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Preface

The origins of monodromy theory lie in the works of B. Riemann on functions
of complex variables and on complex linear differential equations. Riemann for-
mulated one of the fundamental problems in monodromy theory (now called the
Riemann–Hilbert problem): having given singularities and corresponding mon-
odromy transformations, find a differential equation which realizes these data.
The monodromy groups of linear differential equations and systems were inten-
sively studied in the nineteen century by F. Klein, G. G. Stokes, H. A. Schwarz, L.
Schlesinger, L. Pochhammer, E. Picard, R. Garnier, P. Painlevé, H. Poincaré, R.
Fuchs and others. Schwarz associated the monodromy group of the hypergeometric
equation with the spherical triangle groups, generated by inversions with respect
to the sides of a spherical triangle. Schlesinger investigated deformations of dif-
ferential systems with fixed monodromy. Fuchs associated the equation Painlevé
6 with the isomonodromic deformation equation. Stokes discovered a strange phe-
nomenon (the Stokes phenomenon) of non-uniqueness of constants in the asymp-
totic expansions of systems near irregular singularities.
In his talk at the 1900 International Congress of Mathematicians, D. Hilbert in-
cluded the Riemann problem mentioned above in his famous list of problems for
twentieth century mathematics (as the XXI-th). This problem was solved inde-
pendently by J. Plemelj and by H. Röhrl in the class of systems with regular
singularities. Only in the 1980s A. A. Bolibruch discovered that the Riemann–
Hilbert problem may have no solutions in the Fuchs class of systems with first
order poles. Recently some relations between linear differential systems and quan-
tum field theory was revealed (M. Sato, T. Miwa, M. Jimbo, B. A. Dubrovin).
Near the end of the 19th century, E. Picard and E. Vessiot created an analogue
of the algebraic Galois theory in the case of linear differential systems. The cor-
responding differential Galois group consists of symmetries of the system and is
identified with an algebraic subgroup of the linear group of automorphisms of a
complex vector space (E. Kolchin). In the regular case the differential Galois group
forms the Zariski closure of the monodromy group (Schlesinger). The fundamen-
tal result in this theory states that a differential system is solvable in quadratures
and algebraic functions iff the identity component of the differential Galois group
is solvable. An analogous result holds in the topological Galois theory which is
represented by the monodromy group of an algebraic function. A. G. Khovanski
generalized the latter result to a wider class of multivalued holomorphic functions.
The Stokes phenomenon which occurs in the case of irregular singularity found
complete explanation. Firstly, it was proved that there exists a formal normal
form which is diagonal and contains only a finite number of terms with rational
powers of the ‘time’ (M. Hukuhara, A. H. M. Levelt, H. Turrittin). Next the change
reducing the system to its formal normal form turns out to be analytic in sectors.
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This is done either by solving some integral equation (H. Poincaré, W. Wasow)
or by showing that the normalizing series belongs to some Gevrey class and is
summable in sectors. The moduli of analytic classification are cocycles in some
cohomology group with values in a certain Stokes sheaf and are represented by
‘differences’ between normalizing maps in adjacent sectors.
After publication of “Analysis situs” by H. Poincaré, investigation of the topology
of algebraic varieties began. At that time the first variant of the Picard–Lefschetz
formula, describing change of the topology of a family of algebraic varieties as the
parameter varies around a critical value, appeared. Further rapid progress in this
field occurred in the 1960s–70s. The research proceeded in two parallel streams.
J. Milnor proved that the local level of a holomorphic function near an isolated crit-
ical point has the homotopy type of a bucket of spheres. R. Thom, J.-C. Tougeron,
J. Martinet and V. I. Arnold developed a theory of normal forms of holomorphic
functions and began classification of singularities. The (topological) monodromy
groups of some singularities turned out to be isomorphic with certain Coxeter
groups generated by reflections. Relations with the classification of semi-simple
Lie algebras were revealed.
The other approach was more algebraic and based on the cohomology theory of
coherent sheaves developed by J. Leray, A. Grothendieck, P. Deligne and oth-
ers. Another tool was the theorem about resolution of singularities proved by H.
Hironaka. People studied families of algebraic varieties which degenerate as the
(complex) parameter approaches a critical value. Here the critical points can be
isolated and non-isolated as well. After resolution of the singularity, the singular
variety becomes a union of smooth divisors with normal crossings in the ambient
complex space. Information about multiplicities of these divisors allows us to de-
scribe the action of the (topological) monodromy (C. H. Clemens, N. A’Campo).
The fundamental result (the monodromy theorem) provides information about the
eigenvalues and the dimensions of Jordan cells of the monodromy operator.
The de Rham cohomologies of non-singular algebraic varieties, from a family, form
together a holomorphic vector bundle over the space of non-critical parameters.
A similar bundle, the cohomological Milnor bundle, is defined in the local case.
The cohomological bundle admits sections, defined by the integer cocycles. This
allows introduction of the famous Gauss–Manin connection, such that the integer
cocycles represent horizontal sections with respect to it. The holomorphic forms
on the ambient space form another class of sections of the cohomological bundle,
the geometrical sections. Their integrals along families of integer cycles are holo-
morphic functions which obey a system of linear differential equations called the
Picard–Fuchs equations. The Picard–Fuchs equations are related with the equa-
tions for horizontal sections with respect to the Gauss–Manin connection. They
have regular singularities (P. Griffiths, N. Katz). Together with the asymptotic
of integrals they constitute invariants of the degeneration (B. Malgrange, V. I.
Arnold, A. N. Varchenko, J. H. C. Steenbrink). The asymptotic of integrals is
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closely related with the asymptotic and geometry of oscillating integrals appearing
in wave optics and quantum physics (V. I. Arnold, A. N. Varchenko).
The integrals of holomorphic forms along integer cycles found application in the
linearized version of the XVI-th Hilbert problem, about limit cycles of polynomial
planar vector fields. This problem leads to the problem of estimation of the number
of zeroes of certain Abelian integrals (Arnold). Existence of such estimates and
some concrete formulas were obtained by A. N. Varchenko, A. G. Khovanski and
G. S. Petrov.
Any compact non-singular projective variety admits a so-called Hodge structure,
which says that one can represent the cohomology classes as harmonic forms with
their division into the (p, q)–types. P. Deligne proved that the non-compact and/or
singular variety admits a so-called mixed Hodge structure. It means that there is
a weight filtration of the cohomology space by an increasing series of subspaces,
such that the quotient spaces are equipped with Hodge structures (arising from
some complete smooth variety obtained after resolution of singularities). J. H.
C. Steenbrink and W. Schmid proved existence of a mixed Hodge structure in
the case of degeneration of algebraic varieties, and Steenbrink constructed such a
structure in the fibers of the cohomological Milnor bundle. The latter structure is
determined by the Jordan cells structure of the monodromy operator and by the
asymptotic of geometrical sections (Varchenko).
In the case of degeneration of algebraic varieties the monodromy and the mixed
Hodge structure are related with singularities of the period mapping, from the
parameter space to the classifying space of Hodge structures (Griffiths). This leads
to the problems of moduli of algebraic varieties and to theorems of Torelli type
(about injectivity of the period map on the moduli space).
Besides the linear monodromy theory there is its nonlinear part. It is represented
by the holonomy groups of some distinguished leaves of holomorphic foliations.
This theory is well developed only in two dimensions, where the foliation is de-
fined as a phase portrait of an analytic vector field (with complex ‘time’). The
singularities were resolved by Seidenberg and after resolution there remain only
foci, nodes, saddles and saddle–nodes. The foci and the nodes were classified ana-
lytically by Poincaré. The classification of saddles leads to the classification of the
holonomy maps associated with loops in one of its separatrices. If the multiplica-
tor of a germ of a holomorphic one-dimensional diffeomorphism is resonant, then
the situation is like the case of Stokes’ phenomenon. The functional invariants of
the analytic classification were found by J. Ecalle and S. M. Voronin. If the mul-
tiplicator is non-resonant, then the analyticity of the formal normal form (which
is linear) depends on whether the multiplicator satisfies the so-called Briuno con-
dition (A. D. Briuno, J.-C. Yoccoz). In the case of a saddle–node the functional
moduli were described by J. Martinet and J.-P. Ramis. Here the main tool of the
proof is certain sectorial normalization which is proved either by means of some
functional analytic methods (M. Hukuhara, T. Kimura, T. Matuda) or by means
of the Gevrey expansions.
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The holomorphic foliations exist on algebraic surfaces; they are defined by means
of polynomial vector fields. J. P. Jouanolou constructed examples of foliations on
the projective plane without algebraic leaves, and A. Lins-Neto proved that such
foliations are typical. M. F. Singer proved that if a polynomial planar vector field
has a first integral expressed by quadratures, then it has a simple integrating factor
(exponent of integral of a rational 1-form). It turns out that, for a typical foliation
with the line at infinity invariant, a generic leaf is dense in the projective plane (M.
O. Hudai-Verenov) and there are infinitely many limit cycles (Yu. S. Il’yashenko).
The latter two results are proved using the monodromy group of the leaf at infinity.
This is a subgroup of the group of germs of one-dimensional diffeomorphisms. The
abelian and solvable groups of this type were classified (D. Cerveau, R. Moussu)
and the non-solvable groups are rigid, in the sense that their formal or topological
equivalence implies their analytical equivalence (J.-P. Ramis, A. A. Shcherbakov,
I. Nakai).
S. L. Ziglin used the monodromy to prove the non-integrability of certain Hamil-
tonian systems, e.g., the Poisson–Euler system.
Among modern developments of the classical monodromy theory we cite gener-
alizations of the Euler hypergeometric integrals to the case with more singulari-
ties (P. Deligne, G. D. Mostow) and to many dimensions (I. M. Gelfand, A. N.
Varchenko). Here the monodromy group realizes a representation of the funda-
mental group of the complement to the discriminant variety and some classical
results (like the theorem of Schwarz) were generalized.
The above outlines the history of the monodromy theory. These topics constitute
the rough contents of this book.

The monodromy theory can be called a clever bifurcation theory. In the usual
bifurcation theory one investigates some objects (functions, varieties, maps, vector
fields) depending on real parameter(s) and their changes as the parameter passes
through the critical values. For example, the Morse theory describes degeneration
of the hypersurface level of a function as the value tends to a critical value. Usually
the objects are defined analytically. In that case clever investigation relies on
observing the transformation of the object as the parameter varies along a loop
around the critical value (in the complex parameter space). Therefore the complex
analogue of the Morse theory is the Picard–Lefschetz theory. The monodromy
approach to the bifurcation problems turns out to be very effective. It allows us
to obtain results out of reach when using the real methods.
There is something mysterious and undefined in the monodromy theory, at least
for non-specialists. Often people use it rather loosely, without providing rigorous
definitions.

The aim of this monograph is to introduce the reader into the complex of notions
and methods used in the monodromy theory. Because these notions and methods
involve large parts of modern mathematics, the book contains a lot of auxiliary
mathematical material. It is written to be as self-contained as possible. We strived
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not to omit technical parts of the proofs. We have included such elements as a
proof of the analytic version of the Hadamard–Perron theorem or the proof of the
Thom–Martinet preparation theorem. On the other hand, the results which are
not fundamental and constitute generalizations of simpler results are treated more
loosely. In these cases we present only ideas and general arguments.
The book touches practically all branches of monodromy theory. But it does not
contain all known results. Many theorems are not even mentioned. Also the liter-
ature reference list is not complete.

The idea of writing this book appeared in 1996, when the author began to deliver a
two-year course at Warsaw University. The subject was continued in seminars. The
lectures were written down and constitute essential parts of the book. Therefore
the book is addressed mainly to (graduate) students.
Another reason was the author’s self-education. It was a great enterprise which
consumed much of the author’s time and energy during its writing. There is hope
that this effort was not useless and will help others to learn relatively quickly
techniques of the monodromy theory.
In concluding this preface I would like to express my thanks to my students T.
Maszczyk, G. Świrszcz, E. Stróżyna, A. Langer, M. Rams, P. Leszczyński, M.
Borodzik, Ł. Wiechecki, P. Goldstein, M. Bobieński and M. Borodzik for their
patience during lectures and seminars and for detecting many mistakes. I thank
V. Gromak for sending me notes from the lectures of G. Mahoux. I thank A.
Maciejewski for drawing my attention to the works of S. L. Ziglin, J. J. Morales-
Ruiz and J.-P. Ramis. I thank P. Mormul for showing me some references. I thank
F. Loray for giving me preprints of some papers and lecture notes. I would like
also to thank A. Weber, Ś. Gal, P. Pragacz, Z. Marciniak, Yu. Il’yashenko, A.
Varchenko and J. Steenbrink for their interest in this book.
During the work on this monograph the author was supported by the Polish KBN
Grant No 2 P03A 022 08, No 2 P03A 041 15 and 2 P03A 010 22.



Chapter 1

Analytic Functions and Morse Theory

This chapter is special. Its aim is quick introduction of the notion of monodromy
in applications to multivalued holomorphic functions and their Riemann surfaces.
The classical theorem about monodromy is a theorem about such functions.
The simplest example of a multivalued holomorphic function is the implicit func-
tion defined by means of a quadratic equation in two variables. This leads to the
Morse lemma in two (and more) dimensions.
We apply the Morse theory (in the real domain) to calculate the self-intersection
index of the cycle generating the homology of a noncritical complex level of a
quadratic homogeneous function.

§1 Theorem about Monodromy

1.1. Definition of the analytic element and of the Riemann surface. By an analytic
element we mean a pair (D, f), where D = Da ⊂ C is a disc with center at a
and f = fa is a holomorphic function on D, such that the Taylor series of f at a
is convergent in Da. We say that the analytic element (Da, fa) has prolongation
to an element (Db, fb) along a path γ ⊂ C if γ can be covered by domains of
analytic elements such that the corresponding functions agree at the adjacent
intersections. The sum of analytic elements obtained from prolongations of (D, f)
forms the Riemann surface of the (generally multivalued) holomorphic function f .

Figure 1

1.2. Theorem about monodromy. If the paths γ1, γ2 joining the points a and b are
homotopically equivalent in a domain where the function f is (locally) analytic,
then the prolongations of (Da, f) to (Db,i, fi) along γi’s are the same. It means
that f1 ≡ f2 at Db,1 ∩Db,2.



2 Chapter 1. Analytic Functions and Morse Theory

Proof. Let γs be a 1-parameter family of paths joining a with b and realizing
the homotopy between γi. Their union spreads over some compact domain E.
We cover this domain by analytic elements, starting from (Da, f), which agree at
intersections. In this way we obtain the Riemann surface of f over E. It is clear
that this Riemann surface is diffeomorphic to E. Thus f is single-valued on E. �

1.3. Remark. The reader can see that the theorem about monodromy bears a
topological character; it informs us about coverings. One can formulate it in the
following way:

Let π : Y → X be a covering of topological spaces and let γi, i = 1, 2, be two paths
in X joining the points a and b. If the paths are homotopically equivalent, then
the two maps π−1(a)→ π−1(b), defined by lifts of the paths γi to Y , coincide.

If f is a multivalued function on U ⊂ C and M is its Riemann surface, then one
has the single-valued function f̃ on M ,

M
f̃→ C

π ↓ ↑ f
U = U

Figure 2

Example. f(z) =
√

z, z �= 0. The prolongation of this function around 0 does not
give the same value, but after two turns around 0 we get the same function. In
order to get the Riemann surface of

√
z, we take two copies of the complex plane

and cut them along the closed positive axis z ≥ 0.
We put these sheets one above another, turn the upper one along the real axis and
glue the boundaries. The Riemann surface of

√
z is equal C \ 0 and we have the

diagram
C\0 x→ C
π ↓ ↑

√
z

C\0 = C\0

We can prolong π to the map on C, π(x) = x2. Then we say that π is a ramified
covering; with one ramification point x = 0.
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We can compactify the complex plane to the projective plane (or the Riemann
sphere)

C ∪∞ = CP 1 = C � S2

and we can also compactify the Riemann surface M → M ∪ ∞ � CP 1. The
point ∞ is also a ramification point, because after the change of variables we
have 1/x → 1/z = (1/x)2. In Figure 3 the pole ∞ is sent to the pole ∞ and the
indicated circles are mapped with degree 2.

We shall study the multivalued holomorphic functions and their algebraic and
topological invariants in Chapter 11.

§2 Morse Lemma

Let U ⊂ C be a domain containing 0 and let f : U → C be a holomorphic function.

1.4. Definition. We say that the point 0 is critical for f iff f ′(0) = 0. The critical
point 0 is called non-degenerate iff f ′′(0) �= 0. The value f(0) is called the critical
value of f .

The Morse Lemma in one dimension. Let 0 be a non-degenerate critical point of
f . Then there exists a local holomorphic change x = ϕ(y), x(0) = 0 such that

f(ϕ(y)) = f(0) + y2.

Proof. We can assume that f(0) = 0.

The Hadamard lemma. If f(0) = 0, then f(x) = xg(x) with some analytic func-
tion g.

Figure 3

Proof. We have f(x) = f(x)− f(0) =
∫ 1

0 [ d
dtf(tx)]dt = x

∫ 1

0 f ′(tx)dt. �



4 Chapter 1. Analytic Functions and Morse Theory

We have g(0) = f ′(0) = 0. We apply the Hadamard lemma again and we obtain
g(x) = xh(x) and f(x) = x2h(x), where h(0) = 1

2f ′′(0) �= 0. We put y = x
√

h(x),
where we can choose one of the two unique branches of the square root. �

Consider now the multidimensional case. Let f : U → C be a holomorphic function,
U ⊂ Cn, 0 ∈ U .

1.5. Definition. The point 0 is critical iff Df(0) = 0. It is non-degenerate iff the
Hessian matrix D2f(0) is non-singular or (equivalently) iff det ∂2f

∂xi∂xj
(0) �= 0. The

value f(0) is called the critical value of f .

1.6. Morse Lemma. If 0 is not a degenerate critical point of the function f , then
there exists a holomorphic change of variables x = ϕ(y), y = (y1, . . . , yn), ϕ(0) =
0, such that

f(ϕ(y)) = f(0) + y2
1 + . . . + y2

n.

1.7. Remark. In the real case the thesis of the Morse Lemma says that

f(ϕ(y)) = f(0) + y2
1 + . . . + y2

k − y2
k+1 − . . .− y2

n.

Using the Morse Lemma we shall investigate the level surfaces of a holomorphic
function in a neighborhood of the non-degenerate critical point. Any such level
surface forms an analytic subvariety in Cn of complex codimension 1, or a codi-
mension 2 real subvariety in R2n. Let

g(y) = y2
1 + . . . + y2

n.

The case n = 1. Here {g(y) = c} is either one point 0 for c = 0 or two points ±
√

c
otherwise.

The case n = 2. We have y2 =
√

c− y2
1 . The level surface {g = c} is the Riemann

surface of the function
√

c− y2
1 .

Let c = 0. Then y2 = ±
√
−1y1. We get two complex lines joined at one point.

Topologically it is diffeomorphic to the cone as in Figure 4.
If c �= 0, then the function

√
c− y2

1 has two branching points y1 = ±
√

c. When the
variable y1 varies, turning once around one branching point, then we arrive at the
other sheet of the Riemann surface. When y1 runs around both ramifications, then
we arrive at the same place. In order to get the Riemann surface of y2(y1) we take
two copies of the complex plane cut along the segment joining the ramification
points. We put one sheet above another, turn the upper sheet around the line
passing through the branching points and glue the two sheets along the cuts (see
Figure 5). We obtain a surface diffeomorphic to an infinite cylinder. The image of
the cut forms a closed curve ∆; it is a cycle generating the homology group of this
surface in dimension 1.
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Figure 4

1.8. Proposition (Topology of levels of a Morse function).

(a) If c �= 0 then the surface {g = c} is diffeomorphic to TSn−1 (i.e. the tangent
bundle to the unit sphere in Rn) and the zero section ∆ of this bundle is a
cycle generating the reduced homology groups of this surface.

(b) Moreover, the space {x : 0 ≤ g(x) ≤ 1} is homotopically equivalent to the
space {g(x) = 1} ∪Dn, where Dn is a ball glued to ∆ ⊂ {g = 1} along the
boundary. The deformation retraction of {0 ≤ g ≤ 1} to {g = 1}∪Dn can be
realized in such way that the part of {0 ≤ g ≤ 1} outside some neighborhood
of 0 is sent to the analogous part of {g = 1}.

1.9. Remark. In Chapter 3 below we give definitions of the homology groups and
other notions from algebraic topology which will be used in monodromy theory.

Proof of Proposition 1.8. (a) For n = 1 this is obvious. For n = 2 this follows from
Figure 5. Below we present the formulas realizing this diffeomorphism.
Denote y1 = u1 + iv1, y2 = u2 + iv2, u = (u1, u2), v = (v1, v2). Assume that c > 0.
The equation y2

1 + y2
2 = c means that

u2
1 + u2

2 = c + v2
1 + v2

2 , u1v1 + u2v2 = 0.

The latter equation means that the vectors u and v are orthogonal, 〈u, v〉 = 0.
The diffeomorphism is

(u, v) →
(
u/
√

c + |v|2, v
)

.

(The first component lies in S1, the second component lies in the linear subspace
of R2 orthogonal to the first component, i.e. tangent to S1).
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If c = |c|eiθ ≯ 0 then we apply the transformation

(y1, y2)→ (eiθ/2y1, e
iθ/2y2),

which is a diffeomorphism, and use the above arguments.

Let n > 2. It turns out that the formulas obtained in the previous case are in use
in the general situation. Let yj = uj +

√
−1vj , u = (u1, . . . , un), v = (v1, . . . , vn).

If c > 0 then the equation y2
1 + . . . + y2

n = c means that

|u|2 = c + |v|2, 〈u, v〉 = 0.

The map
(u, v)→

(
u/
√

c + |v|2, v
)

transforms the level surface {g = c} to TSn−1, the tangent space to the unit
(n− 1)-dimensional sphere in Rn. We treat the case arg c �= 0 in the same way as
before.
Here also we have the (n − 1)-dimensional cycle ∆, the preimage of the zero
section of this tangent bundle. It generates the reduced homology group of the
surface {g = c} in dimension n − 1. As c → 0 the cycle ∆ tends to the critical
point.
(b) We note that the space TSn−1 is contractible, along fibers, to Sn−1. Thus the
set {0 ≤ g ≤ 1} is contractible to a disc, the sum of spheres Sn−1

r ⊂ {g = r2} with
radii r ∈ [0, 1]. This is the ball Dn from Proposition 1.8(b). Also it is not difficult
to construct the deformation retraction as in the thesis of Proposition 1.8(b). �

Figure 5

1.10. Definition. The cycle ∆ is called the vanishing cycle.

Proof of the Morse Lemma. Here I present the proof suggested to me by T.
Maszczyk. Firstly we need a multidimensional version of the Hadamard lemma.

The Hadamard lemma. If f(x), x ∈ (Cn, 0) is a germ of an analytic function such
that f(0) = 0, then f(x) =

∑
xigi(x) with analytic functions gi.

Let 0 be a non-degenerate critical point of the function f . We can assume that
f(0) = 0. We apply the Hadamard lemma two times, to f and to the gi’s, and
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obtain f(x) =
∑

hij(x)xixj where hij are analytic functions. Applying the change
(hij) → (1

2 (hij + hji)) we can assume that the matrix [hij(x)] is symmetric. It is
non-singular for small x (because 2[hij(0)] = D2f(0)).
Consider the quadratic form

ξ → Φ(ξ) =
∑

hij(x)ξiξj .

It is diagonalizable, which means that there exists a linear transformation (ξi) →
(ηi =

∑
αij(x)ξj) such that Φ(ξ) =

∑
η2

i . Now it is enough to put yi =
∑

αij(x)xj .
�

§3 The Morse Theory
Consider the tangent bundle to the sphere TSn. Let ∆ = {(x, v) : v = 0} be its
zero section representing a closed n-dimensional cycle. Is it possible to perturb
slightly the cycle ∆, to some cycle ∆1 in such a way that ∆ ∩∆1 = ∅?
In order to study this problem we reformulate it. We can consider the cycle ∆ as
a map Sn → TSn,

∆ : x → (x, 0).

Its perturbation also will be a map from Sn to its tangent bundle of the form

∆1 : x→ (y(x), v(x)),

where supx{|y(x)− x|+ |v(x)|} < ε. It is clear that we can assume that y(x) ≡ x.
In such case we have a vector field {v(x)} on the sphere and the previous problem
follows: can we comb the sphere? (Is there a vector field on Sn non-vanishing at
any point?)
If n = 1, then the vector field (x1, x2) → (x2,−x1)provides an example. Gen-
erally, if n is odd, then the answer is positive: v(x1, x2, x3, x4, . . . , x2k−1, x2k) =
(x2,−x1, x4,−x3, . . . , x2k, −x2k−1).

If n is even, then the answer is negative.

To show this we need some new notions. Let M be a real n–dimensional manifold
and let {v(x), x ∈M} be a vector field on it, v(x) ∈ TxM .

1.11. Definition. A point x0 ∈ M is called a singular (or critical or equilibrium)
point iff v(x0) = 0. Assume that x0 is an isolated singular point.
Take a small sphere S(x0, ε) around x0 of radius ε and consider the map

S(x0, ε) � x
φ�−→ v(x)
|v(x)| ∈ Sn−1.

The degree of the map φ is called the index of the singular point x0 and is denoted
by ix0v.
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Figure 6

1.12. Remark. If a vector field has non-isolated critical points, then it can be
perturbed, in the class of differentiable vector fields, to such with only isolated
critical points. It is done using the Sard theorem as follows.
The singular point x0 is called degenerate iff detDv(x0) = 0. The non-isolated
singular points are degenerate. The degenerate singular points for v(x) are the
critical points for the maps x → v(x). Because the critical values form a set of
Lebesque measure zero (the Sard theorem), the vector field v(x) − w for suit-
ably small w ∈ Rn does not have degenerate singular points (in a chart of M
diffeomorphic to a subset of Rn).

1.13. Remark. The degree of a map f between differentiable oriented manifolds
M and N of the same dimensions is defined in Chapter 3 below in homological
terms. Here we give the analytic definition.
If the map is sufficiently regular then the degree is calculated as follows. Let y ∈ N
and f−1(y) = {x1, . . . , xk}. Then we have

deg f =
k∑

i=1

±1,

where the sign is +, when Df(xi) preserves the orientation and is −, if it reverses
the orientation.
If the map f is not regular, then we approximate it by a regular map fε and put
deg f = deg fε.

Examples. For the vector field ẋ = x, ẏ = −y (or x ∂
∂x − y ∂

∂y ) the index at 0 is
−1. For the vector field ẋ = x + y, ẏ = −x + y the index is 1. The examples of
vector fields with index 2 and −2 provide the fields ż = z2 and ż = z̄2 respectively
(written using the complex variable z = x + iy).
Generally, for a linear vector field, given by the non-singular matrix A, the index
at 0 is signdetA.
Consider the vector field ż = 1 in C � R2. It prolongs itself to a vector field in
the Riemann sphere with index at ∞ equal to 2. Indeed, in the variable ξ = 1/z
we get ξ̇ = −ξ2, which is (up to sign) the same as the vector field from one of the
previous examples.
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For the vector field ż = z the index at z = 0 is 1 and the index at z = ∞ is also
1. Thus the sum of indices is the same for both vector fields and is equal to 2.

Figure 7

1.14. The Poincaré–Hopf theorem. If the vector field v(x) has only isolated singular
points x1, . . . , xr, then ∑

ixjv = χ(M),

where χ(M) is the Euler characteristic of the manifold M .

1.15. Remark. The Euler characteristic is calculated as follows. We take a partition
of the manifold M into cells (or simplices) and we obtain a complex which consists
of m0 0-dimensional cells, m1 1-dimensional cells etc. Then we define

χ(M) = m0 −m1 + m2 −m3 + . . .±mn.

Proof of Theorem 1.14. We sketch the proof of the Poincaré–Hopf theorem based
on Morse’s Lemma. Let X be the space of all differentiable vector fields (equipped
with some natural topology). Let X0 ⊂ X consist of vector fields with only
non-degenerate singular points, i.e. such that detDv(xi) �= 0. Note that then
ixiv =signdetDv(xi).
The set X0 is open and dense in X (see Remark 1.12 above). The function v →∑

(indices) is locally constant at X0. It is enough to show that it is the same at
the boundary of X0.
Let v ∈ X \ X0 be a vector field with degenerate critical points but isolated and
with finite indices. We take some small perturbation vε ∈ X0 of v. The field vε has
only non-degenerate critical points, where some of them may coalesce as vε → v.
From Figure 8(b) it is seen that the sums of indices of v and of its perturbation
are the same; (the index calculated along the outer cycle is equal to the sum of
indices calculated along the inner circles).
Therefore it remains to calculate the sum of indices of some particular vector field
from X0.
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1.16. Definition. A twice differentiable function f : M → R which has only non-
degenerate critical points and different critical values is called the Morse function.

Assume that M is a Riemannian manifold, i.e. it is equipped with a Riemannian
metric 〈·, ·〉x. (If M is compact and smooth, then using the partition of unity 1
can always construct such a metric.) This metric tensor defines the isomorphism
TxM � w → 〈·, w〉 ∈ T ∗

x M . If f is a function on M , then applying the inverse of this
isomorphism to df(x) ∈ T ∗

xM we obtain the gradient vector field v(x) =gradf(x) =
∇f(x). In local coordinates with the euclidean metric, we have ẋi = ∂f/∂xi and
Dv = (∂2f/∂xi∂xj). In particular, the index of the gradient vector field at a
critical point x0 is signdet(∂2f/∂xi∂xj). In the case of general metric 〈·, ·〉x =
(A(x)·, ·) we have ∇f = A−1∂f/∂x, and the same formula for index holds.

Figure 8

Let f : M → R be a Morse function. As the model vector field, for calculating the
sum of indices, we take ∇f(x).
Now we present the Morse theory about determination of the topology of a man-
ifold using its Morse function (see [Mil1]). Its main ingredient is the behavior of
the level surfaces of the function f in neighborhoods of its critical points.
By the real Morse Lemma it is enough to study bifurcations of the level surfaces
for the function

f(x) = f(0) + x2
1 + . . . + x2

k − x2
k+1 − . . .− x2

n,

a constant plus a quadratic form. The Morse index of quadratic form is equal to
the number of its minuses; we call it the Morse index of the critical point of the
function f .
We investigate the sets {f = c} and {f ≤ c} as c varies from its minimal value to
its maximal value. Altogether we construct some partition of M into cells.
If k = n, then the Morse index of the critical point is 0 and we have a local
minimum. The sets {f ≤ c} are discs. We associate with each critical point xj of
index 0 a 0-dimensional cell σ0

j = {xj} of the promised cell complex.
If k = n− 1, then we observe the following bifurcation. Locally the sets {f ≤ c},
c < f(0) consist of two pieces; they are diffeomorphic to Dn×S0, where Dk denotes
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the k-dimensional ball with the boundary ∂Dk = Sk−1. (It is homotopically equiv-
alent to S0.) After bifurcation, c > f(0), the two components became connected
which (up to homotopy) means adding a segment joining the components. With
each critical point of Morse index 1 we associate a 1-dimensional cell (a closed con-
nected curve) σ1

j , which is adjoined to the 0-dimensional skeleton in the way the
bifurcation of passing through this critical value says: ∂σ1

j = S0 ⊂ {f < f(0)− ε}.
Generally, near any critical point of Morse index i = n − k the sets {f ≤ c},
c < f(0) are diffeomorphic to Dn−i+1×Si−1 � Si−1. The bifurcation is equivalent
to adjoining to this set the handle Dn−i×Di � Di. So we add to our complex an
i-dimensional cell σi

l glued along the boundary to the (i− 1)-dimensional skeleton
(see Figure 9).
Of course, the Euler characteristic of M is equal to the number of cells associated
with critical points of index 0 minus the number of cells associated with points of
index 1 plus, etc. This completes the proof of the Poincaré–Hopf theorem. �
1.17. The self-intersection of the cycle ∆. We have χ(Sn) = 0 if n is odd, and = 2
if n is even. By the Poincaré–Hopf theorem this means that the odd-dimensional
spheres can have empty intersections with their deformations in their tangent
spaces and the even-dimensional spheres do not have this property.
The sum of indices of a vector field on Sn can be treated as the index of self-
intersection of this sphere in its tangent bundle. We proved that this number is
equal to

(∆, ∆) = 1 + (−1)n.

We shall use these facts in the sequel.

Figure 9



Chapter 2

Normal Forms of Functions

In this chapter we present elements of the theory of singularities of holomorphic
functions. We introduce notions of multiplicity, stability, versal deformation, and
normal form, and we describe their main properties. We present also the beginning
of the list of normal forms for singularities.
This subject is rather standard and well elaborated in many sources. We follow
mainly the first volume of the book of V. I. Arnold, A. N. Varchenko and S. M.
Gusein-Zade [AVG].

§1 Tougeron Theorem
2.1. Notations and definitions. By Ox0 = Ox0(Cn) we denote the local ring of
germs at x0 of holomorphic functions, i.e. functions holomorphic in some neigh-
borhood of x0. Two functions, f at U and g at V , are equivalent iff f ≡ g at U ∩V .
Usually we put x0 = 0 and write O or C {x} = C {x1, . . . , xn}, instead of O0. It is
usual to write f : (Cn, 0)→ C.
By m we denote the maximal ideal of the ring O, m = {f : f(0) = 0}. The ideal
m is generated by x1, . . . , xn (Hadamard’s lemma).
By jkf = jkf(0), i.e. the k-th jet of f , we denote the Taylor series of f up to
order k. By Jk we denote the space of k-jets.
The gradient ideal of the germ f is generated by ∂f/∂xi and is denoted by

If = (∂f/∂x1, . . . , ∂f/∂xn).

The local algebra of the germ f is

Af = O/If .

The Milnor number, or the multiplicity, of the germ f is

µ = dimAf .

Examples. 1. Let f(x) = xn+1. Then If = (xn), the set of polynomials with zero
first n − 1 derivatives at x = 0. The local algebra is generated by the monomials
1, x, x2, . . . , xn−1 and µ(f) = n. The functions xn+1 form the series An of simple
singularities (see below).
2. Let f(x, y) = x3 + y4, i.e. the simple singularity E6 (see Theorem 2.38 below).
Its gradient ideal is generated by x2 and y3. In order to calculate the local algebra
of this function we present the situation graphically.
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At Figure 1(a) we have the lattice Z2
+ consisting of points of the plane with

non-negative integer coordinates (i, j). Each such point represents the monomial
xiyj ∈ O. The ideal If contains all monomials from the set represented by(

(2, 0) + Z2
+

)
∪
(
(0, 3) + Z2

+

)
,

i.e. we add to the basic points all the uppe-right quarters of Z2
+. The remaining

points from the lattice represent the basis of the local algebra. Its dimension is 6.

3. Let f(x, y) = x2y + y3, i.e. the simple singularity D4 (see Theorem 2.38 below).
Then the generators of the gradient ideal (2xy, x2 + 3y2) are represented by: the
point (1, 1) and by two points (2, 0), (0, 2) which are associated one with another
(see Figure 1(b)).
Of course, If contains (1, 1) + Z2

+. It is also clear that the monomials represented
by (0, 0), (1, 0), (0, 1) are outside If and form a part of the basis of the local ring
Af .
The two points (2, 0), (0, 2) cannot lie simultaneously in the ideal as well as cannot
be simultaneously outside of it, (they are dependent in Af ). So we add one of
them, e.g. (0, 2), to the basis of Af . Considering the quadratic parts of the Taylor
expansions of the functions from our (preliminary) basis and from the ideal If , we
see that the monomials (0, 0), (1, 0), (0, 1), (0, 2) are independent in Af . The rest
is in the gradient ideal, which means that J = C + xC + yC + y2C + If = O.
To prove this it is enough to show that the monomials xi, yj are in J . But x2 =
(x2 +3y2)−3(y2) ∈ If +y2C and xi = xi−2(x2 +3y2)+3xi−3y(xy) ∈ If . Similarly
we treat the monomials yj .
Therefore µ(f) = 4.

Figure 1

4. Problem: show that µ(x2y + xk−1) = k.
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2.2. Theorem (Isolated critical points). The Milnor number µ < ∞ iff x = 0 is
an isolated critical point of the function f .

Parallel with the multiplicity of a function one can define the multiplicity of germs
of vector fields.
Let F : (Cn, 0) → (Cn, 0), F = (f1, . . . , fn) be a germ of a holomorphic map. Let
AF = O/(f1, . . . , fn) be the local algebra of the germ F . Then µ(F ) = dim AF is
the multiplicity of the germ F.

2.3. Theorem. The multiplicity µ = dimAF < ∞ iff x = 0 is an isolated solution
of the equation F = 0.

2.4. Theorem (Index and multiplicity). When we treat F as a vector field, then
µ(F ) = i0F where i0F is the index of the singular point x = 0 of F.

The above two theorems are proved in the next section.

2.5. Theorem of Tougeron. Let f be a germ of a holomorphic function such that
µ = µ(f) < ∞. Then there exists an analytic change of variables y = h(x) such
that f ◦ h = jµ+1f(0).

2.6. Remark. A jet jkf is called sufficient iff any two germs with this k-th jet are
analytically equivalent. It means stability with respect to high order perturbations.
The theorem of Tougeron says that the jet jµ+1f is sufficient.

Proof of Theorem 2.5. Unfortunately here we cannot repeat the proof of the Morse
lemma. We follow the book of Arnold, Varchenko and Gusein-Zade [AVG].
Assume that f has a critical point at 0 of multiplicity µ and let φ ∈ mµ+2. We
shall show that f + φ ∼ f .
We use the homotopy method. Namely we join the functions f and f + φ by
an arc in a functional space of functions and we seek a one-parameter family of
diffeomorphisms realizing equivalences with f . In other words, we try to solve the
equation

(f + tφ) ◦ ht(x) ≡ f(x), t ∈ [0, 1], (1.1)

where ht is unknown.
Introduce the non-autonomous vector field vt(x) by the formula

dht/dt = vt(ht(x)).

We shall find the vector field vt first and then, integrating the latter equation, we
shall find the diffeomorphisms ht.
Differentiating (1.1) with respect to t we get the equation φ◦ht+(f +tφ)∗ ·vt◦ht ≡
0. Thus we have to solve the equation

(f + tφ)∗ · vt = −φ (1.2)

with respect to vt.
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2.7. Lemma. We have mµ ∈ (∂(f + tφ)/∂x1, . . . , ∂(f + tφ)/∂xn), which means that
any monomial of sufficiently high degree lies in the gradient ideal of the function
f + tφ.

Example. For non-degenerate critical point the gradient ideal coincides with the
maximal ideal and µ = 1.

From Lemma 2.7 the theorem of Tougeron follows. Indeed, because φ ∈ mµ+2, the
equation (1.2) has solution vt =

∑
vt,i

∂
∂xi

. Its components vt,i ∈ m2 and hence
vt(0) = 0, Dv(0) = 0. Moreover vt depends smoothly on t.
So, in order to find the family of diffeomorphisms ht, it is sufficient to solve the
initial value problem

d

dt
ht = vt(ht(x)), h0 = Id.

The assumption φ ∈ mµ+2 is needed to ensure the existence and uniqueness of
solutions to the latter problem. Because vt(0) = 0, we get ht(0) = 0. �
Proof of Lemma 2.7. Consider firstly the case φ ≡ 0. Let φ1, . . . , φµ ∈ m. It is
enough to show that φ1 · . . . · φµ ∈ If where If is the gradient ideal.
Consider the series of functions: φ0 = 1, φ1, φ1φ2, . . . , φ1 . . . φµ. They are linearly
dependent in the local algebra Af . So, we have

c0 + c1φ1 + c2φ1φ2 + . . . + cµφ1 . . . φµ ∈ If

for some constants cj . If cr is the first nonzero coefficient, then φ1 . . . φr(cr + . . .) ∈
If , or φ1 . . . φr ∈ If . Of course, in this case the product of all φi’s also lies in the
gradient ideal.
Consider now the general case φ �≡ 0. Let M1, . . . , Mr be all the homogeneous
monomials of degree µ; they form a basis in the space of homogeneous polynomials
of degree µ. We know already that Mj ∈ If . This means that

Mj =
∑ ∂f

∂xi
hij =

∑ ∂(f+tφ)
∂xi

hij −
∑ ∂tφ

∂xi
hij .

The last sum in the above formulas belongs to mµ+1 and can be expressed by
means of the monomials Mj (Hadamard’s lemma). We get

Mj =
∑ ∂(f + tφ)

∂xi
hij − t

∑
k

Mk

∑
l

xlakl(x)

where akl ∈ m (by the assumption about φ). We can rewrite this system of equa-
tions in the matrix form

(I − tA)M = B

where tA is a small matrix and the components of the vector B belong to the
gradient ideal. Because the matrix I − tA is invertible, also the components Mi of
the vector M are in this ideal. �
2.8. Corollary Any germ of a function of finite multiplicity can be replaced by an
equivalent polynomial.
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§2 Deformations
We have to introduce some notions concerning actions of infinite-dimensional
groups on infinite-dimensional functional spaces. So, firstly we demonstrate them
in the finite-dimensional case.
Let M be a manifold (of finite dimension for a while) and let a group G act on it:
(f, g)→ gf , f ∈M , g ∈ G. Let f ∈ M . We denote its orbit by Gf = {gf : g ∈ G}.
2.9. Definition ([Arn2]). A deformation of f is a map F : Λ→ M , where Λ is the
base of the deformation with a distinguished point 0 and F (0) = f .
Two deformations F, F ′ are equivalent iff there is a family g(λ) ∈ G, λ ∈ Λ, such
that

F ′(λ) = g(λ)F (λ),

i.e. the equivalence along the orbits.
If φ : (Λ′, 0) → (Λ, 0) is a map between the base spaces, then the induced defor-
mation (from F by means of φ) is

φ∗F (λ′) = F (φ(λ′)),

i.e. a change of parameters.
A deformation F (of f) is called versal iff any other deformation of f is equivalent
to a deformation induced from the deformation F .
A deformation is called mini-versal iff it is versal and the dimension of its base is
minimal.

We can say that a deformation is versal iff it intersects all orbits near f (see Figure
2). In particular, the deformation with the base M and identity map is versal; but
usually is not mini-versal.

Figure 2

In the singularity theory we deal with the infinite-dimensional situation. The role of
the manifold M is played by the space of germs f = f(x) of holomorphic functions
and the role of G is played by the group of local analytic diffeomorphisms h = h(x)
acting on functions by compositions on the right; it is called the right equivalence.
However the definitions from 2.9 pass to the infinite-dimensional case unchanged.
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A deformation of a germ f : (Cn, 0)→ C is a germ F : (Cn×Ck, 0)→ C, F (x, 0) =
f(x). The equivalence of two deformations is written as F ′(x, λ) = F (h(x, λ), λ)
(where h(·, λ) = hλ is a family from G) and the induced deformation is given by
F ′(x, λ′) = F (x, φ(λ′)).

2.10. Definition. We say that a germ f is stable iff the orbit of f contains a
whole neighborhood of f . We say that a germ f is simple iff a neighborhood of
f is covered by a finite number of orbits. If a neighborhood of f is covered by
l-parameter families of orbits such that max l = m, then we say that the germ f
is m-modal.
By a normal form we mean some (simultaneous) choice of a member from each
orbit. This choice is not unique, so one should do it in a way as natural as possible.

2.11. Remarks. (a) In [AVG] singularities of other objects are considered: of maps
from Cn to Cm with the so-called left-right equivalence (when we can make in-
dependent changes in the source space and in the target space) and with respect
to the so-called V -equivalence (when the change in the target space is linear and
depends on x). There analogous definitions (as in the case of functions) are intro-
duced and analogous results are obtained.
(b) The singularity theory is used not only in local analysis. Usually one has a
function on a manifold, where it has a finite number of critical points. During
deformation of a function the critical points also can move with the parameter.
For example fε(x) = x2 − εx has a critical point at ε/2. Therefore it is reasonable
to keep some neighborhood of a critical point fixed during the deformation.

The notions of stability and versality have their infinitesimal versions. The in-
finitesimal stability is obtained from differentiation of the equality (f + tφ)(x) =
f ◦ ht(x) with respect to t at t = 0

φ(x) =
∑ ∂f

∂xi
vi(x). (2.1)

2.12. Definition of infinitesimal stability. The germ f is infinitesimally stable iff
the equation (2.1) has solution (vi) for every φ.

In particular, the proof of the theorem of Tougeron is a proof of the implication:
infinitesimal stability ⇒ stability (i.e. stability with respect to perturbations of
high order).
In fact, the notion of stability and of its infinitesimal version has greater application
in the theory of maps, e.g. the Whitney singularities of planar maps (see [AVG]):
(x, y)→ (x2, y) (the fold),
(x, y)→ (x3 + xy, y) (the cusp).

Let us differentiate the equation

F ′(x, λ′) = F (g(x, λ′), φ(λ′)),
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F ′ = f(x) + λ′α(x), g(x, 0) = x with respect to λ′ ∈ C. We get

α(x) =
n∑

i=1

∂F

∂xi
vi(x) +

k∑
j=1

∂F

∂λj
cj. (2.2)

2.13. Definition of infinitesimal versality. We say that a deformation F (x, λ) is
infinitesimally versal iff the equation (2.2) has solution vi(x) ∈ O, cj ∈ C for any
function α(x) ∈ O.

2.14. Theorem (Versal deformations). Any deformation infinitesimally versal is
versal.

Examples. 1. The deformation F (x, λ) = x2 + λ is versal because the equation
α(x) = 2xv(x) + c has the solution v(x) = (α(x)− α(0))/2x, c = α(0).
2. Similarly the deformation F = x3 + λ1x + λ2 is versal.
3. Generally, if e1(x), . . . , eµ(x) define a basis of the local algebra Af of the germ
f , then the deformation

F (x, λ) = f(x) + λ1e1(x) + . . . + λµeµ(x)

is versal. It is also mini-versal deformation.

2.15. Corollary. For any germ of finite multiplicity we can choose the function as
well as the mini-versal deformation in polynomial forms.

Remark. In the theory of singularities of functions and maps, theorems about
reductions (to a sufficient jet or to a normal form) are formulated in the analytic
versions. The corresponding changes of variables are analytic. In particular, the
formal classification (reduction by means of formal power series) coincides with
the analytic classification of singularities.
As the reader will see this is not the case in differential equations theory and in
dynamical systems theory. Very often power series, which reduce some singularity
of a vector field or of a diffeomorphism, diverge.

Proof of Theorem 2.14. This proof relies mostly on local algebra.
Let F (x, λ) be an infinitesimal deformation of a germ f and let F ′(x, λ′), λ′ ∈
(Ck′

, 0) be another deformation of f .
We apply a certain trick which allows us to reduce the problem to the case, when
F ′ is a deformation of F with one parameter. Take the function

F̃ (x, λ, λ′) = F (x, λ) + F ′(x, λ′)− f(x).

It is a deformation of f with parameters (λ, λ′) as well as a deformation of F with
the parameter λ′.
Any extension of an infinitesimally versal deformation is an infinitesimally versal
deformation. Consider the chain

Ck ⊂ Ck+1 ⊂ . . . ⊂ Ck+k′
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of spaces, which define a chain of deformations with one parameter. Now step-by-
step we show equivalence of each of these deformations with some deformations
induced from the previous one.

Consider therefore the following special case

Φ(x, λ, µ), λ ∈ Cl, µ ∈ C; Φ(x, λ, 0) = F (x, λ).

2.16. Proposition. The deformation Φ is equivalent to a deformation induced from
F .

Proof. The property that Φ is equivalent to a deformation induced from F can be
formulated as follows:

Φ(gµ(x, λ), φµ(λ), µ) ≡ F (x, λ), (2.3)

where hµ(x, λ) = (gµ(x, λ), φµ(λ) is a 1-parameter family of local diffeomorphisms.
(Apply h−1

µ to (2.3) and you obtain the definition from Definition 2.9). The family
hµ defines the non-autonomous vector field dhµ/dµ = Vµ ◦ hµ,

Vµ =
∑

Hj(x, λ, µ)
∂

∂xj
+
∑

ξi(λ, µ)
∂

∂λi

in Cn × Cl, analogously as in the proof of the Tougeron theorem.
Differentiating the identity (2.3) with respect to µ, we get the equation

∂Φ
∂µ

+
∑

Hj
∂Φ
∂xj

+
∑

ξi

∂Φ
∂λi

≡ 0.

As in the proof of the Tougeron theorem the problem reduces to that of solving
the equation

α(x, λ; µ) = H(x, λ; µ) · ∂Φ
∂x

+ Ξ(λ; µ) · ∂Φ
∂λ

(2.4)

for any α.
The assumption of Theorem 2.14, i.e. the infinitesimal versality, ensures existence
of a solution to the equation (2.4) for λ = 0, µ = 0. We need to extend this solution
to a solution of the equation (2.4) in the general case.
In order to pass from a particular solution to a general solution we need some
preparation theorems. There are three such theorems: the Weierstrass Preparation
Theorem, the Division Theorem and the Thom–Martinet Preparation Theorem.
What we need is the Thom–Martinet Preparation Theorem for modules over local
rings of holomorphic functions.

2.17. Thom–Martinet Preparation Theorem. Let (x, y) ∈ Cn × Ck, On+k =
O0(Cn × Ck), Ok = O0(Ck), On = O0(Cn). Let I ⊂ On+k be an ideal and
denote Ix,0 = {f(x, 0) : f ∈ I}.
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If some elements e1, . . . , er ∈ On+k are such that the functions ei(x, 0) generate
the module On/Ix,0 (over C), then the functions ei generate the module On+k/I
over Ok.
In other words, for any α ∈ On+k there exist germs gi(y) such that

α(x, y) =
∑

gi(y)ei(x, y) (mod I).

Finishing the proof of Theorem 2.14. We put y = (λ; µ), I = ( ∂Φ
∂x1

, . . . , ∂Φ
∂xn

),
ei = ∂Φ

∂λi
in Theorem 2.17. Its thesis says that the equation (2.4) has a solution

in the class of germs of analytic functions. This gives Proposition 2.16 and then
Theorem 2.14. �
Now we make some moves in the direction of the proof of Theorem 2.17. For this
we need two other preparation theorems.

2.18. Weierstrass Preparation Theorem. Let f(z1, . . . , zm; w) = f(z, w), w ∈ C
be a germ of a holomorphic function such that f(0, w) = wn + . . .. Then there
exist a holomorphic function h(z, w), h �= 0 and holomorphic functions a1(z), . . . ,
an(z) such that

f = gh, g(z, w) = wn + a1(z)wn−1 + . . . + an(z).

The function g is called the Weierstrass polynomial.

Proof. If we denote by bi(z) the zeroes of the function f , then we have the rep-
resentation f = h

∏
(w − bi(z)), h �= 0. The coefficients aq(z) of the Weierstrass

polynomial are symmetric polynomials of the zeroes bi. Moreover the ring of sym-
metric polynomials is generated by the sums of powers of bi. The latter are given
by the formulas

bq
1 + . . . + bq

n =
1

2πi

∮
|w|=const

wq · ∂f/∂w

f
dw,

where the subintegral function is holomorphic in (z, w), if |w| is sufficiently small.
Therefore aq and g are holomorphic functions.
The analyticity of the function h follows from the formula

h =
1

2πi

∮
|u|=const

h(z, u)du

u− w
=

1
2πi

∮
|u|=const

(f/g)du

u− w
,

where the subintegral function is holomorphic for small |w| and |z|. �
2.19. Division Theorem. Let f(z, w) be as in Theorem 2.18. Then for any germ
φ(z, w) of a holomorphic function there exist holomorphic germs h(z, w) and hi(z),
i = 0, . . . , n− 1 such that

φ = hf +
n−1∑

0

hi(z)wi.


