ y′′ + qy = 0 is oscillatory.

This theme of q(x) being sufficiently large has reoccurred in oscillation theory in
many situations. The first improvement of the Fite result was due to Wintner [101]
who removed the sign restriction on q(x) and proved the stronger result

t−1

∫ t

q(x)(t − x)dx→∞ as t→∞⇒ y′′ + qy = 0 is oscillatory.

Independently Leighton [64] proved, for (py′)′ + qy = 0, that∫ ∞ dx

p(x)
=∞,

∫ ∞
q(x)dx =∞⇒ (py′)′ + qy = 0 is oscillatory.

Again there is no sign restriction on q(x).
An elegant proof of this Fite-Wintner-Leighton result has been given by Coles

[23]. We give this proof since it a good illustration of Riccati equation techniques.
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Suppose that
∫∞

p−1 dx =∞,
∫∞

q dx =∞, and that u is a non-oscillatory
solution of (pu′)′ + qu = 0, say u(x) > 0 on [b,∞). Define r = pu′/u. Then a
calculation shows that r′ = −q − r2/p, and hence for large x, say x ≥ c,

r(x) +
∫ x

b

r2

p
dt = r(b)−

∫ x

b

q dx < 0.

This implies that r(x) < −
∫ x

b p−1r2 dt. Thus defining R(x) =
∫ x

b p−1r2 dt, one has
that for x ≥ c, R′ = r2/p ≥ R2/p. Integration of this inequality gives∫ x

c

1
p

dt ≤
∫ x

c

R′

R2
dt =

1
R(c)

− 1
R(x)

≤ 1
R(c)

which is contrary to
∫∞

p−1 dx =∞.
Related to the above result of Wintner is that of Kamenev [55] who showed

that if for some positive integer m > 2,

lim sup
t→∞

1
tm−1

∫ t

a

(t− s)m−1q(s) ds =∞,

then the equation y′′ + qy = 0 is oscillatory on [a,∞). The Kamenev type results
have been extended to operators with matrix coefficients and Hamiltonian systems
by Erbe, Kong, and Ruan [30], Meng and Mingarelli [75], and others.

The mid-twentieth century saw a large number of papers written on problems
(2.1) and (2.2). We mention a small sampling of these results.

Theorem 3.1 (Hille, 1948). If q(x) ≥ 0 is a continuous function on I = [a,∞),
such that

∫∞
a q <∞, and

g∗ := lim inf
x→∞ x

∫ ∞

x

q(t)dt, g∗ := lim sup
x→∞

x

∫ ∞

x

q(t)dt,

then g∗ > 1 or g∗ > 1/4 implies y′′ + qy = 0 is oscillatory, and g∗ < 1/4 implies
y′′ + qy = 0 is non-oscillatory.

Hille’s results have been extended to equations with matrix coefficients and
linear Hamiltonian systems by Sternberg [93] and Ahlbrandt [3].

Theorem 3.2 (Hartman, 1948). If y′′ + qy = 0 is non-oscillatory on [a,∞), then
there are solutions u, v of y′′ + qy = 0 such that∫ ∞

u−2(t) dt <∞ and
∫ ∞

v−2(t) dt =∞.

Theorem 3.3 (Wintner, 1951). The equation y′′ + qy is non-oscillatory on [a,∞)
if
∫∞

x
q(t) dt converges and either −3/4 ≤ x

∫∞
x

q(t) dt ≤ 1/4 or [
∫∞

x
q(t) dt]2 ≤

q(x)/4.

Theorem 3.4 (Nehari, 1954). If I = [a,∞) and λ0(b) is the smallest eigenvalue of

−y′′ = λc(x)y, y(a) = y′(b) = 0,

where c(x) > 0 is continuous on I, then y′′ + c(x)y = 0 is non-oscillatory on I iff
λ0(b) > 1 for all b > a.
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Theorem 3.5 (Hartman-Wintner, 1954). The equation y′′+qy=0 is non-oscillatory
on [a,∞) if f(x)=

∫∞
x q(t)dt converges and the differential equation v′′+4f2(x)v=

0 is non-oscillatory.

Theorem 3.6 (Hawking-Penrose, 1970). If I = (−∞,∞) and q(x) ≥ 0 is a con-
tinuous function on I such that q(x0) > 0 for some x0, then y′′ + q(x)y = 0 is not
disconjugate on I.

A particularly simple proof of this result has been given by Tipler [97] which
we now present. Suppose y is the unique solution of y′′ + q(x)y = 0 with the initial
conditions y(x0) = 1, y′(x0) = 0. Then y′′(x0) = −q(x0)y(x0) < 0, and further
y′′(x) ≤ 0 as long as y(x) ≥ 0. Since y′(x0) = 0, this concavity of y implies that y
eventually has a zero both to the right and to the left of x0.

Many results on oscillation can be expanded by making a change of indepen-
dent and dependent variables of the form y(x) = µ(x)z(t), t = f(x), where µ(x)
and f ′(x) are nonzero on the interval I. In the case of (py′)′ + qy, this leads to

(py′)′ + qy = (γ/µ)[ẇ + Qz], w = P ż, γ(x) = f ′(x),

where ż = dz/dt and

P (t) = p(x)µ2(x)γ(x), Q(t) =
µ(x)
γ(x)

[(pµ′)′ + qµ] .

Applications of these ideas can be found in Ahlbrandt, Hinton, and Lewis [5].
To return to the concept of disconjugacy and the link to the calculus of

variations, it was in 1837 that Jacobi [54] gave his sufficient condition for the
existence for a (weak) minimum of the functional

J [y] =
∫ b

a

f(x, y, y′)dx (3.1)

over the class of admissible functions y defined as those sufficiently smooth y
satisfying the endpoint conditions y(a) = A, y(b) = B. A necessary condition for
an extremal is the vanishing of the first variation, dJ(y+εη)/dε	ε=0, for sufficiently
smooth variations η satisfying η(a) = η(b) = 0. This leads to the Euler-Lagrange
equation fy − d(fy′)/dx = 0 for y. A sufficient condition for a weak minimum is
that the second variation

δ2J(η) =
∫ b

a

[
pη′2 + qη2

]
dx (3.2)

be positive for all nontrivial admissible η where p = fy′y and q = fyy−d(fy′y)/dx.
Jacobi discovered that the positivity of (3.2) was related to the oscillation proper-
ties of −(py′)′+qy = 0. In particular he discovered (3.2) is positive if −(py′)′+qy =
0 has a solution y which is positive on [a, b]. The condition of (3.2) being positive
is equivalent to −(py′)′ + qy = 0 being disconjugate on [a, b]. This is the principal
connection of oscillation theory to the calculus of variations. This connection may
be proved with Picone’s identity as we now demonstrate.


