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Preface

Logica Universalis (or Universal Logic, Logique Universelle, Universelle Logik, in
vernacular languages) is not a new logic, but a general theory of logics, considered
as mathematical structures. The name was introduced about ten years ago, but the
subject is as old as the beginning of modern logic: Alfred Tarski and other Polish
logicians such as Adolf Lindenbaum developed a general theory of logics at the end
of the 1920s based on consequence operations and logical matrices. Talking about
the papers of Tarski dealing with this topic, John Etchemendy says: “What is most
striking about these early papers, especially against their historical backdrop, is the
extraordinary generality and abstractness of the perspective adopted” [4]. After
the second world war, this line of work was pursued mainly in Poland and became a
bit of an esoteric subject. Jerzy �Loś’s fundamental monograph on logical matrices
was never translated in English and the work of Roman Suszko on abstract logics
remained unknown outside of Poland during many years.

Things started to change during the 1980s. Logic, which had been dominated
during many years by some problems related to the foundations of mathematics or
other metaphysical questions, was back to reality. Under the impulsion of artificial
intelligence, computer science and cognitive sciences, new logical systems were
created to give an account to the variety of reasonings of everyday life and to
build machines, robots, programs that can act efficiently in difficult situations,
for example that can smoothly process inconsistent and incomplete information.
John McCarthy launched non-monotonic logic, few years later Jean-Yves Girard
gave birth to linear logic. Logics were proliferating: each day a new logic was born.
By the mid eighties, there were more logics on earth than atoms in the universe.
People began to develop general tools for a systematic study of this huge amount
of logics, trying to put some order in this chaotic multiplicity. Old tools such
as consequence operations, logical matrices, sequent calculus, Kripke structures,
were revived and reshaped to meet this new goal. For example sequent calculus
was the unifying instrument for substructural logics. New powerful tools were also
activated, such as labelled deductive systems by Dov Gabbay.

Amazingly, many different people in many different places around the world,
quite independently, started to work in this new perspective of a general theory of
logics, writing different monographs, each one presenting his own way to treat the
problem: Norman Martin’s emphasis was on Hilbert systems [9], Richard Epstein’s,

This research was supported by a grant of the Swiss National Science Foundation.



viii Preface

on semantical tools, in particular relational structures and logical matrices [5],
Newton da Costa’s, on non truth-functional bivalent semantics [7], John Cleave’s,
on consequence and algebra [3], Arnold Koslow’s, on Hertz’s abstract deductive
systems [8]. This was also the time when was published a monograph by Ryszard
Wójcicki on consequence operations making available for the first time to a wide
public the main concepts and results of Polish logic [10], and the time when Dov
Gabbay edited a book entitled What is a logical system? gathering a collection
of papers trying to answer this question in many different ways [6]. Through all
these publications, the generality and abstractness of Tarski’s early work was being
recovered. It is surrounded by this atmosphere that I was doing my PhD [2] and
that I coined in the middle of a winter in Poland the expression “universal logic”
[1], by analogy to the expression “universal algebra”.

The present book contains recent works on universal logic by first-class re-
searchers from all around the world. The book is full of new and challenging ideas
that will guide the future of this exciting subject. It will be of interest for people
who want to better understand what logic is. It will help those who are lost in
the jungle of heterogeneous logical systems to find a way. Tools and concepts are
provided here for those who want to study classes of already existing logics or want
to design and build new ones.

In Part I, different frameworks for a general theory of logics are presented.
Algebra, topology, category theory are involved. The first paper, written by my-
self, is a historical overview of the different logical structures and methods which
were proposed during the XXth century: Tarski’s consequence operator and its
variants in particular Suszko’s abstract logic, structures arising from Hertz and
Gentzen’s deductive systems, da Costa’s theory of valuation, etc. This survey pa-
per presents and explains many concepts that are used in other papers of the book.
The following paper, by Marta Garćıa-Matos and Jouko Väänänen, gives a hint
of how abstract model theory can be used for developing universal logic. Although
abstract logic and abstract model theory are expressions which look similar, they
refer to two different traditions. Abstract logic has been developed by Suszko in
the context of the Polish tradition focusing on a general theory of zero-order logics
(i.e. propositional logics). On the other hand, the aim of abstract model theory has
been the study of classes of higher order logics. The combination of abstract model
theory with abstract logic is surely an important step towards the development of
universal logic. It is also something more than natural if we think that both the-
ories have their origins in the work of Alfred Tarksi. Steffen Lewitzka’s approach
is also model-theoretical, but based on topology. He defines in a topological way
logic-homomorphims between abstract logics, which are mappings that preserve
structural properties of logics. And he shows that those model-theoretical abstract
logics together with a strong form of logic-homomorphisms give rise to the notion
of institution. Then comes the work of Ramon Jansana which is a typical example
of what is nowadays called abstract algebraic logic, the study of algebraization of
logics, a speciality of the Barcelona logic group. Within this framework, abstract
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logics are considered as generalized matrices and are used as models for logics. Fi-
nally, Pierre Ageron’s paper deals with logics for which the law of self-deductibility
does not hold. According to this law, a formula is always a consequence of itself,
it was one of the basic axioms of Tarski’s consequence operator. Ageron shows
here how to develop logical structures without this law using tools from category
theory.

The papers of Part II deal with a central problem of universal logic: the
question of identity between logical structures. A logic, like classical logic, is not
a given structure, but a class of structures that can be identified with the help
of a given criterion. According to this criterion, we say that structures of a given
class are equivalent, congruent or simply identical. Although this question may at
first look trivial, it is in fact a very difficult question which is strongly connected
to the question of what a logical structure is. In other words, it is not possible
to try to explain how to identify different logical structures without investigating
at the same time the very nature of logical structures. This is what makes the
subject deep and fascinating. Three papers and seven authors are tackling here
the problem, using different strategies. Caleiro and Gonçalves’s work is based on
concepts from category theory and they say that two logics are the same, equipol-
lent in their terminology, when there exist uniform translations between the two
logical languages that induce an isomorphism on the corresponding theory spaces.
They gave several significative illustrations of equipollent and non equipollent log-
ics. Mossakowski, Goguen, Diaconescu and Tarlecki also use category theory, more
specifically their work is based on the notion of institution. They argue that every
plausible notion of equivalence of logics can be formalized using this notion. Lutz
Straßburger’s paper is proof-theoretically oriented, he defines identity of proofs
via proof nets and identity of logics via pre-orders.

In part III, different tools and concepts are presented that can be useful for
the study of logics. The papers by Arnon Avron and by Carlos Caleiro et al. both
deal with a concept very popular in the Polish tradition, the concept of logical
matrices, the basic tool for many-valued logics. In his paper Avron studies the
notion of non-deterministic matrices which allows to easily construct semantics
for proof systems and can be used to prove decidability. This tool can be applied
to a wide range of logics, in particular to logics with a formal consistency operator.
Caleiro, Carnielli, Coniglio and Marcos discuss Suszko’s thesis, according to which
any logic is bivalent, and present some techniques which permit to construct in a
effective way a bivalent semantics, generally not truth-functional, from a many-
valued matrix. Their paper is illustrated by some interesting examples, including
Belnap’s four-valued logic. Then comes a paper by David Makinson, one of the
main responsible for the revival of Tarski’s consequence operator at the beginning
of the 1980s. He used it at the main tool, on the one hand for the development
together with Carlos Alchourrón and Peter Gärdenfors, of theory change (univer-
sally known today under the acronym AGM), on the other hand as a basis for a
general theory of non monotonic logics. In both cases, Makinson’s use of Tarski’s
theory was creative, he kept the original elegant abstract spirit, but widened and
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extended the basic underlying concepts. Here again he is innovative defining within
classical propositional logic two new concepts, logical friendliness and sympathy,
which lead to some consequence relations with non standard properties. The paper
by Lloyd Humberstone is no less original and brilliant, he studies the very inter-
esting phenomenon of logical discrimination. The question he examines is in which
circumstances, discrimination, i.e. distinction between formulas, is correlated with
the strength of a logic. The work of Humberstone is a very good example of the
philosophical import of universal logic. By a careful examination of a phenomenon
like discrimination, that requires a precise mathematical framework, one can see
to which extent a statement with philosophical flavor saying that discrimination
is inversely proportional to strength is true or not.
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Preface to the Second Edition

The first edition of this book was a success and was sold out in a short time. In
this second edition you will find the same authors and table of contents, but most
of the papers have been extended and improved.

Universal logic is making its way. A new journal entitled Logica Universalis
has been created and soon a book series dedicated to the subject will also be
launched by Birkhäuser: Studies in Universal Logic.

Jean-Yves Beziau
Neuchâtel, Switzerland

February, 2007.



Part I

Universal Logic:
Frameworks and Structures
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From Consequence Operator to Universal Logic:
A Survey of General Abstract Logic

Jean-Yves Beziau

Abstract. We present an overview of the different frameworks and structures
that have been proposed during the last century in order to develop a general
theory of logics. This includes Tarski’s consequence operator, logical matri-
ces, Hertz’s Satzsysteme, Gentzen’s sequent calculus, Suszko’s abstract logic,
algebraic logic, da Costa’s theory of valuation and universal logic itself.

Mathematics Subject Classification (2000). Primary 03B22 ; Secondary 03B50,
03B47, 03B53, 03G10.

Keywords. Universal logic, consequence operator, abstract logic, substructural
logic, algebraic logic, many-valued logics, truth-functionality.

1. Introduction

During the XXth century, numerous logics have been created: intuitionistic logic,
quantum logic, modal logic, many-valued logic, relevant logic, paraconsistent logic,
erotetic logic, polar logic, linear logic, non-monotonic logic, dynamic logic, free
logic, fuzzy logic, paracomplete logic, etc. And the future will see the birth of
many other logics that one can hardly imagine at the present time.

Facing this incredible multiplicity, one can wonder if there is not a way to
find common features which allow one to unify the study of all these particular
systems into a science called logic.

In what follows we describe various attempts that have been made during
the XXth century to develop a general theory of logics.

This research was supported by a grant of the Swiss National Science Foundation. I would like
to thank Newton da Costa and Alexandre Costa-Leite for useful comments.



4 Jean-Yves Beziau

2. Tarski’s consequence operator

2.1. Tarski’s three axioms

Undoubtedly, Tarski has, among many other things, to be considered as the ini-
tiator of a general theory of logics.

At the end of the twenties, he launched the theory of consequence operator
[43]. This theory is about an “operator”, a function Cn defined on the power set
of a given set S. Following the philosophical ideas of his master, Lesńiewski, Tarski
calls these objects “meaningful sentences”. But in fact, the name does not matter,
the important thing is that here Tarski is considering a very general theory, be-
cause the nature of these objects is not specified. For Tarski, these sentences can
be sentences of any kind of scientific languages, since his work is concerned with
the methodology of deductive sciences, and not only with metamathematics. The
function Cn obeys three basic axioms, for any theories (i.e. sets of sentences) T
and U :

[TAR1] T ⊆ CnT

[TAR2] if T ⊆ U then CnT ⊆ CnU

[TAR3] CnCnT ⊆ CnT

Hereafter, a structure 〈S; Cn〉 where Cn obeys the three above axioms will
be called a Tarski structure. 1

2.2. Axiomatizing axiomatic proof systems

Why these axioms? Tarski wanted to give a general characterization of the notion
of deduction. At this time, the standard notion of deduction was the one given by
what is called nowadays Hilbert-type proof systems, or axiomatic proof systems. It
is easy to check that any notion of deduction defined with the help of this kind of
systems obeys the three above axioms.

One could say that Tarski was in this sense axiomatizing axiomatic proof
systems. It is very important however to understand the difference between the
two occurrences of the word axiom here. Tarski’s axioms are not axioms of a proof
system, although they can be considered as such, at a more complex level. One
should rather consider these axioms model-theoretically, as defining a certain class
of structures.

One can wonder if these three axioms characterize exactly the notion of de-
duction in the sense that any Tarski structure 〈S; Cn〉 verifying these axioms can
be defined in a Hilbertian proof-theoretically way.

1In this paper we will do a bit of taxonomy, fixing names to different logical structures.
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2.3. Semantical consequence and completeness

Before examining this question, let us note that these axioms axiomatize also the
semantical or model-theoretical notion of consequence given later by Tarski [45].
We do not know if Tarski had also this notion in the back of his mind when he
proposed the consequence operator.

Anyway, there is an interesting manner to connect these two notions which
forms the heart of a general completeness theorem. If we consider a Tarski structure
〈S; Cn〉 and the class of closed theories of this structure, i.e., theories such that
CnT = T , this class forms a sound and complete semantics for this structure, in
the sense that the semantical notion of consequence � defined by:

T � a iff for any closed theory U such that T ⊆ U , a ∈ U

coincides with Cn.
Now back to the previous point, it is clear that Tarski’s three axioms do

not characterize the notion of Hilbertian proof-theoretical deduction, since for
example there are some structures 〈S; Cn〉 like second-order logic that obey these
three axioms but cannot be defined in this proof-theoretical sense. This is because
second-order logic is not compact, or more precisely, finite.

2.4. Compactness and finiteness

Tarski had also an axiom of finiteness :

[FIN] CnT =
⋃

CnF (F ⊆ T , F finite)

In classical logic, this axiom is equivalent to the axiom of compactness :

[COM] if for every a, a ∈ CnT , then there is a finite F ⊆ T such that
for every a, a ∈ CnF

But in general they are not. Clearly it is the axiom of finiteness which char-
acterizes the Hilbertian proof-theoretical notion of deduction.

Once one has this axiom, one has also a more interesting semantical notion
of consequence. Let us call maximal a theory T , such that CnU = S, for every
strict extension U of T and relatively maximal a theory T such that there is a
a such that a /∈ T and for every strict extension U of T , a ∈ CnU . The class
of relatively maximal theories characterizes any finite consequence operator (i.e.
a consequence operator obeying the finiteness axiom together with Tarski’s three
axioms). In the case of an absolute Tarski structure, i.e. a structure where all
relatively maximal theories are also maximal 2, maximal theories characterize finite
consequence operators, but it is not true in general [9].

2The terminology “absolute” was suggested by David Makinson.
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3. Hertz and Gentzen’s proof systems

3.1. Hertz’s Satzsysteme

It is difficult to know exactly the origin of the work of Paul Hertz about Satzsys-
teme developed during the 1920s [31]. But something is clear, it emerged within
the Hilbertian stream and it is proof-theoretically oriented, although it is a very
abstract approach ; like in the case of Tarski’s consequence operator, the nature
of the basic objects is not specified.

What Hertz calls a Satz is something of the form u1 . . . un → v. One could
interpret this as the sentence “u1 and...and un implies v”, considering → as ma-
terial implication, and Hertz himself suggests this, saying that → is taken from
Whitehead and Russell’s Principia Mathematica.

However, we shall interpret here Hertz’s Satz u1 . . . un → v in the perspective
of Gentzen’s work considering it as the prototype of a Gentzen’s sequent and we
shall just call such a Satz, a protosequent. “u” and “v” are called “elements” in
Hertz’s terminology. Following again Gentzen, we will just consider that they are
sentences of a possible unspecified language. Hertz uses the word “complex” to
denote a finite site Γ of “elements”, we will just call such a set a finite theory.

Hertz’s notion of Satzsysteme is based on a notion of proof which is similar
to the Hilbert’s one, except that elements of the proof are protosequents. There-
fore rules in Satzsysteme have as premises, protosequents, and as a conclusion a
protosequent. Axioms are protosequents. There are only one kind of axiom and
two rules in Hertz’s system:

[HER1] Γ→ α (α ∈ Γ)

[HER2] Γ→α
Γ∆→α

[HER3]
Γ→α ∆α→β

Γ∆→β

If we consider, something that Hertz didn’t, the structure 〈S;�〉 generated
by such a system in the following way: T � a iff there exists a finite subtheory Γ
of T such that there is a proof of the protosequent Γ → a in the system, we have
a structure which is equivalent, modulo trivial exchanges between � and Cn, to a
Tarski structure.

As we have seen, Tarski’s motivations are clear and one can perceive the
interest of his proposal. In the case of Hertz’s work, it is not clear at all. One
can see a step towards a kind of generalization of Hilbert-type proof-theoretical
concepts. But at first, Hertz’s notion of Satz is quite strange. In the light of
Gentzen’s work, we are now conscious of the incredible power of this notion, but
many people think that without Gentzen’s work, Hertz’s work would have been
completely ignored.

In fact Hertz’s work is generally not well-known. It is therefore important
to stress that Gentzen started his researches, which will lead him to his famous
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sequent calculus, by studying Hertz’s work, probably on a suggestion of Paul
Bernays. Gentzen’s first paper [29] is entirely devoted to Hertz’s system and among
several results he proves that this system is sound and complete with respect to
the semantics of closed theories (although he doesn’t use such a language). Due
to his paper, the model-theoretical notion of consequence and this general related
completeness theorem can be credited to Gentzen as well as to Tarski. Apparently
his work was carried out in total independence to the work of Tarski.

3.2. Gentzen’s sequent calculus

Gentzen’s sequent calculus differs in several points to Hertz’s system. Instead of
Hertz’s Satz, Gentzen considers “sequents”, i.e, objects of the form u1, . . . , un →
v1, . . . , vn where u1, . . . , un and v1, . . . , vn are sequences of sentences (mind the
comma!), hence the name “sequent calculus”. Gentzen’s rules are divided in two
categories: structural rules and logical rules. Logical rules are rules concerning
logical operators. Such rules appear here because Gentzen is not only interested
to work at the “abstract” level but also with specific logics, mainly classical and
intuitionistic logics. Gentzen’s structural rules are the following:

[GEN1] Σ→ α (α ∈ Σ)

[GEN2l] Σ→Ξ
α, Σ→Ξ [GEN2r] Σ→Ξ

Σ→Ξ, α

[GEN3]
Σ→Ξ, α α,Ω→Π

Σ, Ω→Ξ, Π

[GEN4l]
Σ(α, α)→Ξ

Σ(α)→Ξ
[GEN4r]

Σ→Ξ(α, α)
Σ→Ξ(α)

[GEN5l]
Σ(α, β)→Ξ
Σ(β, α)→Ξ

[GEN5r]
Σ→Ξ(α, β)
Σ→Ξ(β, α)

where Σ, Ω, Π and Ξ are sequences and something like Σ(α, β) means that α and
β are occurrences of formulas appearing in the sequence Σ in that order.

[GEN1], [GEN2] and [GEN3] are adaptations of [HER1], [HER2] and [HER3]
to the sequent context. The rules [GEN4] and [GEN5] were implicit in the case
of Hertz’s system, but if one considers sequents instead of finite sets of sentences,
these rules are necessary.

Later on, people started to work with Tait’s version of Gentzen’s sequent
calculus. It is a Hertzianization of Gentzen’s system where finite sets are considered
instead of sequences, and where therefore there are no contraction [GEN4] and
permutation [GEN5] rules.

In view of Tait’s version, one may think that Gentzen’s system is a use-
less détour. But it is not, as the recent development of substructural logics has
dramatically shown.
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3.3. Scott structure

An important point is that Gentzen is considering a multiplicity of sentences on
the right. So even if one considers Tait’s versions of Gentzen’s structural rules, we
have here something different from Hertz’s rules, in particular we must have two
thinning rules, [GEN2l] and [GEN2r].

The multiplicity of the sentences on the right is very important in Gentzen’s
original system, since, as it is known, if one reduces this multiplicity to unity on
the right, one goes from classical logic to intuitionistic logic.

However, even if we stay at the abstract level, the multiplicity is an important
thing that permits to work with more symmetry. The structure generated by an
abstract (only structural rules) Tait’s version of Gentzen’s sequent calculus is a
structure of type 〈S; ��〉 where �� is a relation on P(S)XP(S).

This relation obeys a straightforward generalization of the three Tarskian
axioms. We will call such a structure, a Scott structure, since Dana Scott made
important contribution working with this kind of structures, generalizing for ex-
ample Lindenbaum theorem for them (see [38]). This kind of approach is usually
known under the banner “multiple-conclusion logic” (see [39]).

3.4. Substructural structure

A substructural structure 〈G; ��〉 is a Scott structure where a magma G = 〈S; ∗〉 is
considered instead of the naked set S. A magma is just a set with a binary operation
∗.3 Some specific axioms can be added for the operation *. Gentzen’s notion of
sequents can be designed in this way, and therefore substructural structures are a
refinement of Gentzen’s idea. Gentzen’s notion of sequents is quite precise but for
example associativity is an implicit supposition of it. Considering a magma, one
can turn this hypothesis explicit, with an axiom of associativity for ∗, or withdraw
it and work with non associativity. In a substructural structure in general there
are also no specific axioms for ��.

In the last twenty years the amazing development of linear logic [30] and non
monotonic logics has shown the fundamental role of substructural structures (see
[28], [37]).

3.5. Turning style

In the context of Gentzen’s sequent calculus, the Hertz-Gentzenian symbol → is
very often replaced by the turnstile � (in particular due to the fact that people
now use → for material implication instead of the old ⊃).

This change of symbol seems harmless, but in fact one has to be very careful,
because it leads to a confusion between a proof-theoretical system with axioms
and rules with the structure generated by this system. People like Scott and those
working with substructural logics generally do not make this difference, and there
is a tendency to use the same name for Gentzen’s structural rules and for axioms
applying to the relation ��.

3The terminology “magma” is due to Charles Ehresmann.
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For example the axiom stating the transitivity of �� is sometimes called
cut. This can lead to serious misunderstandings of the cut-elimination theorem.
Gentzen’s system for classical logic with cut is equivalent to his system without
cut, but the cut rule is not derivable in the cut-free system, although this system
generates a transitive relation ��, since the two systems are equivalent (see [8]).

Another example is the confusion between thinning rules [GEN2] and the
axiom of monotonicity [TAR2]. A proof system can have no thinning rules and be
monotonic.

4. Matrix theory and abstract logic

4.1. �Lukasiewicz and Tarski’s concept of logical matrices

Influenced by Tarski’s theory of consequence operator, Polish logicians have de-
veloped since the 1930s a general theory of zero-order logics (i.e. propositional
or sentential logics). This kind of stuff is generally known under the name Pol-
ish logic (see [12]). A central concept of Polish logic is the notion of matrix, or
logical matrix. In fact one could say that Polish logic is the fruit of the wedding
between the concepts of consequence operator and logical matrix. Polish logicians
have not developed the theory of consequence operator by itself, at the abstract
level, maybe because they thought it was sterile. Anyway they have shown that
its combination with matrix theory is highly fruitful.

The concept of logical matrix was introduced in Poland by �Lukasiewicz,
through the creation of many-valued logic. However it is Tarski who saw the pos-
sibility of using this theory as a basic tool for a systematic study of logics. It is
clear that matrix theory does not reduce to many-valued logics, as shown by its
use for the proof of independence of axioms of the two-valued propositional logics.
Matrices are models of zero-order non classical logics. In fact the consideration of
models of zero-order non classical logics led Tarski to classical first-order model
theory (see [38]).

4.2. Lindenbaum’s matrix theorem

The first important general result about matrices is due to Lindenbaum. A matrix
M is an algebra A = 〈A; f〉 together with a subset D of A, whose elements are
called designated values. When one uses logical matrices, one considers the set S of
sentences of a logical structure as an algebra, an absolutely free algebra (explicit
consideration of this fact is also credited to Lindenbaum). Operators of this algebra
represent zero-order connectives.

Let us call a Lindenbaum structure, a structure 〈S; T〉 where S is an absolutely
free algebra of domain S and T is a subset of S. One can wonder if it is possible to
find a logical matrix M which characterizes this structure in the sense that any
homomorphism η from S to the algebra A of the matrix is such that:

α ∈ T iff η(α) ∈ D
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There are many logics, such as some modal logics like S5 or intuitionistic logic,
that cannot be characterized by finite matrices (i.e. matrices where the domain
of the algebra is finite). However Lindenbaum has shown that every Lindenbaum
structure stable under substitution can be characterized by a matrix of cardinal-
ity superior or equal to the cardinality of the language (i.e. the domain of the
structure).

Lindenbaum was killed during the second world war, but just after the war
his work was disseminated in Poland through the monograph of Jerzy �Loś entirely
devoted to logical matrices (see [32]). Lindenbaum’s theorem was generalized by
Wójcicki for the case of �Loś structures. A �Loś structure is a structure of type
〈S; Cn〉 where S is an absolutely free algebra and Cn a structural consequence
operator, i.e. a consequence operator obeying the three basic Tarski’s axioms and
the following condition:

for every endomorphism ε of S, εCnT ⊆ CnεT

In other words, this means that Cn is stable under substitution. This crucial
notion was introduced in [33].

Matrix theory was also applied to Scott structures by Zygmunt (see [48]).

4.3. Suszko’s abstract logic

Suszko and his collaborators have shown that all known logics are structural. Later
on, Suszko developed a general study of logics that he called “abstract logic”
considering as basic structure a Suszko structure, i.e. a structure of type 〈A; Cn〉
where A is an abstract algebra and Cn a consequence operator obeying the three
basic Tarski’s axioms (see [18]).

Abstract logic in this sense is very close to universal algebra. Concepts of
category theory and model theory can also be fruitfully applied for its development.
With Suszko’s abstract logic, the general theory of logics reached the level of
mathematical maturity, turning really into a mathematical theory in the modern
sense of the word.

One could say: “very well, this is mathematics, but this is not about math-
ematics!”, since an abstract logic is a model for a propositional logic and we all
know that such a logic, be it classical, intuitionistic or whatever, is not rich enough
to fully represent mathematical reasoning.

I have proposed to generalize the notion of abstract logic considering struc-
tures of type 〈A; Cn〉 where A can be an infinitary algebra, in order to represent
logics of order superior to zero, taking in account the fact that higher order lan-
guages can be described by infinitary algebras (see [3]).

5. Algebraic logic

5.1. Logic and algebra

Algebraic logic is an ambiguous expression which can mean several things. One
could think that it is crystal clear and that algebraic logic means the study of logic
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from an algebraic point of view. But this is itself ambiguous, because this in turn
means two things:

(1) The study of logic using algebraic tools
(2) Logics considered as algebraic structures.
(2) implies (1) but not necessarily the converse. It is clear that when one

considers a logic as a Lindenbaum structure or a �Loś structure and considers the
problem of characteristic matrices, this involves mainly algebraic concepts. One
can even say that these structures as well as Suszko’s abstract logics are algebraic
structures. Roughly speaking this is right. But if one wants to be more precise,
it is important to emphasize two points ; this will be the subject of the two next
subsections.

5.2. Cross structures

First these structures are not exactly algebras, according to Birkhoff’s standard
definition of algebra. To call these structures algebras leads to a general confusion
according to which any mathematical structure is called an algebra. In fact an
abstract logic in the sense of Suszko is a mixture of topological concepts and
algebraic concepts. Algebraic concepts are related to the structure of the language
- algebraic operators representing logical operators - and topological concepts are
related to the consequence operator Cn. In fact Tarski was probably influenced
by topology when he developed the theory of consequence operator since topology
was very popular at this time in Poland and Tarski himself was collaborating with
Kuratowski. �Loś and Suszko structures are in fact cross structures according to
Bourbaki’s terminology, they are the result of crossing two fundamental mother
structures: topological and algebraic structures.

To call “algebraic logic” a general theory of logics involving algebraic con-
cepts is misleading. Polish logic, which is such a theory, is often assimilated with
algebraic logic, by opposition to a more traditional approach to logic based on in-
tuitive concepts related to linguistics. But when the people, following this second
approach, say that Polish logic is algebraic logic, they simply identify algebra with
mathematics, or in the best case algebraic structures with mathematical struc-
tures.

5.3. Lindenbaum-Tarski algebras

It is not rare to hear that classical propositional logic is a boolean algebra. Tarski
at the beginning of the 1930s showed how to reduce classical logic to a boolean
algebra by factorizing the structure (cf. [44]). The factorized structure is called
a Lindenbaum-Tarski algebra, LT-algebra for short. The concept of LT-algebra
was then extended to other logics. Algebraic logic in this sense is the study of
logics, via their LT-algebras, and more generally the study of algebras which can
be considered as LT-algebras of some logics. This means in general that people
are considering algebraic structures of type 〈A; �〉 where � is an order relation
and A is an algebra whose operators have intended logical meaning: conjunction,
disjunction, implication and negation. This is for example the case of the famous
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Birkhoff-von Neumann’s quantum logic which is in fact an algebraic structure of
this kind. These structures are tightly linked with lattices. A general study of these
structures has been developed by H.B.Curry (see [26]).

If one considers algebraic logic as the study of this kind of structures and
this is probably the only rigorous way to use this terminology, it seems then that
algebraic logic is too restricted for developing a general theory of logics. Firstly
because the notion of logical consequence cannot be properly represented by an
order relation �, one has to consider at least a consequence relation or a binary
Scott-type relation; secondly because there are logics which cannot properly be
handle through LT-algebras. This is the case of simple logics, logics that have no
non-trivial congruence relations and which cannot be factorized, like da Costa’s
paraconsistent logic C1 (see [5]).

However these last twenty years work in algebraic logic has made important
advances through the introduction of several new concepts such as protoalgebraiza-
tion and the correlated refinement of LT-algebra (see [27], [17]).

6. Da Costa’s theory of valuation

6.1. Every logic is two-valued

As we have seen, closed theories form a sound and complete semantics for any
Tarski structure and relatively maximal theories form a sound and complete se-
mantics for Tarski structures obeying the finiteness axiom. Now instead of con-
sidering theories, one can consider the characteristic functions of these theories,
these are bivaluations.

The above results can therefore be reinterpreted as saying that every Tarski
structure has a bivalent semantics, and they justify, at least if we restrict ourselves
to such structures, a general theory of logics based on the concept of bivaluations.
Newton da Costa’s theory of valuation is such a theory.

The advantage of such a theory is that it is based on the semantical intuitive
ideas of true and false and that it can be seen as a natural generalization of the
bivalent semantics for classical propositional logic, which can be applied to non-
classical logics and high-order logics.

6.2. Bivalency and truth-functionality

This generalization is however not so natural in the sense that one central feature
of the semantics of classical propositional logic is lost in most of the cases: truth-
functionality. Therefore the theory of valuation is mainly a theory of non truth-
functional bivalent semantics. An interesting result due to da Costa shows that
truth-functional bivalent semantics determine only logics which are sublogics of
classical logic (see [23]).

Semantics of bivaluations can be developed for many-valued logics, such as
�Lukasiewicz’s three-valued logic. But they are more interesting for logics which are
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not truth-functional, in the sense that they cannot be characterized by a finite ma-
trix. In fact, originally da Costa built semantics of valuation for his paraconsistent
logic C1, which is a non truth-functional logic [22].

6.3. Bivaluations, truth-tables and sequent calculus

Despite of the non truth-functionality of such semantics, it is possible to con-
struct truth-tables which are quite similar to the classical ones, and which provide
decision methods.

I have linked the theory of valuations with sequent calculus showing how it is
possible to translate conditions defining bivaluations into sequent rules and vice-
versa. Combining action of valuations upon sequent rules, in the spirit of Gentzen’s
1932 proof [29], with Lindenbaum-Asser theorem, I have given a general version
of the completeness theorem, from which it is possible to derive instantaneously
many specific completeness theorems (see [2], [11]),

7. Universal logic

7.1. Universality and trivialization

Wójcicki said once that his objective was to trivialize the completeness theorem.
What does this mean? It means finding a general formulation of this theorem from
which particular theorems appear as trivial corollaries.

In a proof of a completeness theorem for a given logic, one may distinguish the
elements of the proof that depend on the specificity of this logic and the elements
that do not depend on this peculiarity, that we can call universal.

This distinction is important from a methodological, philosophical and math-
ematical point of view. The first proofs of completeness for propositional classical
logic give the idea that this theorem is depending very much on classical features.
Even one still gets this impression with recent proofs where the theorem is pre-
sented using the concept of maximal consistent set which seems to depend on
classical negation. In fact this idea is totally wrong and one can present the com-
pleteness theorem for classical propositional logic in such a way that the specific
part of the proof is trivial, i.e. one can trivialize the completeness theorem.

One central aim of a general theory of logics is to get some universal results
that can be applied more or less directly to specific logics, this is one reason to
call such a theory universal logic.

Some people may have the impression that such general universal results
are trivial. This impression is generally due to the fact that these people have a
concrete-oriented mind, and that something which is not specified has no meaning
for them, and therefore universal logic appears as logical abstract nonsense. They
are like someone who understands perfectly what is Felix, his cat, but for whom the
concept of cat is a meaningless abstraction. This psychological limitation is in fact a
strong defect because, as we have pointed through the example of the completeness
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theorem, what is trivial is generally the specific part, not the universal one which
requires what is the fundamental capacity of human thought: abstraction.

7.2. Universal logic and universal algebra

Originally I introduced the terminology “universal logic” to denote a general theory
of logics, by analogy with the expression “universal algebra” (cf. [1]).

What is universal algebra? During the XIXth century, lots of algebraic struc-
tures appeared and then some people started to turn this heterogeneous variety
into a unified theory. In 1898, Whitehead wrote a book entitled A treatise on uni-
versal algebra (cf. [46]), but it is Garrett Birkhoff who is considered as the real
founder of universal algebra 4. Birkhoff was the first to give a very general defini-
tion of abstract algebra, as a set with a family of operators. He introduced further
general concepts and proved several important universal results (see [14], [16]).

The idea beyond universal logic is to develop a general theory of logics in
a similar way. This means that logics are considered as mathematical structures,
general concepts are introduced and universal results are proved.

One central question is to know which kind of structures are logical structures.
One may think that these structures are algebraic structures and that therefore
universal logic is just a part of universal algebra, this was more or less the idea
of Suszko. But as we have pointed out, it seems inappropriate to base essentially
a general theory of logics on the notion of algebraic structures. Other types of
structures are required.

7.3. Universal logic and the theory of structures

The idea I proposed about ten years ago is that logical structures must be con-
sidered as fundamental mother structures in the sense of Bourbaki, together with
algebraic, topological and order structures. This was also the idea of a former stu-
dent of de Possel, Jean Porte, 40 years ago (see [36]). In his work, Porte proposed
several types of logical structures.

My idea was to focus on a logical structure of type 〈S;�〉 where � is a relation
on P(S)XS. The important thing is that the structure of S is not specified, in
fact, further on, any kind of structure can be put on S, not only an algebraic
structure. We are back therefore to something very close to Tarski’s original theory
of consequence operator. One important difference is that in this new definition
of logical structure, no axioms are stated for the consequence relation � , in the
same way that no axioms are stated for the operators in Birkhoff’s definition of
abstract algebra.

Universal logic, like universal algebra, is just a part of the general theory of
structures, logical abstract nonsense is a subfield of general abstract nonsense. If, as
we have suggested, abstraction is the important thing, one could argue that what
is really interesting is a general theory of structures, like category theory, and not a
theory of specific structures like universal logic. The fact is that abstraction is really

4L. Corry erroneously says, in his otherwise excellent book [20], that the expression ‘universal
algebra” is due to Whitehead, this expression is due in fact to J.J. Sylvester, see [42].
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a nonsense if it is considered only by itself. Abstraction is abstraction of something
and when applied back it gives another view of this thing. Moreover there must
be a continuous interplay between the specific and the general. Universal logic is
an interesting material for the general theory of structures. For example, a central
point in universal logic is to try to define properly a relation between logics which
permits to compare them and to identify them (cf. [6], [13]). To solve this problem,
new concepts and tools have to be introduced at the level of a general theory of
structures, which can later on be applied to other fields of mathematics.
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[26] H.B. Curry, Leçons de logique algébrique. Gauthier-Villars, Paris/Nauwelaerts, Lou-
vain, 1952.

[27] J. Czelakowski, Protoalgebraic logcis, Kluwer, Dordrecht, 2001.
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