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General Introduction

“Cell and tissue, shell and bone, leaf and flower, are so
many portions of matter, and it is in obedience to the laws
of physics that their particles have been moved, moulded and
conformed. They are no exceptions to the rule that God al-
ways geometrizes. Their problems of form are in the first
instance mathematical problems, their problems of growth
are essentially physical problems, and the morphologist is,
ipso facto, a student of physical science”.

D’Arcy W. Thompson, “On Growth and Form”, 1917.

As the great D’Arcy Thompson implicitly notes, ever since Newton and his
laws of motion, continuum mathematical models have been used to describe the
behaviour of “portions of matter” and “particles” in what are essentially discrete
physical systems. As a result, much time and effort has been spent in justifying
these continuum formulations using methods from, for example, statistical me-
chanics to “average out” the discreteness of the system to derive the models.

More recently, in the fields of Life and Biomedical Sciences, the past 10-15
years have witnessed enormous advances in our understanding of the molecular
basis of cell structure and function. The spectacular success of the human genome
project and the consequent burgeoning interest in the related field of proteomics
have brought these achievements to the attention not only of the scientific com-
munity but also the general public. Biochemists and cell biologists have made sim-
ilarly impressive strides in elucidating the mechanisms mediating cell signalling
and its consequences for the control of cell proliferation, motility and gene expres-
sion. It is, however, abundantly clear that reductionist logic using this impressive
“sub-cell-level” information base is not sufficient to deduce an understanding of
phenomena operating at higher levels of biological organisation. Employing a liter-
ary analogy, the vast “omic” databases of catalogued genes and proteins, taken
together with our growing understanding of the inner workings of individual cells,
provide a “dictionary” and a “grammatical syntax” required for the next great
challenge i.e. understanding the “sentences” and “paragraphs” characteristic of
emergent higher-level cellular phenomena.
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With recent advances in applied mathematics, numerical analysis and com-
putational techniques, multiscale mathematical modelling is now being brought to
bear on many challenging problems in the Life and Biomedical Sciences, partic-
ularly where cellular systems are concerned. Indeed, in a somewhat ironic twist
due to the enhancement of computational processing power, continuum models
of discrete systems are frequently approximated by discrete models which can be
solved computationally. As computers have become more powerful, there has been
renewed interest in mathematical models of biological systems maintaining a dis-
crete formulation from the outset.

In the words of D’Arcy Thompson yet again:

“I know that in the study of material things, number, order and position are the
threefold clues to exact knowledge; that these three, in the mathematician’s hands,
furnish the ’first outlines for a sketch of the Universe’.”

The development of new mathematical techniques and their application to

biological systems will no doubt be beneficial for “both sides”. In the words of
David Hilbert, applying mathematics to specific problems is the best way to fur-
ther develop and deepen one’s understanding of the mathematics:
“He who seeks for methods without having a definite problem in mind seeks in the
most part in vain. The further a mathematical theory is developed, the more har-
moniously and uniformly does its construction proceed, and unsuspected relations
are disclosed between hitherto separated branches of the science.”

With regard to the specific content of this book, applied mathematics and
modelling is sure to benefit from continued interaction with experimentalists work-
ing on cellular systems. In recent years many different single-cell-based models have
been developed and applied successfully to various biological and medical prob-
lems. These models employ very different computational approaches: Monte-Carlo
simulations, energy minimisation techniques, volume conservation laws, solutions
of the equations of motion for each individual cell or for each point on a cell mem-
brane. They also differ in the level of detail that defines the cell structure and sub-
sequently differ in the number of individual cells that the model can incorporate.
The principal aim of this book is to gather together a collection of different mathe-
matical and computational single-cell-based models and present their applications
in biology and medicine. This book is addressed equally to students starting their
research in the field of mathematical biology and to scientists already modelling
multi-cellular processes. Therefore, each chapter contains a detailed description of
a particular model and an extensive review of suitable biological and medical ap-
plications. This book is also accompanied by a DVD containing simulation movies
of all presented models and applications.
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What is certain at the present time, and for the foreseeable future, is that in-
terdisciplinary activity between biology and mathematics, with a genuine dialogue
between the participating partners, may be viewed as the most fruitful way to ad-
vance scientific understanding in both subjects. These are genuinely exciting times
to be involved in the subject. Over a century later, the words of David Hilbert are
particularly apposite and have a powerful resonance for the application of discrete
modelling techniques in the area of cell biology:

“Who of us would not be glad to lift the veil behind which the future lies
hidden; to cast a glance at the next advances of our science and at the secrets of
its development during future centuries? What particular goals will there be toward
which the leading mathematical spirits of coming generations will strive? What new
methods and new facts in the wide and rich field of mathematical thought will the
new centuries disclose?”

D. Hilbert, opening of his speech to the 1900 Mathematics Congress in Paris.

Finally, the editors of this book would like to express their sincere thanks to
all the contributors.

Dundee, February 2007
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I. Hybrid Multiscale Models

General Introduction

Many mathematical models of biological process that consider space explic-
itly, fall into one of two categories: (i) continuum population models or (ii) discrete
individual based models. Discrete, stochastic interactions between individual or-
ganisms cannot be captured by the continuum approach and likewise global pop-
ulation interactions cannot be captured by the discrete approach. In recent years
a third category of models has emerged: hybrid models which allow modellers to
exploit the advantages of both continuum and discrete models. The advantages of
using such hybrid approaches are clear when dealing with organisms that involve
processes at different scales e.g. a cell migrating up a chemical gradient. Such
hybrid models are by definition multiscale as they already model interactions be-
tween variables that occur on different scales (e.g. micro and macro scale). In this
initial section of the book we examine a range of grid based hybrid approaches.

The first chapter from A. Anderson, A Hybrid Multiscale Model of Tu-
mour Invasion: Evolution and Microenvironment, discusses the Hybrid Discrete-
Continuum (HDC) technique that uses an initial continuum model as the basis for
the derivation of the HDC model. This allows the tumour cells to be represented
as discrete individuals with an internal life cycle that describes how they interact
with continuum microenvironmental variables and one another. In addition, all
cells are assigned phenotypic traits that define their behaviour which, via mitosis,
are allowed to mutate using two different mutation algorithms.

In the following chapter from A. Deutsch, Lattice-gas Cellular Automaton
Modelling of Developing Cell Systems, in which he defines this cellular automaton
approach and examines both via simulation and analysis its dynamical proper-
ties. By applying the Boltzmann equations derived from the lattice-gas cellular
automata (LGCA) the role of cell-based instabilities is examined. Application of
LGCA to both chemotaxis and adhesion is considered.

In third chapter M. Alber presents a Two-dimensional Multiscale Model of
Cell Motion in a Chemotactic Field. Focusing on the discrete cellular potts model
(CPM) and, by means of a limiting procedure, the equivalent continuous model. In
particular, the connection between a CPM of a cell reacting to a chemical field, and
a Fokker-Planck equation for the cell probability density function is discussed. The
Fokker-Planck equation is then reduced to the classical Keller-Segel equation which
is then compared numerically to CPM simulations and shows good agreement.
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I.1 A Hybrid Multiscale Model of
Solid Tumour Growth and Invasion:
Evolution and the Microenvironment

Alexander R. A. Anderson

Abstract. Cancer is a complex, multiscale process, in which genetic mutations
occurring at a subcellular level manifest themselves as functional changes at
the cellular and tissue scale. The importance of tumour cell/microenvironment
interactions is currently of great interest to both the biological and the mod-
elling communities. In this chapter we present a hybrid discrete-continuum
(HDC) mathematical model of tumour invasion that considers the tumour
as a collection of many individual cancer cells that interact with and mod-
ify the environment through which they grow and migrate. The HDC model
we develop focuses on four key variables implicated in the invasion process:
tumour cells, host tissue (extracellular matrix), matrix-degradative enzymes
and oxygen. The model is considered to be hybrid since the latter 3 variables
are continuous (i.e. concentrations) and the tumour cells are discrete (i.e. in-
dividuals). We shall examine how individual-based cell interactions (with one
another and the microenvironment) can affect the tumour morphology. We
will also discuss the evolutionary influence that the microenvironment has
upon the tumours genetic makeup. The HDC model focuses on the micro-
scale (individual cell) level to produce computational simulations of tumour
at the tissue scale. As we shall discuss, this technique, developed in previous
models of nematode migration and angiogenesis, is intrinsically multiscale and
can easily incorporate a range of scales i.e. genetic, sub-cellular, cellular and
tissue.

1. Tumour Invasion

The development of a primary solid tumour (e.g. a carcinoma) begins with a single
normal cell becoming transformed as a result of mutations in certain key genes.
This transformed cell differs from a normal one in several ways, one of the most
notable being its escape from the body’s homeostatic mechanisms, leading to inap-
propriate proliferation. An individual tumour cell has the potential, over successive
divisions, to develop into a cluster (or nodule) of tumour cells. Further growth and
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FIGURE 1. Schematic diagram showing the key variables involved in solid
tumour growth: Tumour cells, extracellular matrix, matrix degrading enzyme
and oxygen. The tumour contains a heterogeneous population of cells with
varying degrees of aggressiveness.

proliferation leads to the development of an avascular tumour consisting of approx-
imately 10° cells. Since the tumour is dependent on diffusion as the only means
of receiving nutrients and removing waste products its growth is limited. For any
further development to occur the tumour must initiate angiogenesis—the recruit-
ment of blood vessels from a pre-existing vascular network. Once angiogenesis is
complete, the perfused vascular network can supply the tumour with the nutrients
it needs to grow further. There is also now the possibility of tumour cells finding
their way into the circulatory system (via the vascular network) and being de-
posited at distant sites in the body, resulting in metastases (secondary tumours).
Clearly angiogenesis, the process which results in the tumour having a vascular
network, is a key process for metastatic invasion (see Fig.1).

Central to the invasive process are the molecules that facilitate interactions
between cells and between cells and the extracellular matriz (ECM), known as cell
adhesion molecules. A common feature of cell adhesion molecules is their ability
to function as a molecular bridge between an external ligand and the cytoskeleton
within the cell [13]. Over the past few years, it has become clear that receptors
that mediate cell adhesion do not just affect cell migration, since occupancy of
cell-surface receptors results in the initiation of signal-transduction pathways that
regulate many aspects of cell function [13, 29] including transcription, proliferation,
differentiation, cytoskeletal organisation and receptor activation [16].

A crucial part of the invasive/metastatic process is the ability of the cancer
cells to degrade the surrounding tissue or extracellular matriz (ECM) [46]. This is a
complex mixture of macromolecules (MM), some of which, like the collagens, play
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a structural role and others (such as laminin, fibronectin and vitronectin) are im-
portant for cell adhesion, spreading and motility. We note that all of these macro-
molecules are bound within the tissue, i.e. they are non-diffusible. The ECM can
also sequester growth factors and itself be degraded to release fragments which can
have growth-promoting activity. Thus, while the ECM may have to be physically
removed in order to allow a tumour to spread, its degradation may, in addition,
have biological effects on tumour cells.

A number of matriz degradative enzymes (MDES) such as the plasminogen
activator (PA) system and the large family of matriz metalloproteinases (MMPs)
have been described [50] and both of these have been repeatedly implicated in tu-
mour invasion and metastasis. In addition to opening migratory pathways, MDEs
can alter cell adhesion properties regulated through several classes of cell surface
receptors. These receptors, including cadherins, CD-44, integrins, and receptors for
fibronectin, laminin, and vitronectin, negatively regulate cell motility and growth
through cell-cell and cell-matrix interactions [46]. Therefore, proteolytic degrada-
tion of receptor and/or ECM components could release tumour cells from these
constraints. Recent studies have shown that CD-44 mediates the attachment of
cells to various MM, in fact invasion of human glioma cells has been inhibited
by antibodies against CD-44 [33]. Molecules which facilitate interactions between
cells and between cells and the ECM, known as cell adhesion molecules, are now
thought to be central to the invasive process [29]. Therefore it is important for
any model that considers tumour invasion to include both cell-cell and cell-matrix
interactions.

Tumour heterogeneity at the genetic level is well known and the so called
“Guardian of the Genome”, the p53 gene is widely considered as a precursor to
much wider genetic variation [34]. The p53 protein links three cellular functions:
proliferation, death and DNA repair. In normal cells, p53 blocks proliferation and
enables damaged DNA to be repaired. If DNA repair is incomplete, apoptosis is
initiated and the cell dies. Loss of p53 function (e.g. through mutation) allows for
the propagation of damaged DNA to daughter cells [34]. Once the p53 mutation
occurs many more mutations can easily accrue, these changes in the tumour cell
genotype ultimately express themselves as behavioural changes in cell phenotype.
As a step towards the inclusion of true tumour heterogeneity we shall consider
a tumour that has phenotypic heterogeneity. The tumour cell phenotype will be
defined here in terms of the level of a cell’s aggressiveness, i.e. a combination of
its cell-cell adhesiveness, proliferation, degradation and migration rates (further
details will be discussed below).

The importance of the tumour microenvironment is currently of great interest
to both the biological and the modelling communities. In particular, both the im-
mediate microenvironment (cell-cell or cell-matrix interactions) and the extended
microenvironment (e.g. vascular bed) are thought to play crucial roles in both
tumour progression and suppression (see the recent series of papers in Nature Re-
views Cancer for further detail, [2, 11, 39]). Aggressive tumours are often described
as having an invasive phenotype, characterised by fingering margins as opposed
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to more benign tumours which are characterised by smooth non-invasive margins.
Recently it has been shown that not only can the microevironment promote tu-
mour progression but it can also drive the invasive tumour phenotype. The work
of Weaver [40] focuses on the impact of tissue tension in driving the invasive phe-
notype and clearly correlates higher tension in the tissue (a harsher environment)
with an invasive phenotype. Similarly Pennacchietti [41] has shown a relationship
between a hypoxic tumour microenvironment (again a harsher environment) and
the invasive phenotype.

2. Hybrid Discrete-Continuum Technique

When deciding which model should be used, the number and scale of the organ-
isms being modelled is important and the manner in which the organisms interact
with their environment and each other is also important. Discrete, stochastic in-
teractions between organisms cannot be captured by the continuum approach and
likewise global population interactions cannot be captured by the discrete ap-
proach. Therefore the most appropriate modelling technique depends on both the
number of organisms and scale at which they are being studied.

Over the last ten years or so many mathematical models of tumour growth,
both temporal and spatio-temporal, have appeared in the research literature (see
[20] for a review of many of these and for a more recent review see [10]). Deter-
ministic reaction-diffusion equations have been used to model the spatial spread of
tumours both at an early stage in its growth [44, 51] and at the later invasive stage
[37, 26, 42, 5, 47, 48]. Typical solutions observed in all these models [37, 26, 42, 14]
appear as invading travelling waves of cancer cells. Whilst these models are able to
capture the tumour structure at the tissue level, they fail to describe the tumour
at the cellular level and subsequently the subcellular level. On the other hand,
cellular automata models provide such a description and allow a more realistic
stochastic approach at both the cellular ([32, 45, 43, 7, 31, 21]) and subcellular
levels [22, 23].

The model presented here is of a different type: we classify this as “Hybrid”,
since a continuum deterministic model (based on a system of reaction-diffusion-
chemotaxis equations) controls the chemical/ECM dynamics and a discrete cellular
automata like model (based on a biased random-walk model) controls the cell
migration and interaction. Initially we define a system of coupled nonlinear partial
differential equations to model tumour invasion of surrounding tissue. We then use
a discretised form of the partial differential equation governing cell migration as
the basis for the hybrid discrete-continuum model. This then enables specific cell
properties to be modelled at the level of the individual cell, we shall consider
proliferation, death, cell-cell adhesion, mutation, and production/degradation at
the individual cell level. The crucial point of this technique is that it allows cells to
be treated as discrete individuals and the cell processes to be modelled at the level
of the cell whilst allowing the the chemicals/ECM to be treated as continuous. A
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detailed discussion on the types of system that this technique is applicable to is
given in [6]. Applications of the technique can be found in [3]-[9].

In the last few years there has been a rapid development in such hybrid
models in application to tumour growth. The work of Deutsch [36], Deisboeck [52]
and Alarcon [1] have all coupled individual tumour cells with continuous chemical
dynamics. However, non of these has explicitly modelled the direct impact of the
microenvironment upon both the tumour cell population at the phenotype scale
and the resulting changes in tumour geometry at the organ scale.

The aim of this chapter is to show how the tumour microenvironment im-
pacts directly upon both tumour morphology and tumour heterogeneity. By using
a combination of different microenvironments (e.g. homogeneous, heterogeneous
tissue, low/high nutrient concentration) with different mutation algorithms (i.e.
linear or random) we will show that how aggressiveness of a tumour is directly
correlated with the microenvironment in which it grows.

3. The Continuum Model

We will base our mathematical model on the growth of a generic three dimensional
solid tumour. We will model both the full three dimensional tumour volume and
a two dimensional slice through this, one cell diameter thick. We choose to focus
on four key variables involved in tumour invasion, thereby producing a minimal
model, namely; tumour cell density (denoted by n), MDE concentration (denoted
by m), MM concentration (denoted by f) and oxygen concentration (denoted by
¢), see Fig.1. Initially we define a system of coupled nonlinear partial differential
equations to model tumour invasion of surrounding tissue and use these as the
basis for the Hybrid Discrete-Continuuwm (HDC) technique.

The complete system of equations describing the interactions of the tumour
cells, MM, MDEs and oxygen is

random motility haptotaxis
on ’ \
degradation

of i

- = — m 1
5 f o, (1)
a dif fusion production w

m 2 N
¥ = D,.V‘m + un - Am,

5 dif fusion production  iake  decay

c [ =~ ~~
% = D.V’c¢ + Bf - “m ="ac,

were D,,, D,, and D, are the tumour cell, MDE and oxygen diffusion coefficients
respectively, x the haptotaxis coefficient and §, u, A, 3, v and « are positive con-
stants. We should also note that cell-matrix adhesion is modelled here by the use of
haptotaxis in the cell equation i.e. directed movement up gradients of MM. There-
fore x maybe considered as relating to the strength of the cell-matrix adhesion.
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Since this model has already been published [8, 9] we will not discuss its derivation
here. However, some explanation should be given to the manner in which oxygen
is modelled. Oxygen is assumed to diffuse into the MM, decay naturally and be
consumed by the tumour. For simplicity oxygen production is proportional to the
MM density, this might be considered as modelling the pre-existing blood supply.
This is a crude way of modelling an angiogenic oxygen supply, see Anderson &
Chaplain [4] for a more appropriate way of modelling the angiogenic network. Since
oxygen production is directly proportional to MM density, as the MM is degraded
the oxygen production will drop.

The above system of equations can be used to model both two- and three-
dimensional tumour invasion. In 2D the system is considered to hold on a square
of tissue ) of length L, while in 3D it holds on a cube of tissue 2 of side L both
with appropriate initial conditions for each variable. We assume that the MM,
oxygen, tumour cells and consequently the MDESs, remain within the domain of
tissue under consideration and therefore no-flux boundary conditions are imposed
on 02, the boundary of .

3.1. Non-dimensionalisation and Parameterisation

In order to use realistic parameter values we first of all non-dimensionalise the
equations in the standard way. We rescale distance with an appropriate length
scale L (e.g. the maximum invasion distance of the cancer cells at this early stage of
invasion, approximately lcm), time with 7 (e.g. the average time take for mitosis to
occur, approximately 8 —24hrs [15], tumour cell density with ng, ECM density with
fo, MDE concentration mg and oxygen concentration with ¢q (where ng, fo,mo, co
are appropriate reference variables). Therefore setting
- n oz N m . c . X o~ t
e T A
in Eq.(1) and dropping the tildes for notational convenience, we obtain the scaled
system of equations:

random motility haptotaxis
871 2
— = dV°n  — pV-(nVf),
ot

degradation

of —=
—< — — m 2
5t nmf (2)

dif fusion ducti d

A production ecay

om 2 ~ =~ =~
— = dnV'm + kn = ‘om,
ot

dif fusion production tak decay
9c - uptake PN
% = d.V'e 4+ vf —‘wn — ¢c,

where d,, = 7D, /L?, p=1xfo/L* 1n=1mg6, dp, = TDp/L? k=Tung/mo, o=
7, de = 7D./L?, v =Tfo3/co, w = TngY/co, ¢ = T



1.1 Multiscale Model of Tumour Invasion 9

The cell cycle time depends on the specific tumour under consideration, as a
rough guide we take 7 = 16hrs, halfway between 8 — 24hrs [15]. The cell motility
parameter D,, ~ 10~%cm?s~! was estimated from available experimental evidence
[12]. Tumour cell diameters again will vary depending on the type of tumour being
considered but are in the range 10 — 100um [35] with an approximate volume of
10~%em?® — 3 x 1078¢em3, [25, 17]. We will assume that a tumour cell has the vol-
ume 1.5 x 1078cm? and therefore take ng = 6.7 x 107 cells/cm?. The haptotactic
parameter x ~ 2600cm?s~!M~! was estimated to be in line with that calculated
in Anderson et al. [4] and the parameter fo ~ 107% — 107" M was taken from the
experiments of Terranova et al. [49]. We took D,,, to be 10~%cm?s™!, which is per-
haps small for a diffusing chemical, but recent experimental evidence implies that
it is in fact a combination of the MDE and MM which results in degradation of
the MM and that this bound chemical diffuses very little [28]. An in vivo estimate
for the MDE concentration myg is somewhat difficult to obtain since there is cur-
rently no published value (that we are aware of). Plasma levels of specific MDEs
have been measured (e.g. MMP-2, [53]) and are approximately 130ng/m!l with fur-
ther increases observed in patients with cancer [30]. How this relates to the MDE
concentration within the ECM is not clear, we have therefore left this parameter
undefined. Estimates for the kinetic parameters u, A\,d were not available since
these are very difficult to obtain experimentally, we therefore use the values of [4].
Oxygen is known to diffuse through water at a rate of D, = 10~%cm?s™! and cells
consume oxygen at a rate of 6.25 x 107" Mcell"!s~1[17]. The background oxygen
concentration within the tissue was somewhat difficult to estimate, we shall use
co = 6.7 x 107°MOgcm 2 as discussed in [8].

4. The Discrete Model

Now that we have defined the continuum model of tumour invasion we can im-
plement the hybrid discrete-continuum technique (see [3]-[9]) which will allow us
to follow the paths of individual tumour cells. This first involves discretising
(using standard finite-difference methods) the system of partial differential equa-
tions (2). We then use the resulting coefficients of the finite-difference stencil to
generate the probabilities of movement of an individual cell in response to its lo-
cal milieu (see Appendix of [5] for the full discrete system). Once the movement
probabilities have been defined, both two and three dimensions will be discussed,
we then consider the specific individual based processes that we will incorporate
into the model.

4.1. Two Dimensions

As an illustration of the technique we only consider the tumour cell equation and
discretise Eq.(2) in two spatial dimensions using central finite difference approxi-
mations to obtain the following,

g+l _ q q q q q
n;; = nl',jPO + nH_l,]-Pl + ni—l,jPQ + ’I’Li7j+1P3 + Tli’j_1P4. (3)
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where the subscripts specify the location on the grid and the superscripts the
time steps. That is x = th, y = jh and t = qk where 4, j, k, ¢ and h are positive
parameters. In a numerical simulation of the continuous model Eq.(2), the pur-
pose of the discrete equation Eq.(3) is to determine the tumour cell density at grid
position (%, ), and time ¢ + 1, by averaging the density of the four surrounding
neighbours at the previous time step q. However, for the HDC technique, we will
use the five coefficients Py to Py from Eq.(3) to generate the motion of an individ-
ual tumour cell. The central assumption of the HDC technique is that these five
coefficients can be thought of as being proportional to the probabilities of a cell
being stationary (Py) or moving west (Py), east (Ps), south (P3) or north (P4) one
grid point (h) at each time step (k).

The coefficient Py, which is proportional to the probability of no movement,
has the form,

4kDn  kp
h2  h2

PO:li (Z+1]+flql‘]74f7f1]+flq‘]+1+fl‘] 1) (4)

and the coefficients P; ,P5 ,P3; and P4, which are proportional to the probabilities
of moving west, east, south and north respectively, have the forms,

kD kp

P = W2 T iRz [Fias = ]
P - ];T[; n 4’% [, — 10, (5)
Py = %)—f%[ifm— i1l
Py = ];T[;'Fffpz[iq,jﬂ_ iyl

where the subscripts specify the location on the grid and the superscripts the time
steps, all parameters are positive and are as discussed above. From these we see
that if there were no MM the values of P, to Py would be equal, with Py smaller
(or larger, depending on the precise values chosen for the space and time steps)
i.e. there is no bias in any one direction and the tumour cell is less (more) likely
to be stationary - approximating an unbiased random walk. However, if there are
gradients in the MM, haptotaxis contributes to the migration process and the
coefficients P; to P, will become biased towards the direction of increased MM
concentration. The equation P, represents the probability of a cell being station-
ary and takes into account the situation when a single cell does not experience a
gradient between neighboring points because they contain equal concentrations of
MM if neighbouring points contain higher (lower) MM concentrations, the prob-
ability of being stationary is diminished (increased) by the sign and magnitude of
the term (ff, , + fiy; —Af%; + fL 1 + f75_1) see Anderson [8] for a full der-
rivation. The motion of an individual cell is therefore governed by its interactions
with the matrix macromolecules in its local environment. Of course the motion
will also be modified by interactions with other tumour cells.
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4.2. Three Dimensions

This technique can easily be extended to three dimensions by employing the same
standard finite-difference methods but this time we use the resulting coefficients of
the seven-point finite-difference stencil to generate the probabilities of movement
of an individual cell in response to its environment. Again, we only consider the
discrete tumour cell equation:

niw =0l uPo + ol Prtnd Pt Py (6)
+ ng,j—l,wP‘l + ng,j,w+1p5 + ng,j,w—lpfiv
The coefficient Py, which is proportional to the probability of no movement, has
the form,

6kDy  kp

Po=1- h2  p2

( i+1,5,w + fiqfl,j,w + fiq,j,w+1 - Gfiq,j,w (7)
+ fi,j,wfl +f7jq,j+l,w+fiq,j—l,w)7

and the coefficients Py, Ps, P3, P;, Ps, Ps which are proportional to the proba-
bilities of an individual tumour cell moving west, east, south, north, down, or up
respectively, have the forms,

b= %*T,ﬂ[wl,ﬂu* Flr )
Po= Eg e G s = Forau] Q
Py = IZ? 4h2 [fg+1w* i,j— 1w},
Py = IZ? 4h2 [fﬁlw* i,j— 1w},
P = %*m[fuwﬂ L]
Ps = %) + 4]%02 [ jwsr = fijwoa]s

where the subscripts specify the location on the grid and the superscripts the
time steps. That is ¢ = ih, y = jh, 2z = wh and t = qk where 4, j, w, k, ¢ and h
are positive parameters.

These seven probabilities Py to Pg from Eq.(7) and Eq.(8) are used to gen-
erate the motion of each tumour cell in three spatial dimensions. As with the two
dimensional probabilities, they are functions of the local MM concentration and
therefore the motion of an individual cell is governed by its interactions with the
the local MM environment and with one another.

4.3. Individual-Based Processes

Since we model individual tumour cells we have the ability to incorporate indi-
vidual based processes. We now discuss in detail the processes each tumour cell
will experience as it migrates through the MM field, driven by either the two-
dimensional or three-dimensional movement probabilities defined in the above
sections. As a step towards the inclusion of true tumour heterogeneity we shall
consider a tumour that has phenotypic heterogeneity. The tumour cell phenotype
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will be defined here by the level of the cell’s aggressiveness, i.e. a combination of
its cell-cell adhesiveness, proliferation, degradation and migration rates (see cell
phenotype paragraph below).
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FIGURE 2. Flowchart of the tumour cell life-cycle within the hybrid
discrete-continuum simulation. At the point where a mutation can occur,
either follow the linear mutation algorithm only, or the random mutation
algorithm only. See text for further details.

Life Cycle

Fig.2 shows a flowchart of a tumour cell’s “life-cycle” within the hybrid discrete-
continuum simulation. At each time step a tumour cell will initially check if it can
move with regards to cell-cell adhesion restrictions (see the next paragraph for
criteria), if it can, then the movement probabilities (above) are calculated and the
cell is moved. A check is then made to see if there is sufficient oxygen for the cell
to survive (see the paragraph on necrosis) if not, the cell dies. If there is sufficient
oxygen, the cells age is increased and a check is performed to see if it has reached
proliferation age. If it has not reached this age then it starts the whole loop again.
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If proliferation age has been reached then a check is made to see if the criteria for
proliferation are satisfied (see proliferation paragraph for details). If proliferation
criteria are not met then the cell becomes quiescent. If they are satisfied then we
check to see if this mitosis results in a mutation hit. All mutations in a particular
simulation will be assumed to occur in either a Linear (Fig.2, left) or Random
(Fig.2, right) manner (see mutation paragraph for details). This whole process is
repeated at each time step of the simulation.

Cell-Cell Adhesion

To model cell-cell adhesion explicitly we assume each cell has its own internal
adhesion value (Aj;, see Table 1) i.e. the number of neighbours that it will prefer-
entially adhere to. We therefore examine the number of external neighbours each
cell has (A.) and if A, > A; then the cell is allowed to migrate, otherwise it re-
mains stationary. Whilst this is a somewhat crude way of modelling cell adhesion,
it does capture some features of cell-cell adhesion e.g. certain cells are more likely
to bind to others and in so doing restrict their own ability to migrate.

Necrosis

For a tumour cell to survive it requires sufficient oxygen, since some tumour cells
have been found to survive in very poorly oxygenated environments, we make
the assumption that the concentration has to drop to 0.05 non-dimensional units
(where 1 would be the initial concentration) for cell death to occur. This assump-
tion is also applied to quiescent tumour cells. The space that dead cells occupy
becomes available to new cells as soon as they die.

Proliferation

In our model we assume that each individual cell has the capacity for proliferation
and will produce two daughter cells, provided: (i) the parent cell has reached ma-
turity (Mhrs, see Table 1) and (ii) there is sufficient space surrounding the parent
cell for the two new daughter cells to occupy. In order to satisfy condition (ii), we
assumed that one daughter cell replaces the parent cell and the other daughter
cell will move to any one of the parent cell’s four orthogonal neighbours that is

Phenotype Proliferation | Oz Uptake MDE A; Haptotaxis
Age M Production
Linear I (orange) 16hrs w K 3 p
Linear II (green) 14hrs 4/3w 4/3k 2 4/3p
Linear IIT (cyan) 12hrs 2w 2K 1 2p
Linear IV (blue) 8hrs 4w 4k 0 4p
Random 8 — 16hrs w — 4w K — 4K 0—-3 p—A4p

TABLE 1. Parameter values for each of the four different Phenotypes in the
linear mutation algorithm as well as the ranges for each trait in the random
mutation algorithm. Colours are used to identify the different phenotypes in
the simulation results.
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empty. If more than one of the neighbouring grid points is empty then the new
cell position is chosen randomly from these points. If no empty neighbours exist
then the cell becomes quiescent and proliferation is delayed until space becomes
available. We therefore do not consider the possibility that cells may push neigh-
bouring cells to create free space in which to proliferate. Quiescent tumour cells
are assumed to consume half the oxygen of tumour cells [24].

Production/Degradation/Diffusion

Since we are modelling individual tumour cells we must consider MDE production
at the level of a single cell. In the continuum model Eq.(2) we have MDE produc-
tion as being proportional to the tumour cell density. Now MDE is only produced
at a grid point if a tumour cell is occupying that grid point. Since we have no
precise parameter estimates for this production rate, we take n = 1 in the discrete
form of the MDE equation when a tumour cell is occupying the current location
and take n = 0 otherwise. Similarly for Oy uptake, we take n = 1 (since w is scaled
as per cell) in the discrete form of the oxygen equation when a cell is consuming
oxygen at the current location and n = 0 otherwise. Since the tumour cells occupy
physical space within the ECM we should consider how this might impact upon
oxygen diffusion. It seems logical that oxygen diffusion will be reduced as the space
occupied by the tumour increases, this is consistent with tumour spheroid results
i.e. as the spheroid diameter increases the necrotic region also increases. To model
this at the individual level, we assume that oxygen diffusion decreases at the grid
point a tumour cell occupies i.e. the oxygen diffusion rate at that grid point will
be d.., < d..

Cell Phenotype

Each cell has predefined phenotypic traits that describe its behaviour. We have
chosen these phenotypes based on the current views of the invasive phenotype [27].
Table 1 shows the different values each phenotype takes and clearly type IV is the
most aggressive, having the shortest proliferation age, consuming the most Os, pro-
ducing the most MDE, having the largest haptotaxis coefficient and requiring no
neighbours for migration. We have chosen to correlate tumour cell aggressiveness
with proliferation age, Oy uptake, MDE production, cell-cell adhesion coefficient
and haptotaxis coefficient. We assume that O uptake, MDE production and hap-
totaxis coefficients all increase and the proliferation age and adhesion coefficients
decrease as the tumour cell phenotype becomes increasingly aggressive.

Mutation Algorithm

Since the manner in which tumour cell mutation is modelled will directly impact on
the cell life-cycle flowchart and consequently the resulting tumour population het-
erogeneity, we will consider two different mutation algorithms: (a) Linear (Fig.2,
left) and (b) Random (Fig.2, right). (a) In the linear algorithm, all cells are initially
assigned the values of phenotype I (as defined in Table 1, the least aggressive).
For each subsequent proliferation there is a small probability (Ppyutq:) of further
mutations occurring which will lead to phenotype II and so on in a linear fashion.
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All mutations in the linear algorithm are assumed to be irreversible. (b) The ran-
dom mutation algorithm on the other hand does allow mutations to be reversible,
albeit within the constraints of the 100 randomly pre-defined phenotypes, as each
of these phenotypes has an equal probability of being selected (see Fig.2, right).
Each of the 100 phenotypes will have a randomly selected proliferation age, Oy con-
sumption, MDE production, haptotaxis coefficient and adhesion value all within
the ranges of values defined in Table 1. Each initial cell is assigned the values of
one of the 100 randomly selected phenotypes and for each subsequent proliferation
there is a small probability (Pyutqt) of further mutations occurring which will lead
to another randomly selected phenotype and so on.

4.4. Simulation Process for the Hybrid Discrete-Continuum Model

Each time step of the simulation process involves solving the discrete form of
the system Eq.(2) numerically to generate the five coefficients Py to Py, Egs.(4)—
(5), in two dimensions (in three dimensions we generate the seven coefficients
Py to Ps using Egs.(7)—(8)). We then normalise these coefficients to obtain the
corresponding final probabilities of motion, where normalisation simply means
division by the total of the five coefficients. Probability ranges are then computed
by summing the coefficients to produce 5 ranges (in two dimensions), Ry = 0 to Py
and R; = Z;;E P; to Z;:o P;, where ¢ = 1 to 4. In three dimensions we similarly
compute 7 probability ranges, Ry = 0 to Py and R; = Z;;g Pj to 330y Py,
where ¢+ = 1 to 7. We then generate a random number between 0 and 1, and
depending on the range which this number falls in, the current individual tumour
cell under consideration will remain stationary (Rg) or move west (R1), east (Rs),
south (R3) or north (R4) in two dimensions, and additionally can move down (Rs)
or up (Rg) in three dimensions. The larger a particular range, the greater the
probability that the corresponding coefficient will be selected. Each tumour cell is
therefore restricted to move to one of its four orthogonal neighbouring grid points
(and additionally can move either up or down in three dimensions) or remain
stationary at each time step.

All cells are given a unique identification number which is assigned as each
new cell is produced (or is assigned initially for the first 50 cells). Each time step
of the simulation involves firstly updating all of the cells positions (via the iden-
tification number i.e. the larger the identification number the later the update)
then secondly updating the individual based processes for all the cells e.g. prolif-
eration, death, mutation. Therefore cells are not updated simultaneously or in a
left-to-right, top-to-bottom manner but as per the identification number. For the
migration part of the update the identification method gives preference to cells
which have smaller identification values (since they get to move before the others
do) but since the cells are distributed all over the tumour this should not intro-
duce any visible bias. Once the cells have moved the individual based processes
are updated and this is done again per cell identification number but this time the
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cells update as soon as a process occurs e.g. proliferation, this should avoid any
conflicts for space.

5. HDC Simulation Results

Now that we have discussed the HDC model of tumour invasion in detail we shall
use it to examine the impact of different microenvironments (e.g. homogeneous,
heterogeneous tissue, low/high nutrient concentration) in combination with dif-
ferent mutation algorithms (i.e. linear or random). Most of the results will be
presented in two dimensions, but in the final results section we consider tumour
invasion in a random three dimensional tissue.

5.1. Invasion In Two Dimensions

The following simulations were carried out on a 400 x 400 grid, which is a discreti-
sation of the unit square, [0, 1] x [0, 1], with a space step of h = 0.0025 and a time
step of k = 0.0005. Note that with this choice of space step each square of grid is
approximately the same area as a tumour cell i.e. 6.25x10~5cm? (or 1.56 x 10~8cm?
as a volume, with cells of side 0.0025¢m). No flux boundary conditions were im-
posed on the square grid, restricting the tumour cells; MDE, MM and oxygen to
within the grid. Initially, 50 tumour cells are centred around (0.5,0.5) with an
assigned phenotype I, a random age between Ohrs — 16hrs, the MDE concentra-
tion is zero throughout the domain (m(z,y) = 0) and the oxygen concentration is
taken to be one (c¢(z,y) = 1). We consider the effects, upon tumour invasion, of
three different MM initial distributions: (i) homogeneous (f(z,y) = 1), (ii) hetero-
geneous (0 < f(z,y) < 1), with f(x,y) being generated from a combination of sin
and cos functions of the z and y directions and (iii) random (0 < f(z,y) < 1) in
combination with two different mutation algorithms: (A) Linear and (B) Random.
For clarity we shall label the resulting tumour cell distributions as A(i) homo-
geneous tumour, A(ii) heterogeneous tumour and A(iii) random tumour for the
Linear mutation algorithm and similarly for the Random mutation algorithm but
use the labels B(i), B(ii) and B(iii) for homogeneous, heterogeneous and random
respectively. The non-dimensional parameter values used in all the following sim-
ulations are d,, = 0.0005, d,, = 0.0005, d. = 0.5,d..,,, = 0.25, p = 0.01, n = 50,
k=1 0=0,v =05 w = 0.57 and ¢ = 0.025. We also take the phenotype
mutation probability to be Pyt = 0.1. Other values were considered and pro-
duced similar results but for shorter or longer times depending on whether the
probability was larger or smaller.

Fig.3 shows the resulting tumour cell populations from simulations using
either the linear or random mutation algorithms along with each of the three
different initial MM distributions at ¢ = 200 time units. What is immediately
apparent is that all of the tumour cell distributions show a mainly dead central
region with a thin dispersed proliferating boundary. What is also clear is that
the tumours that grew in the homogeneous MM distribution, A(i) and B(i), have
a more circular and symmetric morphology in contrast to those grown in the
heterogeneous or random MM distributions, A(ii), A(iii), B(ii), and B(iii), which
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FIGURE 3. HDC tumour simulation results, at time ¢t = 200 units, using
three different initial MM distributions: (i) homogeneous, (ii) heterogeneous
and (iii) random (upper row), using either the linear (middle row, A) or
random (lower row, B) mutation algorithms. Density of MM is represented by
colouration, as depicted in the color bar on the right. Cell colouration reflects
dead cells (brown) or cell-cell adhesion (zero cell-cell adhesion = blue). For the
linear mutation algorithm, blue also represents the most agressive phenotype
(type IV, see Table 1). Simulation movies showing the growth of the tumour
as well as the other three variables (i.e. MDE, MM and oxygen) for all six
sets of results can be found on the accompanying DVD.

have a radically different geometry showing a more fingered morphology, with
clusters of cells protruding from a central core.

For the linear mutation results, A(i)—A(iii), the fact that the resulting tumour
cell populations consists of only one living cell type IV might not be surprising
due to the linear nature of the mutations. However, it seems logical to assume that
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it will be the most aggressive tumour cells that dominate the tumour population
and they do so only at the boundary of the tumour. This is due to the fact that all
the oxygen has been consumed within the main mass of the tumour, although, as
can be seen in Fig.3 A(i), a small cluster of cells has survived in the centre of the
tumour. This is partly because quiescent cells consume less oxygen and therefore
allow for the diffusion of a little oxygen back into the centre of the tumour. Given
more time, these cells will also die due to lack of oxygen. However, this does imply
that even necrotic regions may still offer some potential for tumour cell survival
(in the short term).

It is also perhaps understandable why tumour cells that were invading through
an initially homogeneous distribution of MM, Fig.3 A(i) and B(i) produce more
symmetric tumours. These homogeneous tumours also produced the largest num-
ber of individual cells, due to the combined effects of a faster invasion rate and
subsequently access to empty space for proliferation leading to further invasion.
The faster invasion is mainly driven by the cell-matrix interactions via hapto-
taxis, giving directed motion towards higher concentrations of MM. Since all of
the cells on the boundary have no cell-cell adhesion dependence (denoted by the
blue colour) they can exploit this gradient the most.

For the random mutation results, B(i)-B(iii), the resulting tumour morpholo-
gies are remarkably similair to those of the linear mutation, as is the distribution
of cell adhesion (denoted by the cell colour). With the resulting tumour cell pop-
ulations consisting of living cells with zero cell-cell adhesion all these occurring at
the tumour perimeter. Due the random nature of the mutations this is somewhat
surprising, as any of the 100 possible phenotypes can be randomly chosen. Given
that all three linear mutation simulations, Fig.3 A(i)-A(iii), and all three random
mutation simulations, Fig.3 B(i)-B(iii), use the same parameters, with the ex-
ception of the MM initial distributions, these results illustrate the importance of
tumour cell microenvironmental interactions in aiding or hindering the migration
of individual cells that define the tumour geometry.

These results are consistent with the experimental findings of Weaver [40],
although they consider differences in MM tension as opposed to MM heterogene-
ity. But the effect is the same: by making the microenvironment more difficult
(harsher) for the tumour to invade into, a fingered tumour displaying an inva-
sive morphology results, Fig.3 A(ii), A(iii), B(ii) and B(iii). One of the major
advantages of working with a computational model is the ability to keep track of
all variables/paramters at all times. This allows us to examine the precise distri-
bution of phenotypes for the random mutation results, Fig.3 B(i)-B(iii), as the
tumour invaded each of the different MM distributions.

From Fig.4 we can see the evolution of the tumour phenotype distribution for
each of the different MM distributions using the random mutation algorithm. We
note that there are approximately 6 phenotypes in the homogenous tumour, 3 phe-
notypes in the heterogeneous tumour and 2 phenotypes in the random tumour that
dominate the tumour population and survive for most of the simulation. Of these
phenotypes all have a zero cell-cell adhesion value, most have a short proliferation
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FIGURE 4. Phenotype distributions for each of the tumour populations in
Fig.3 B(i)-B(iii), lower row, from simulations using the random mutation
algorithm.

age, as well as high haptotaxis coefficients. Surprisingly, for each of the phenotypes
that are selected, one in each population is the most aggressive phenotype, always
being expressed by the largest fraction of cells in the tumour population, and al-
ways has the shortest proliferation age, highest haptotaxis coefficient, no cell-cell
adhesion restrictions and, in contrast to the most aggressive type IV cells of the
linear mutation algorithm, they mainly have low oxygen consumption rates. If we
consider the random MM distribution, Fig.3(iii), as the harshest tissue microenvi-
ronment since cells will be receiving many conflicting migration signals from the
rapidly varying MM density. Then not only do the more aggressive phenotypes get
naturally selected but it would appear that the harsher the MM microenvironment
the stronger the evolutionary pressure to select for the most aggressive clones i.e.
MM heterogeneity enhances natural selection.

If the predictions made by these simulations are valid, they should be re-
producible using different types of microenvironmental stress. Pennacchietti et al.
[41] found very similar morphological and phenotypic changes when they grew
tumour spheroids in either normoxic or hypoxic conditions. Fig.5 shows some of
their results and the switch from the circular non-invasive morphology to the fin-
gered invasive morphology can easily be seen. These results imply that starving
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FIGURE 5. Experimental results adapted from Fig.6, Pennacchietti et al.
[41], showing a tumour spheroid grown under normoxic and hypoxic condi-
tions. Note the invasive morphology of the hypoxic tumour.

the tumour of oxygen will produce similar changes to that seen when changes in
the MM distribution are made. Experimentally, the results shown in Fig.5 are ob-
tained by placing pre-grown spheroids into two different oxygenated environments
and allowing them to grow [41].

In order to try and replicate these results with the HDC model of invasion
we will initially grow the tumour in an oxygen rich microenvironment (normoxic)
then switch to a poorly oxygenated microenvironment (hypoxic), to ensure we only
consider the influence of the oxygen concentration we will use the homogenous MM
distribution, Fig.3(i), and since we are interested in how the oxygen will effect

High Low Low

FIGURE 6. HDC tumour simulation results in a homogeneous MM (see
Fig.3, top row) using the random mutation algorithm in combination with
varying oxygen concentrations: From t=0-40, oxygen is kept at a high con-
centration and then t=41-200 oxygen is switched to a very low concentration.
Note the switch in morphology between high and low oxygen concentrations.
A simulation movie showing the growth of the tumour as well as the other
three variables (i.e. MDE, MM and oxygen) for this result can be found on
the accompanying DVD.
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the genetic make up of the tumour we will use the random mutation algorithm.
Fig.6 shows the resulting tumour cell distribution for three different snapshots in
time. The oxygen rich tumour at ¢t = 40 has a well defined circular non-invasive
morphology with a mixture of many different phenotypes (seen by the different
cell colours which represent the adhesion value of each cell, see Table 1). It is
interesting to note that even though the mutations are random, and there is no
real evolutionary pressure due to the high levels of oxygen, the tumour naturally
sorts the cells with the lowest cell-cell adhesion to the boundary and those with
higher adhesion are in the centre. As soon as the oxygen level is switched the
morphology changes with a dead inner core of cells surrounded by invasive fingers
(t = 120) that grow as time evolves (¢t = 200) i.e. an invasive morphology.

These results qualitatively match what is seen in the experimental situation
(Fig.5). But they also give an extra level of detail that can only be seen by ex-
amining the phenotype distribution. Fig.7 shows how the numbers of the different
phenotypes in the tumour population evolve in time. In the normoxic microenvi-
ronment (t = 0 — 40) most of the 100 phenotypes are present at similar numbers.
However, almost as soon as the switch to hypoxic conditions occurs (¢t = 41 — 200)
we see the number of phenotypes present drops, leaving only three to dominate for
the rest of the simulation. By examining each of these dominant phenotypes we
find that, just as under the harsh MM conditions (cf. Fig. 4), each of them have a
zero cell-cell adhesion value, a short proliferation age, as well as high haptotaxis
coefficients and of course low oxygen consumption rates. Therefore, we again see
that under harsh microenvironmental conditions, an increase in the evolutionary
pressure occurs causing selection in the resulting tumour population for the most
aggressive clones that result in a tumour with an invasive morphology.

Homogeneous MM Oxygen Switch
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FIGURE 7. Phenotype distribution for the tumour population in Fig.6
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5.2. Invasion In Three Dimensions

Whilst a model of a two dimensional section through a three dimensional tumour
can give a great deal of insight, as we have seen above, we are aware of its limi-
tations. In particular, cell migration is greatly restricted in two dimensions, as is
cell-cell adhesion both of which are central to the invasive process. We therefore
extended the model to three dimensions, which is fairly straightforward to do as
the parameters and variables in the model do not change, the only real change that
occurs is that we switch to using the movement probabilities given in Eqs.(7)—(8)
as well as a three dimensional representation of the continuous variables in system
Eq.(2).

The following simulation was carried out on a 160 x 160 x 160 grid, which is a
discretisation of the unit cube, [0, 1] x [0, 1] x [0, 1], with a space step of h = 0.00625
and a time step of k = 0.0005. Note that with this choice of space step this cube
of tissue could possibly contain well over four million tumour cells. In comparison
to the two dimensional case of at most 40000 cells, the computational magnitude
of working in three dimensions is brought sharply into focus. No flux boundary
conditions were imposed on the cubed grid, restricting the tumour cells, MDE,
MM and oxygen to within the grid. Initially, 50 tumour cells are centred around
(0.5,0.5,0.5) with an assigned phenotype I, a random age between Ohrs — 16hrs,
the MDE concentration is zero throughout the domain (m(z,y,z) = 0) and the
oxygen concentration is taken to be one (c¢(zx,y,z) = 1). We will specifically focus
on the effect that a random (0 < f(x,y,z) < 1) initial MM distribution has on the
growing tumour in three spatial dimensions using the linear mutation algorithm.
for both speed and simplicity.

Fig.8A shows the tumour almost filling the entire volume after 200 time
units. Another issue when dealing with three dimensional results is being able to
visualise them suitably [18]. In order to see what is actually happening within
this tumour volume I only visualise two orthogonal slices (Fig.8B-D). Perhaps
unsurprisingly we see a very similair fingered morphology to that obtained in the
equivalent two dimensional results (Fig.3A(iii)). This fingered morphology is seen
no matter how the tumour volume is sliced and therefore further strengthens the
two dimensional results that show the emergence of an invasive phenotype under
harsh microenvironmental conditions. The phenotypes that make up this cube of
tumour tissue have a similar distribution to that seen in the two dimensional case,
where the bulk of the outer boundary is dominated by the most aggressive type
IV cells and the bulk of the inner core is dead cells.

6. Conclusions

In this chapter we examined the effects of the tumour microenvironment upon
both the morphology and genetic makeup of a growing invading tumour. By using
a combination of different microenvironments (e.g. homogeneous, heterogeneous
tissue, low/high oxygen concentration) with different mutation algorithms (i.e.



