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Foreword

The much-lamented “innovation gap” often referenced by current authors
with respect to drug discovery in the pharmaceutical industry is a sure
sign that an era has passed. The reductionist view of disease as the di-
rect consequence of isolated errors of metabolism that could be explained
and understood as simple enzyme alterations is a thing of the past. Like-
wise the naı̈ve view that the system-wide consequences of small molecule
interventions could be predicted through simple in vitro assays has be-
come obsolete. Infectious diseases, representing an evolved and complex
evolutionary conflict between two life-forms, have been at the vanguard
of embracing systems biology concepts due to the obvious failure to cure
such diseases by simply studying an invading parasite’s physiology in a test
tube. Driven by a virtual renaissance in technology the simple approaches
of the previous era have given way to a vast new array of integrative sci-
ences aimed at modeling and understanding the complex and dynamic
interactions that characterize real human diseases. Although still strug-
gling for granularity these integrative sciences share a common vision –
erasing the differences between disciplines and embracing complexity in
tools that offer glimpses of whole biological systems and mesh seamlessly
with infinite chemical space.

Rather than focus this book on the tools, approaches, successes and
failures of the old era we challenged our contributors to look forward and
project the tools that will become indispensable to the new era – the tools
that would turn this “innovation gap” into an “innovation leap”. The
“omic” sciences are one prime example of the integrative approach to in-
fectious disease. With hundreds of genome sequences of organisms from
all branches of the tree of life literally at our fingertips, transcriptomics,
proteomics and metabolomics are proving to be only the first wave of
large, complex datasets that are now being augmented by protein interac-
tion networks, reverse protein arrays, the protein-DNA interactome, etc.
The magnitude of these datasets has challenged experimental, mathemat-
ical and computational scientists who are banding together around the
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emerging discipline of “Systems Biology”. Systems biology aims towards
nothing less than the complete reconstruction of the biological complex-
ity of living organisms in chemically and mathematically defined terms.
Complete models for simple prokaryotes are within our grasp and mod-
els of complex multi-cellular organisms will emerge within our scientific
careers and these models will have a profound impact on drug discovery.

Systems biology at present is defined by the tools employed to gen-
erate large-scale datasets. There remains a gap between those tools that
have been reduced to practice and give reproducible, reliable datasets with
information that allows us to model part of the system, for example tran-
scriptomics, and tools that have critical information but cannot currently
provide robust datasets such as metabolomics. Transcriptomics has been
applied widely in infectious disease research and has already resulted in
significant insights with therapeutic consequences. Metabolomics, how-
ever, is the frontier between analytical chemistry and biology, and the
tools required for the simultaneous identification and quantitation of all
the relevant small molecules in even a simple prokaryote are still being
developed. Metabolomic analyses, however, have the potential to inform
many aspects of the drug discovery pipeline from target identification to
biomarkers of response to therapy. As the complexity of the link between
transcription, translation and metabolic flux has expanded, so too have
the models required to explain and interpret such data.

The information emerging from measurements and models of host-
pathogen systems also requires bridging another gap between chemists
with a desire for simple isolated enzyme assays and biologists with a desire
for complex whole-cell based assays. Chemical genetics is one element of
such a bridge and is on the verge of becoming a core large-scale technology.
“Reverse chemical genetics” is perhaps the more intuitive approach where
a candidate target is screened for small molecule ligands that are then
used to examine the influence of target interruption in a whole-cell con-
text. “Forward chemical genetics”, however, is arguably a more powerful
approach for target identification in anti-infectives programs. In this ap-
proach small molecules are directly screened for a desired phenotypic effect
followed by identification of the relevant protein target in the pathogen
or in the host – an exercise that minimizes the “biological uncertainty”
associated with target selection. More and more often decreasing biologi-
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cal uncertainty involves an intense integration of the full suite of “omics”
technologies. The approach is a natural complement of traditional genetic
approaches since it directly asks the therapeutically relevant interruption
of protein function question in an appropriately complex system.

In a sense what all of these large-scale biology approaches are pushing
towards is accurate information in highly disease-relevant environments
in an effort to choose smarter targets and minimize the risk of drug de-
velopment. While this is a direction that the pharma industry has been
evolving towards in many ways, systems biology is pushing the fringe of
what is possible. The future of many development compounds is dramat-
ically affected by their performance at a systems level. Nowhere is this
more acute than in the area of predictive toxicology where current guide-
lines specify increasing numbers of standard assays. The number of in vitro
toxicology examinations that are mandatory is increasing and this trend
is likely to continue. As these tests grow increasingly sophisticated (e.g.
whole rabbit heart screening for cardiac toxicology assessment) they are
increasingly being informed by systems biology data, and in the future
toxicogenomics is likely to play a large role in preclinical development.

We think that the impending “innovation leap” in anti-infectives ther-
apeutics development lies squarely within the sort of interdisciplinary, in-
tegrative efforts described within the systems biology framework in this
book. Every step of the drug-development pathway will benefit directly
from assays and models that do not make reductionistic assumptions to
make predictions but rather are based upon embracing biological complex-
ity to gain true insight into the consequences of therapeutic strategies as
early as possible.

July, 2006 Helena I. Boshoff
Clifton E. Barry III
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Systems biology and its impact on anti-infective drug development

Abstract

Systems biology offers the potential for more effective selection of novel targets for anti-
infective drugs. In contrast to conventional reductionist biology, a systems approach
allows targets to be viewed in a wider context of the entire physiology of the cell,
with the potential to identify key susceptible nodes and to predict synergistic effects
of blocking multiple pathways. In addition to the holistic perspective provided by
systems biology, the emphasis on quantitative analysis is likely to add further rigour to
the process of target selection. Systems biology also offers the potential to incorporate
different levels of information into the selection process. Consideration of data from
microbial population biology may be important in the context of predicting future
drug-resistance profiles associated with targeting a particular pathway, for example.
This chapter provides an overview of major themes in the developing field of systems
biology, summarising the core technologies and the strategies used to translate datasets
into useful quantitative models capable of predicting complex biological behaviour.

Keywords: imaging, integrative systems biology, mathematical models, metabolic net-
works, protein interaction network, targets for anti-infective drugs, transciptional net-
works

1 Introduction

The current approach of target-driven drug discovery is underpinned by
dramatic progress that has been achieved in molecular and structural biol-
ogy within a framework provided by the revolution in genome sequencing.
Sequences are available for most of the major pathogens and straightfor-
ward procedures are in place for the production of recombinant proteins
required for drug discovery efforts based on high-throughput screens and
structure-based compound optimisation. The challenge for the future of
anti-infective drug development lies in target selection. Can we develop
a rational approach to target identification that will allow us to produce
new drugs and drug combinations that act faster than existing compounds,
that are effective against the range of adaptive microbial phenotypes gen-
erated during infection, and that reduce the evolution of drug-resistant
strains? To address this challenge we have to be able to evaluate potential
targets within the context of the overall physiology of both pathogen and
host with a level of predictive accuracy that matches the precision that we
currently apply when working with the isolated targets (see Chapters 10
and 12). This will involve taking a step back from conventional reduc-
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tionist approaches and entering the domain that is commonly referred to
as systems biology, a conclusion also reached by the US Food and Drug
Administration (FDA) in its report Challenge and Opportunity on the Critical
Path to New Medical Products [1].

Investigation of intact biological systems is a relatively recent concept
in the molecular biosciences. In ecology and epidemiology system-level
descriptions of biological processes – often coupled with a rigorous quan-
titative framework – have a longer history, reaching back certainly to the
first half of the 20th century. Advances in molecular biosciences have been
achieved by a predominantly reductionist approach, based on isolation
and analysis of individual components in preference to study of the sys-
tem as a whole. As a result we now have rich and detailed data about
the function of many genes and their protein products in an increasing
number of species spanning all three kingdoms of life, and often a good
understanding of how these are organised into local modules responsible
for a range of cellular processes and signalling. The fledgling discipline of
systems biology now aims to provide a global framework for the integra-
tive, coherent and consistent analysis of all of the available data, moving
beyond the purely descriptive towards a quantitative and predictive level
of understanding.

From the perspective of infectious disease biology, an important goal
of a systems-based approach will be to integrate information across a spec-
trum of biological complexity, with the ‘system’ ranging from an isolated
microbe, to an individual infected host, and on to microbial and host
populations. The evolution and spread of antibiotic resistance clearly in-
volves a complex feedback between processes at the molecular and popula-
tion levels for example, and an ability to link the molecular information
emerging from functional genomics with the rich literature addressing
host–pathogen (or host–vector–pathogen) systems from a population per-
spective will be essential for understanding and ultimately controlling in-
fectious diseases.

Here we provide an outline of some of the experimental, theoretical and
conceptual approaches that are involved in integrative systems biology
and are considered in detail in subsequent chapters.
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2 Data for systems biology: ‘Omics, images and
chemistry

A major impetus for the development of systems biology derives from
technical advances associated with high-throughput sequencing [2] and
chip-based systems [3, 4]. With the widespread availability of microarray
formats for expression profiling, biologists whose primary focus was largely
on the study of individual molecules or pathways were deluged with vast
datasets comprising information on the simultaneous level of expression
of every single gene in a cell or organism (the transcriptome) (see Chap-
ter 2). While some simple clustering algorithms [5] provide an approach
to analysing such datasets, it is clear that they contain a wealth of infor-
mation that is not interpretable by conventional reductionist techniques.
Analogous study of the total complement of proteins at a whole system
level presents a greater technical challenge on account of the heterogeneity
in their chemical and physical properties, but progress has been achieved
by combining fractionation techniques such as two-dimensional gel elec-
trophoresis with increasingly sophisticated mass spectrometry analysis [6,
7] (see Chapter 4). The ability to identify protein–protein interactions us-
ing yeast two-hybrid [8] and tandem affinity [9] purification systems has
been particularly informative in mapping proteome networks (see Chap-
ter 8). Analysis of protein-nucleic acid interactions [10, 11] at the level
of transcriptional regulation generates an additional source of data that
begins to link proteome and transcriptome information (see Chapter 4).
Glycomic analysis based on mass spectrometry and nuclear magnetic res-
onance (NMR) techniques has provided insights into the further diversity
generated by post-translational modification of proteins [12], and the same
tools derived from physical chemistry allow quantitative analysis of the
repertoire of small molecules that represent the cellular metabolome [13,
14] (see Chapter 5). At a higher level of complexity, metabonomic analysis
provides an overview of metabolites in multicellular organisms, including
the sharing of metabolite pools between host and microbe that is central
both to commensal colonisation and to pathogen infection [14, 15] (see
Chapter 10). Taken together, these ‘omics datasets represent the starting
material for the systems biologist, who faces the challenge of finding ways
of maximising their integration and translation into usable information.
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A second key source of data derives from imaging techniques. High-
thoughput ‘omics datasets are derived from analysis of biological systems
at a population level, with differences between individual members of the
population subsumed within an overall average. Technologies that derive
data from single cells demonstrate that there is a significant underlying
stochastic heterogeneity in the level of expression and in the spatial dis-
tribution of molecules within individual members of genetically clonal
populations. In some cases these stochastic variations have been shown
to be crucial in determining biological functions of the system [16], and
an understanding at this level is a major component of systems biology.

Recent advances in fluorescent microscopy [17] have revealed an un-
precedented degree of organisation and complexity in bacterial cells, de-
spite their lack of membrane-bound cellular compartments. During the
cell cycle many bacterial proteins localise to particular sites at specific
times; understanding how such topological specificity is achieved is a fun-
damental question in cell biology. A recent example of proteins display-
ing previously unexplained dynamic protein localisation are the Spo0J/Soj
proteins of B. subtilis, which are involved in chromosome segregation and
transcriptional regulation. Using fluorescence microscopy Howard and
colleagues [18] showed that Spo0J organises into compact foci associated
with the nucleoid, while Soj undergoes irregular relocations from pole to
pole or nucleoid to nucleoid. They propose that these irregularities are
due in part to low copy number fluctuations: the relatively low numbers
of the Spo0J/Soj proteins in a cell, together with the intrinsic probabilistic
nature of their interactions, leading to large fluctuations in their dynamic
behaviour. Stochasticity is vital for capturing the observed irregularity of
the spatiotemporal protein dynamics for the Spo0J/Soj system.

The phenotypic tolerance to antimicrobial drugs associated with par-
ticular growth states of many microorganisms has also been shown to have
a stochastic element [19, 20]. Integrating spatio-temporal information de-
rived from single cell imaging with the type of information provided by
high-throughput analysis of bulk populations is another central challenge
for the systems biologist.

Biological systems are dynamic and observations recorded over time –
particularly in response to some defined perturbation – provide critical
information that is missing from a static analysis. Techniques for in-
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duction of relatively simple perturbations include changes to the cellu-
lar environment, induction or repression of selected genes, and addition
of small molecule inhibitors (see also Chapter 3) [21, 22]. The use of
chemical modulators is particularly informative in the context of anti-
infectives. Changes in bacterial gene expression profiles induced by expo-
sure to known drugs allows mapping of characteristic response networks
[23], facilitating screening for compounds with novel mechanisms of ac-
tion (see Chapter 2). Advances in genome re-sequencing technologies
[24–26] present exciting opportunities for a chemical genomics approach
to rapid target identification based on an initial chemical lead (see Chap-
ter 3). Starting with a compound (of known or unknown structure) which
has activity against a whole microbe, the target can be identified by isolat-
ing resistant mutants and identifying the corresponding genetic changes.
This represents a very attractive approach to integration of chemistry, func-
tional biology, and genetics.

3 Making models

When describing a biological system we have to determine first the level at
which we wish to study the constituent processes and interactions. Often
this will be determined by the nature and quality of the experimental data:
if the data are plagued by high error levels it may not be possible or even
desirable to formulate a detailed mathematical or conceptual model. In
practice, most biological models are hybrids containing qualitative and
quantitative elements.

3.1 Qualitative systems approach

Biologists have always relied on models to conceptualise how organisms
work. Such models can be purely verbal models or descriptions of bio-
logical structures or processes. In a qualitative approach one uses only
the most coarse-grained information about the constituents of a biolog-
ical system. In the context of the Krebs cycle, for example, we do not
care about the three dimensional structure of the enzymes or substrate
molecules and their molecular interactions. In general no attempt is be-

7



Michael P. Stumpf et al.

ing made at predicting quantitative responses of a system or at quantifying
results [27]. Qualitative (including verbal) models of the same system are
very difficult to compare; if different researchers propose their own verbal
models for a biological process it can be extremely difficult to decide to
what extent these models are similar or not. Moreover they make almost
exclusively linear assumptions: i.e., they make statements of the type “if A
increases then B decreases”. Incorporating feedback into a verbal model,
for example, can become enormously cumbersome.

3.2 Quantitative systems approach

In a quantitative approach, as many details of a system are ignored as is
possible (generally by trial and error). Again, for example, molecular struc-
tures may be ignored, but instead of a purely qualitative description of
interactions and processes a mathematical description or function is now
chosen to represent the entities making up the system and the interactions
among them [28]. The mathematical model now requires us to specify our
assumptions explicitly and from the outset and, once these have been de-
termined, mathematical or computational analysis of the model will allow
us to study its change over time (see Chapters 7 and 11). This is then com-
pared to experimental data. Depending on the question at hand or the
experimental data available the mathematical models can be very abstract
and generic, or directly targeted at a particular biological problem. In
the former case it may be possible, for example, to investigate systemati-
cally the expected behaviour of a certain type of theoretical model. This
can then be compared qualitatively against experimental data. Especially
when there is little data available such an approach has been very popular.
This type of approach has also been used extensively in theoretical physics
where, for example, highly simplified models of magnetic materials have
been studied to qualitatively reproduce experimental results [29].

If more detailed data are available, and if a statistical approach can
be devised which allows us to estimate the parameters of a mathemati-
cal model from such data, then more detailed predictive modelling ap-
proaches become possible. Such approaches have been highly successful,
for example, in modelling the immune response to human immunodefi-
ciency virus (HIV) [30], or in developing very detailed models of the human
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heart which can be used [31, 32], with some success, to model the effect
of certain cardiovascular drugs (see Chapter 9).

Models of biological systems must, however, be understood not as re-
alistic descriptions but as simplified representations of much more com-
plicated entities. Almost all models will eventually be superseded by more
sophisticated and more powerful models. In some areas – including for di-
dactic purposes – even simple models retain their usefulness even if their
limitations are known.

4 Networks

Molecular networks – in particular, metabolic, transcription regulation,
and protein-interaction networks – offer the possibility of a coherent and
consistent framework for the description of the whole complement of bio-
logical processes inside a cellular system [33] (see also Chapters 6 and 11).
These networks have taken on a central role in computational systems biol-
ogy. Statistical inference of networks [34–36], in particular co-expression
networks estimated from microarray data, and the analysis of network
structures have become important fields of research.

Networks can be described mathematically in terms of graphs (Fig. 1).
Graphs occur in many different settings and as a result the theoretical de-
scription of graphs/networks has progressed independently in disciplines
as varied as mathematics [37], computer science, statistical physics [38,
39], engineering and sociology. Integrating the different techniques de-
veloped in these disciplines and adapting them for the use in the modern
life-sciences will allow us to analyse the increasing amount of network data
currently being generated in systems biology [33].

One of the central features of natural networks is that they are highly
heterogeneous: some nodes (whether genes, proteins or metabolites) have
a large number of interaction partners, while most nodes interact with
only a few other nodes in the network [38, 40]. This reflects some bio-
logically intuitive relationships: we now know that some proteins are in-
volved in many different processes and take an almost pivotal position in
an organism’s functional organisation (just like some highly promiscuous
individuals – so-called super-spreaders – contribute to the spread of sexual
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Figure 1.
Edges (left) connect nodes A, B and C. In this case there are direct pairwise interactions
between nodes A and C and between B and C, but not between A and B. In the right part of
the figure we show a hyper-edge which connects all three nodes. Interaction data collected
from mass spectrometry surveys generally only allows us to construct such hyper-edges but
not to determine pairwise interactions reliably.

transmitted diseases) [41]. This heterogeneity is further exacerbated by
the modular architecture of biological processes: hierarchies and modules
appear to be natural attributes of biological (and evolving) systems [42–44]
(see Chapter 6). This, however, also poses considerable challenges to the
simple models which have been so successful in the past. The complexity
(and evolutionary contingency) of such detailed data pose considerable
statistical challenges [45, 46] (see Chapter 10).

4.1 Protein interaction networks

Yeast two-hybrid (Y2H) [8], tandem affinity purification and mass spec-
trometry (MS) [9] have been used to map interactions among proteins (see
also Chapter 8). We now have fairly extensive protein interaction data for
S. cerevisiae [47–49] and partial data for D. melanogaster [50], C. elegans [51]
and, more recently, two partial datasets for humans [52, 53]. There is also
interactome data for three pathogens, E. coli [54], H. pylori and P. falciparum
[55], with more data becoming available all the time (Fig. 2).This data has
to be considered with great care, however: it is prone to false-positive and
false-negative results (error rates of 40% have been suggested). Moreover,
these networks are biased or skewed because of the methods used to detect
them. Y2H appears to be the noisiest experimental technique while MS
data are subject to bias in favour of interactions among highly expressed
proteins and, if complexes are formed, cannot tell us which pair-wise in-
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teractions exist within the clusters [56, 57]. These techniques provide
mostly qualitative descriptions of what interacts with what, but can in-
clude quantitative data on the frequency of interactions or the strength of
interactions. In terms of networks, they do not provide directional infor-
mation about whether one or other partner is driving the interaction.

Figure 2.
Protein Interaction network (PIN) of H. pylori. This network is based on the available data
in the database of interacting proteins (DIP) and thus does not represent the complete PIN.
The heterogenous nature is however already apparent with most nodes having only one
or two interaction partners, whereas a small number of nodes (so-called hubs) have many
interaction partners.
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Protein interaction network data (just as the other network data dis-
cussed below) offer a highly idealised and partial representation of cellular
processes. They will change over three different time-scales: changes will
occur at the evolutionary (between species), developmental and physio-
logical levels. At the moment the data will at most allow us to resolve
differences between species. This, as well as the fact that present experi-
mental techniques may only capture a subset of the interactions has to be
kept in mind.

4.2 Transcriptional networks

Initiation and regulation of gene expression is currently best understood
at the level of transcriptional gene regulation. Transcription factors bind
to regulatory elements upstream of the genes they regulate and these re-
lationships can be depicted using directed graphs [58]. In addition to ex-
perimental and labour-intensive validation of transcription factors and
their binding sites in genomes a growing number of in silico approaches
are being developed and applied across all domains of life [59]. These
use either co-expression patterns of genes to identify those that are pre-
sumably regulated by the same (or a similar) transcription-factor; or they
employ linguistic/evolutionary arguments to find regulatory elements in
sequenced genomes [60]. At present our data on transcriptional networks
is also incomplete and suffers probably from ascertainment problems (i.e.,
researchers have focussed on their ‘favourite’ genes and mapped them
with great care without gaining a global overview). For other processes
of gene regulation there is even more rudimentary understanding of the
involved mechanisms/molecules and the structure of the underlying net-
works. Transcriptional networks include both qualitative descriptions and
quantitative data in terms of fold changes in gene expression, as well as
information about direction of the interaction: e.g., there is a difference
between gene A coding for a transcription factor which initiates transcrip-
tion on gene B or gene B controlling expression of A. It is still frequently
overlooked that transcriptional regulation encompasses only a tiny frac-
tion of gene expression regulation. Incorporation of post-transcriptional
and post-translational processes is only starting to be considered.
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4.3 Metabolic networks

The whole complement of enzymes and substrates inside cellular systems
(or whole organisms) are increasingly described in terms of metabolic net-
works [61, 62] (see Chapter 5). These are a straightforward conceptual
development from the notion of individual biochemical pathways (such
as the Krebs cycle) towards a more integrative perspective (see Chapter 7).
To a certain extent the integrative analysis of metabolic networks has pro-
gressed furthest as biochemical pathways are relatively straightforwardly
described quantitatively using the familiar Michaelis-Menten theory of en-
zyme kinetics [27, 28]. Metabolic networks contain both qualitative and
quantitative information.

In metabolic networks we can choose whether we want the enzymes or
the substrates to be the nodes in the network. Over the past few years the
view to denote enzymes as nodes of the metabolic network has prevailed.

Considerable work has gone into characterising the structure, evolution
and functional organisation of these networks (see Chapters 6 and 11).
Very simple mathematical models of network growth give rise to networks
with structural properties similar to those observed in molecular networks
[38, 63–65]. These networks offer an attractive perspective on biological
systems but it is important to keep in mind their present limitations: (i)
present network data are incomplete [66] and it is difficult to extrapo-
late from incomplete network data to the true network; (ii) experimen-
tal – in particular high-throughput – methodologies are notoriously noisy
and data may be unreliable; (iii) some interactions may be too short-lived
or weak to be observed experimentally but nevertheless have profound
physiological importance; (iv) molecular networks are generally described
in terms of (necessarily) simplified mathematical models, such as static
graphs. In reality, however, they are highly dynamic and responsive ob-
jects. Simple models are slowly but steadily becoming too simplistic to
capture the complexity of biological processes [67].
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5 Integrative systems biology

While networks generated by different techniques are currently viewed
independently, linking these together in integrated models is a central goal
of systems biology (see Chapters 10 and 11). Clearly protein interactions
depend in the first instance on genes being transcribed and translated;
initiation of transcription in turn requires transcription factors which are
themselves proteins. Enzymes, of course, are also proteins and are required
for the metabolism inside a cell just as metabolic products are necessary
to keep the protein synthesis going. By integrating the different forms of
data, it should ultimately be possible, for example, to predict the proteome
from knowledge of the genome, and to use knowledge of the transcriptome
to derive insights into the metabolome.

Two examples serve to illustrate some of the challenges that need to be
addressed in moving towards these ambitious goals. One hypothesis put
forward in the context of linking genome to proteome, is that proteins
involved in interactions with multiple other proteins (highly connected
‘nodes’) will be subject to increased pressure in favour of evolutionary con-
servation. While this is intuitively attractive, statistical analysis of data
on protein interaction networks and genome conservation in S. cerevisiae
and C. elegans showed that it was not the case [45]. An association was
identified, however, between the degree of evolutionary conservation of a
protein and its level of expression within the cell. A second example con-
cerns the relationship between transcriptomic data and essential function.
The adaptive responses that pathogens undergo during infection are most
readily studied in terms of changes in gene expression (see Chapter 12). It
would seem reasonable to infer that the induction of a gene in response to
a particular environment will relate in some way to its required function
but a simple comparison of list of genes that are upregulated – for exam-
ple, in the case of a mycobacterial pathogen entering a host phagocyte
[68] – displays little or no overlap with a list of genes identified as essential
for survival. In a recent study of the factors underlying fungal virulence
(using S. cerevisae as a model system), we have found that inclusion of
protein interaction data does allow us to begin to link expression and es-
sentiality datasets (M. Stumpf, unpublished observations). The usefulness
of molecular network data has now been demonstrated for a number of
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different phenotypes, especially in S. cerevisiae; in light of such successes it
seems natural to further explore whether it is possible to detect associations
between network structures – rather than individual genes – and complex
phenotypes. This would mean that rather than looking at individual genes
or their protein products we would shift focus to the interactions directly.
Given the lack of tangible success in mapping human genes underlying
complex (disease) phenotypes, such a network centred approach ought to
be worth considering.

6 New targets for anti-infective drug development

The initial impact of wide-scale pathogen genome sequencing has been to
allow conventional charts of biochemical pathways to be annotated with
gene names. Saturation mutagenesis tools have provided information on
genes that are essential in particular growth media and, in some cases, un-
der infection conditions. Systems biology aims to convert this static and
informationally sparse framework into a dynamic network of nodes and
fluxes. Quantitative models will highlight bottlenecks and nodes that are
crucial for microbial viability and will distinguish between those at which
a small or a large reduction in activity would be required for significant
biological impact (see Chapter 7). The ability to input different types of
data will allow models to be customised using information from genotypic
data and from in vivo expression profiling to optimise for selection of tar-
gets that are appropriate in the context of existing drug resistance or in the
context of phenotypic drug tolerance associated with latent tuberculosis
and treatment of biofilm infections, for example. It can be anticipated
that a systems biology framework will allow a rational approach to iden-
tification of synergistic drug combinations that will result in more rapid
action and perhaps reduction in the evolution of resistance. Genetic exper-
iments have shown that combining mutations which independently have
no detectable impact on survival can result in ‘synthetic lethality’ [69, 70].
Similarly, it may be possible to identify drug combinations which result in
a novel enhanced lethality by hitting two or more independent targets.

Systems biology may also help us in understanding infection processes
in more detail. An illustrative outlook on what may be to come in the
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future is provided by a recent study by Uetz et al. [71] who studied in-
teractions among human proteins and herpes-virus proteins. If or when
the enormous experimental problems can be overcome – there is as yet
no reliable experimental technique which allows us to test for transient
or weak interactions – then such studies give much more detailed insights
into infection biology at the molecular level with a distinct focus on the
physical interaction per se. If we are willing to speculate for a moment
then such approaches harbour a host of exciting possibilities waiting to be
explored: we may for example be able to study why different species have
different susceptibilities to different infectious agents – Simian Immuno-
deficiency Virus (SIV) and HIV are good examples for the subtle impact of
cross-species effects – or we may study whether the molecular interactions
between P. falciparum and their human hosts and fly vectors, respectively,
can be exploited for clinical purposes.

As models evolve, they will integrate increasingly diverse sources of
data. This could include information from structural biology and func-
tional biochemistry that relate to the ‘drugability’ of targets. Pathogen–
host systems biology comes with an additional component as infectious
disease biology can only really be understood in an ecological and evolu-
tionary framework: pathogens compete for a potentially limited host pop-
ulation, while hosts in turn mount an immune response against pathogens
and may even develop suitable strategies against pathogens. There are
a host of beautiful examples of apparent host–pathogen co-evolutionary
dynamics (for example between lizards and some species of Plasmodium)
[72]. In addition we must consider the interaction between the host and
the drug (see Chapter 9); host metabolism or modification of the drug will
also influence the way it interacts with its target and the system as a whole.
Every effect we study at the molecular or cellular levels may lead to com-
plicated (and long-term) feedback processes at the population level. Thus
host–pathogen systems biology has to be even more immodest than other
branches of the fledgling discipline of systems biology: it encompasses all
levels from molecules all the way up to epidemiological dynamics at the
eco-system level.
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Applications of transcriptional profiling in antibiotics discovery and development

Abstract

This chapter will review specific applications of microarray technology and related data
analysis strategies in antibacterial research and development. We present examples
of microarray applications spanning the entire antibiotics research and development
pipeline, from target discovery, assay development, pharmacological evaluation, to
compound safety studies. This review emphasizes the utility of microarrays for a sys-
tematic evaluation of novel chemistry as antibiotic agents. Transcriptional profiling
has revolutionized the process of target elucidation and has the potential to offer sub-
stantial guidance in the identification of new targets. Microarrays will continue to be
a workhorse of anti-infectives discovery programs ranging from efficacy assessments of
antibiotics (‘forward pharmacology’) to drug safety evaluations (‘toxicogenomics’).

1 Introduction

Since Fleming’s discovery of the antibacterial activity of penicillin in 1928,
discovery efforts in antibiotic research were mainly based on random cell-
based screening and on the modification of already established chemical
structures with antibacterial activity. However, the traditional approaches
to antibiotic discovery are increasingly challenged by bacterial pathogens
that rapidly develop resistance to established drugs. Although classical
approaches to anti-infective drug discovery are still being used, new tech-
nologies show promise to significantly accelerate the discovery and de-
velopment of novel drugs that are required to keep up with the increas-
ing incidence of drug resistance [1]. In this context, molecular profiling
technologies that enable the highly parallel quantification of mRNA, pro-
teins or metabolites in a bacterial cell have attracted significant attention.
In this review, we focus on applications of mRNA profiling technologies,
sometimes referred to as microarray or DNA chip technologies.

Microarray technologies have greatly benefited from the availability of
whole genome sequence data. In 1995, the genomic DNA sequence of the
bacterium Haemophilus influenzae was deciphered as the first genome of a
cellular organism [2]. In the decade since then, the complete genomic in-
formation of the majority of medically relevant bacterial species has been
made available. Today, hundreds of microbial genomes are publicly avail-
able and can be used for developing specialized expression profiling tech-
nologies. In parallel, microarray technology has advanced tremendously
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