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Prof. Dr. Götz Trenkler



Preface

This Festschrift is dedicated to Götz Trenkler on the occasion of his 65th birthday.
As can be seen from the long list of contributions, Götz has had and still has

an enormous range of interests, and colleagues to share these interests with. He
is a leading expert in linear models with a particular focus on matrix algebra in
its relation to statistics. He has published in almost all major statistics and matrix
theory journals. His research activities also include other areas (like nonparametrics,
statistics and sports, combination of forecasts and magic squares, just to mention
a few).

Götz Trenkler was born in Dresden in 1943. After his school years in East Ger-
many and West-Berlin, he obtained a Diploma in Mathematics from Free University
of Berlin (1970), where he also discovered his interest in Mathematical Statistics.
In 1973, he completed his Ph.D. with a thesis titled: On a distance-generating func-
tion of probability measures. He then moved on to the University of Hannover to
become Lecturer and to write a habilitation-thesis (submitted 1979) on alternatives
to the Ordinary Least Squares estimator in the Linear Regression Model, a topic that
would become his predominant field of research in the years to come.

In 1983 Götz Trenkler was appointed Full Professor of Statistics and Economet-
rics at the Department of Statistics at the University of Dortmund, where he contin-
ues to teach and do research until today. He served as dean of the department from
1987 to 1990 and declined an offer from Dresden University of Technology in 1993.
He has been visiting Professor at the University of California at Berkeley, USA, and
the University of Tampere, Finland, and is a regular contributor to international con-
ferences on matrix methods in statistics. Currently, he is the Coordinating Editor of
Statistical Papers, Associate Editor of several other international journals and re-
cently the twice-in-a-row recipient of the best-teacher-award of the department.

Among Götz Trenkler’s extracurricular activities are tennis, chess and the com-
pilation of a unique collection of Aphorisms in Statistics, samples of which can be
found at the beginning of the chapters of this book. He certainly would do the sci-
entific community a great service by having them published at some time.

The editors are grateful to all contributors, many of whom are not only scientific
colleagues but also his personal friends.
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viii Preface

We express our appreciation for editorial and LATEX-assistance to Sabine Hege-
wald, and in particular to Matthias Deutscher, who managed to edit successfully
almost 30 manuscripts that were characterized by a great variety of individual pref-
erences in style and layout, and to Alice Blanck and Werner A. Müller from Springer
Publishing for their support.

Dresden and Dortmund Bernhard Schipp
July 2008 Walter Krämer
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Part I
Nonparametric Inference



It is proven that the celebration of birthdays is healthy. Statistics show that those
people who celebrate the most birthdays become the oldest.

S. den Hartog



Adaptive Tests for the c-Sample Location
Problem

Herbert Büning

Abstract This paper deals with the concept of adaptive tests and with an applica-
tion to the c-sample location problem. Parametric tests like the ANOVA F-tests are
based on the assumption of normality of the data which is often violated in practice.
In general, the practising statistician has no clear idea of the underlying distribu-
tion of his data. Thus, an adaptive test should be applied which takes into account
the given data set. We use the concept of Hogg [21], i.e. to classify, at first, the
unknown distribution function with respect to two measures, one for skewness and
one for tailweight, and then, at the second stage, to select an appropriate test for that
classified type of distribution. It will be shown that under certain conditions such a
two-staged adaptive test maintains the level. Meanwhile, there are a lot of proposals
for adaptive tests in the literature in various statistical hypotheses settings. It turns
out that all these adaptive tests are very efficient over a broad class of distributions,
symmetric and asymmetric ones.

1 Introduction

In the parametric case of testing hypotheses the efficiency of a test statistic strongly
depends on the assumption of the underlying distribution of the data, e.g. if we
assume normality then optimal tests are available for the one- two- and c-sample
location or scale problem such as t-tests, F-tests and Chi-square-tests. In the non-
parametric case the distribution of the test statistic is not based on a special distribu-
tion of the data like the normal, only the assumption of continuity of the distribution
is needed in general. It is well known, however, that the efficiency of nonparamet-
ric tests depends on the underlying distribution, too, e.g. the Kruskal–Wallis test in
the c-sample location problem has high power for symmetric and medium- up to
long-tailed distributions in comparison to its parametric and nonparametric com-
petitors whereas the Kruskal–Wallis test can be poor for asymmetric distributions.

Herbert Büning
Freie Universität Berlin, D-14195 Berlin, Germany
Herbert.Buening@fu-berlin.de
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4 H. Büning

But for the practising statistician it is more the rule rather than the exception
that he has no clear idea of the underlying distribution of his data. Consequently, he
should apply an adaptive test which takes into account the given data set.

At present, we register a lot of papers on adaptive tests in the literature, concern-
ing one-, two- and c-sample location or scale problems with two-sided and one-sided
ordered alternatives as well as umbrella alternatives.

Most of these adaptive tests are based on the concept of Hogg [21], that is, to
classify, at first, the type of the underlying distribution with respect to some mea-
sures like tailweight and skewness and then to select an appropriate rank test for
the classified type of distribution. It can be shown that this two-staged test proce-
dure is distribution-free, i.e. it maintains the level over the class of all continuous
distribution functions.

In our paper Hogg’s concept of adaptive tests is presented and demonstrated by a
real data set. Adaptive tests are generally not the best ones for a special distribution
but mostly second best whereas the parametric competitors are poor in many cases.
That is just the philosophy of an adaptive test to select the best one for a given
data set. It works in the sense of “safety first” principle. For clarity of exposition
we confine our attention to the c-sample location problem. A power comparison
by means of Monte Carlo simulation shows that the adaptive test is very efficient
over a broad class of distributions in contrary to its parametric and nonparametric
competitors.

2 Model, Hypotheses and Data Example

We consider the following c-sample location model:
Let Xi1, . . . ,Xini , i = 1, . . . ,c, be independent random variables with Xi j ∼ FX (x−

θi), j = 1, . . . ,ni, θi ∈ IR,
where the distribution function FX is assumed to be continuous. We wish to test

H0 : θ1 = · · ·= θc.

As alternative hypotheses we consider

the two-sided alternative H(1)
1 : θr �= θs for at least one pair (r,s), r �= s,

the ordered alternative H(2)
1 : θs ≤ ·· · ≤ θc with at least one strict inequality,

the umbrella alternative H(3)
1 : θ1 ≤ ·· · ≤ θl−1 ≤ θl ≥ θl+1 ≥ ·· · ≥ θc

with at least one strict inequality for peak l, 2≤ l≤ c−1.

Now, let us present a data example for H(1)
1 , the example is given by Chatfield

([13] p. 101).

Example 1. A study was carried out at a major London hospital to compare the
effects of different types of anaesthetic used in major operations. Eighty patients
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undergoing a variety of operations were randomly assigned to one of the four anaes-
thetics and a variety of observations were taken on each patient before and after the
operation. This exercise concentrates on just one of the response variables, namely
the time, in minutes, from the reversal of the anaesthetic until the patient opened his
or her eyes.

The data are shown in Table 1.
Figure 1 shows the boxplots of the data.
Obviously, we cannot assume normality for that kind of data, the underlying

distributions might be skewed to the right. Thus, what is an appropriate test for
testing H0? An answer will be given at the end of Sect. 3.3.

Data examples for testing H0 against the alternatives H(2)
1 and H(3)

1 can be found
in Hand et al. ([18], p. 212) and Simpson and Margolin [35], respectively.

Table 1 Time in minutes, from reversal of anaesthetic until the eyes open for each of 20 patients
treated by one of four anaesthetics A,B,C or D

A 3 2 1 4 3 2 10 12 12 3 19 1 4 5 1 1 7 5 1 12
B 6 4 1 1 6 2 1 10 1 1 1 2 10 2 2 2 2 1 3 7
C 3 5 2 4 2 1 6 13 1 1 1 4 1 1 1 8 1 2 4 0
D 4 8 2 3 2 3 6 2 3 4 8 5 10 2 0 10 2 3 9 1

−

Fig. 1 Boxplots of the data of Example 1



6 H. Büning

3 Tests for Two-sided Alternatives

3.1 Parametric F-test

Let Xi1, . . . ,Xini , i = 1, . . . ,c, be independent and normally distributed random vari-
ables, i.e.

Xi j ∼ N(μi,σ2
i ), j = 1, . . . ,ni with σ2

1 = · · ·= σ2
c = σ2.

We wish to test

H0 : μ1 = · · ·= μc versus H1 : μr �= μs for at least one pair (r,s), r �= s.

Then the likelihood ratio F-test is based on the statistic

F =
(N− c)

c
∑

i=1
ni(X̄i− X̄)2

(c−1)
c
∑

i=1

ni
∑
j=1

(Xi j− X̄i)2
, where N =

c

∑
i=1

ni, Xi =
1
ni

ni

∑
j=1

Xi j and X =
1
N

c

∑
i=1

niXi.

Under H0, the statistic F has an F-distribution with c−1 and N− c degrees of free-
dom. If we assume non-normal distributions with at least finite second moments it
can be shown that, under H0, F has asymptotically a chi-square distribution with
c−1 degrees of freedom, see, e.g. Tiku et al. [37].

3.2 Rank Tests

Let X(1), . . . ,X(N) be the combined ordered sample of X11, . . . ,X1n1 , . . . ,Xc1, . . . ,Xcnc ,
N = ∑c

i=1 ni.
We define indicator variables Vik by

Vik =

{
1 if X(k) belongs to the ith sample
0 otherwise.

Furthermore, we have real valued scores a(k), k=1, . . . ,N, with mean ā= 1
N

N
∑

k=1
a(k).

Now, we define for each sample a statistic Ai in the following way

Ai =
1
ni

N

∑
k=1

a(k)Vik, 1≤ i≤ c.

Ai is the average of the scores for the ith sample. Then the linear rank statistic LN is
given by
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LN =
(N−1)

c
∑

i=1
ni(Ai− ā)2

N
∑

k=1
(a(k)− ā)2

.

Under H0, LN is distribution-free and has asymptotically a chi-square distribution
with c−1 degrees of freedom, that means, H0 has to be rejected in favour of H(1)

1 if
LN ≥ χ2

1−α(c−1).
In the following, some examples of rank tests are given; for references, see, e.g.

Gastwirth [14], Randles and Wolfe [32], Büning [3, 5], Gibbons and Chakraborti
[15] as well as Büning and Trenkler [12]. In parenthesis that type of distribution is
indicated for which the test has high power.

Example 2 (Gastwirth test G (short tails)).

aG(k) =

⎧⎪⎨
⎪⎩

k− N+1
4 if k ≤ N+1

4

0 if N+1
4 < k < 3(N+1)

4

k− 3(N+1)
4 if k ≥ 3(N+1)

4 .

Example 3 (Kruskal–Wallis test KW (medium tails)).

aKW (k) = k.

As an efficient test for long tails Büning [5] proposed the so called LT -test
with scores chosen analogously to Huber‘s Ψ -function referring to M-estimates,
see Huber [25].

Example 4 (LT -test (long tails)).

aLT (k) =

⎧⎪⎪⎨
⎪⎪⎩
−
([N

4

]
+1

)
if k <

[N
4

]
+1

k− N+1
2 if

[N
4

]
+1≤ k ≤

[
3(N+1)

4

]
[N

4

]
+1 if k >

[
3(N+1)

4

]
.

[x] denotes the greatest integer less than or equal to x.

Example 5 (Hogg–Fisher–Randles test HFR (right-skewed)).

aHFR(k) =

{
k− N+1

2 if k ≤ N+1
2

0 if k > N+1
2 .

For left-skewed distributions interchange the terms k− (N +1)/2 and 0 in the
above definition.

All these four rank tests are included in our simulation study in Sect. 4. They are
“bricks” of the adaptive tests proposed in the next section.
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For the case of ordered alternatives H(2)
1 and umbrella alternatives H(3)

1 the most
familiar rank tests are the tests of Jonckheere [27] and Mack and Wolfe [28], re-
spectively. They are based on pairwise two-sample Wilcoxon statistics computed on
the ith sample vs. the combined data in the first i− 1 samples, 2 ≤ i ≤ c. It is well
known that both tests have high power for symmetric and medium-tailed distribu-
tions. Büning [6], Büning and Kössler [9] modifies these tests by using two-sample
statistics of Gastwirth and Hogg–Fisher–Randles rather than the Wilcoxon statistic.
These so called Jonckheere-type- and Mack–Wolfe-type tests are very efficient for
short-tailed and asymmetric distributions.

3.3 Adaptive Tests

Husková [26] and Hájek et al. [16] distinguishes between two different concepts of
adaptive procedures, nonrestrictive and restrictive ones. In the case of nonrestric-
tive procedures the optimal scores aopt(k) for the locally most powerful rank test,
which depend on the (unknown) underlying distribution function F and its density f,
are estimated directly from the data. This approach is applied, e.g. by Behnen and
Neuhaus [1] in many testing situations. We will apply the adaptive procedure of
Hogg [21] which belongs to the class of restrictive procedures, i.e. a “reasonable”
family of distributions and a corresponding class of “suitable” tests are chosen. The
adaptive test of Hogg is a two-staged one. At the first stage, the unknown distribution
function is classified with respect to some measures like tailweight and skewness.
At the second stage, an appropriate test for that classified type of distribution is
selected and then carried out. Hogg [22] states: “So adapting the test to the data
provides a new dimension to nonparametric tests which usually improves the power
of the overall test.”

This two-staged adaptive test maintains the level α for all continuous distribution
functions as shown by the following

Lemma 1. (1) Let F denote the class of distribution functions under consideration.
Suppose that each of m tests based on the statistics T1, . . . ,Tm is distribution-free
over the class F ; i.e. PH0(Th ∈Ch|F) = α for each F ∈F , h = 1, . . . ,m.

(2) Let S be some statistic that is independent of T1, . . . ,Tm under H0 for each
F ∈F . Suppose we use S to decide which test Th to conduct. (S is called a selec-
tor statistic.). Specially, let US denote the set of all values of S with the following
decomposition:

US = D1∪D2∪·· ·∪Dm, Dh∩Dk = ∅ for h �= k,

so that S ∈ Dh corresponds to the decision to use the test Th. The overall testing
procedure is then defined by:

If S ∈ Dh then reject H0 if Th ∈Ch.
This two-staged adaptive test is, under H0, distribution-free over the class F ,

i.e. it maintains the level α for each F ∈F .
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Proof. PH0(reject H0| F) = PH0

(
m⋃

h=1
(S ∈ Dh∧Th ∈Ch| F)

)

=
m
∑

h=1
PH0(S ∈ Dh∧Th ∈Ch|F)

=
m
∑

h=1
PH0(S ∈ Dh|F) ·PH0(Th ∈Ch|F)

= α ·
m
∑

h=1
PH0(S ∈ Dh|F) = α ·1 = α . 
�

Let us apply this Lemma on our special problem:
1. F is the class of all continuous distribution functions F and T1, . . . ,Tm are

linear rank statistics. Then Th is distribution-free over F , h = 1, . . . ,m.
2. S is a function of the order statistics of the combined sample. Under H0, the

order statistics are the complete sufficient statistics for the common, but unknown F ,
and therefore independent of every statistic whose distribution is free of F (theorem
of Basu, see, e.g. Roussas [33], p. 215). Thus, under H0, S is independent of the
linear rank statistics T1, . . . ,Tm.

As a selector statistic S we choose S = (M̂S,M̂T ), where M̂S and M̂T are measures
of skewness and tailweight, respectively, defined by

M̂S =
x̂0.975− x̂0.5

x̂0.5− x̂0.025
and

M̂T =
x̂0.975− x̂0.025

x̂0.875− x̂0.125
with the p-quantile x̂p given by

x̂p =

⎧⎪⎨
⎪⎩

X(1) if p≤ 0.5/N
(1−λ )X( j) +λX( j+1) if 0.5/N < p≤ 1−0.5/N
X(N) if p > 1−0.5/N

where X(1), . . . ,X(N) again are the order statistics of the combined c samples and
j = [np + 0.5], λ = np + 0.5− j. Obviously, M̂S < 1, if F is skewed to the left,
M̂S = 1, if F is symmetric and M̂S > 1, if F is skewed to the right. M̂T ≥ 1, the
longer the tails the greater M̂T . The measures M̂S and M̂T are location and scale
invariant.

In Table 2 values of the corresponding theoretical measures MS and MT are pre-
sented for some selected distributions where CN1, CN2 and CN3 are contaminated
normal distributions:

CN1 = 0.95N(0,1)+0.05N(0,32), CN2 = 0.9N(0,1)+0.1N(0,52), both sym-
metric, and CN3 = 0.5N(1,4)+0.5N(−1,1), a distribution skewed to the right.

We see, the exponential distribution is extremely right-skewed and the Cauchy
has very long tails. Now, two questions arise:

First, what is an appropriate number m of categories D1, . . . ,Dm?
Such a number m may be three, four or five, in most proposals four categories

are preferred, three for symmetric distributions (short, medium, long tails) and one
for distributions skewed to the right. A fifth category can be defined for left-skewed
distributions.
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Table 2 Theoretical values of MS and M6

Distributions MS MT
Uniform 1.000 1.267
Normal 1.000 1.704
CN1 1.000 1.814
Logistic 1.000 1.883
Double exp. 1.000 2.161
CN2 1.000 2.606
Cauchy 1.000 5.263
CN3 1.765 1.691
Exponential 4.486 1.883

Second, how do we fix the bounds of the categories?
The bounds depend on the theoretical values of MS and MT (see Table 2) in order

to consider different strength of skewness and tailweight. Simulations by trial and
error may improve the bounds in the adaptive scheme. To our experience, however,
the very special choice of the bounds is not the crucial point, it is much more impor-
tant to include efficient rank tests in the adaptive scheme, an efficient rank test not
only for the corresponding category but also in the neighbourhood of that category
because of possible misclassifications, see Table 3.

Now, for our special c-sample location problem we propose the following four
categories which are based on S:

D1 = {S|0≤ M̂S ≤ 2; 1≤ M̂T ≤ 1.5}
D2 = {S|0≤ M̂S ≤ 2; 1.5 < M̂T ≤ 2}
D3 = {S|M̂S ≥ 0; M̂T > 2}
D4 = {S|M̂S > 2; 1≤ M̂T ≤ 2}.

This means, the distribution is classified as symmetric with short- or medium
tails, if S falls in the category D1 or D2, respectively, as long-tailed if S belongs to
D3 and as skewed to the right with short- or medium tails if S falls in D4.

We now propose the following adaptive test A:

A =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

G if S ∈ D1

KW if S ∈ D2

LT if S ∈ D3

HFR if S ∈ D4.

Figure 2 shows the adaptive scheme of test A.
The adaptive test above is based on the measures M̂S and M̂T calculated from

the combined ordered sample X(1), . . . ,X(N) in order to guarantee that the resulting
test is distribution-free in the sense of the Lemma. Another way is to calculate the
measures M̂S and M̂T from each of the c samples separately and then to consider the
weighted sum of these measures, that is
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M̂T

M̂S
0 1 2

1.5

2

D1 : G

D2 : KW

D3 : LT

D4 : HFR

Fig. 2 Adaptive scheme

M̄S =
n1M̂S1 + · · ·+ncM̂Sc

N
and M̄T =

n1M̂T 1 + · · ·+ncM̂T c

N
,

where M̂Si and M̂Ti are the measures for skewness and tailweight of the ith sample,
i = 1, . . . ,c.

The adaptive test based on the measures from the combined sample is denoted
by AC and that based on the measures from the single samples by AS. The adaptive
test AC is distribution-free, the measures M̂S and M̂T , however, are affected by the
amount of the shift under H1, whereas the adaptive test AS is not distribution-free,
but M̄S and M̄T are not affected by the shift.

Table 3 shows the classification performance of (M̂S,M̂T ) and (M̄S,M̄T ) for
the case of c = 4, n1 = n2 = n3 = n4 = 20. The data were generated by simulation
(10,000 replications) from the uniform (Uni), normal (Norm), logistic (Log), double
exponential (Dexp), Cauchy (Cau), the contaminated normal CN3 and the exponen-
tial (Exp) distribution.

The amount of shift is determined by the parameters θi = kiσF , i = 1, . . .,4,
where σF is the standard deviation of the underlying distribution function F . For
the Cauchy we choose σCau = F−1

Cau(0.8413) = 1.8373 because of Φ(1) = 0.8413
where Φ is the standard normal distribution function.

Let us consider, as an example, the AC-test with data from the uniform dis-
tribution and ki = 0, i = 1, . . . ,4. Then in 9,911 of 10,000 cases these data were
(correctly) classified as symmetric and short-tailed (D1), in 72 cases as symmetric
and medium-tailed (D2), in 0 cases as long-tailed (D3) and in 17 cases as skewed
to the right (D4). Under the null hypothesis the classification schemes based on
(M̂S,M̂T ) and (M̄S,M̄T ) are quite effective for all distributions considered.

In contrary to the AS-test the AC-test – based on the classification performance
of (M̂S,M̂T ) – is strongly affected by the amount of shift for the uniform, dou-
ble exponential and the two distributions skewed to the right, CN3 and Exp. As
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Table 3 Skewness and tailweight classification of the adaptive tests AC and AS, c = 4, n1 = n2 =
n3 = n4 = 20

k1,k2,k3,k4 Uni Norm Log Dexp Cau CN3 Exp
0,0,0,0

D1
AC 9,911 1,171 247 47 0 1041 5
AS 9,786 1,484 410 66 1 1083 4

D2
AC 72 8,131 6,538 3,082 13 5,711 4
AS 151 7,901 6,704 3,544 14 4,977 4

D3
AC 0 690 3,203 6,855 9,987 822 3,409
AS 0 577 2,816 6,313 9,983 901 3,319

D4
AC 17 8 12 16 0 2,426 6,582
AS 63 38 70 77 2 3,039 6,673
0,0.2,0.4,0.6

D1
AC 9,407 1,101 308 52 0 1,088 70
AS 9,799 1,416 423 83 0 1,092 13

D2
AC 588 8,154 6,807 3,571 9 6,393 166
AS 140 7,915 6,726 3,585 15 4,952 5

D3
AC 0 735 2,826 6,366 9,990 801 3,852
AS 0 634 2,797 6,268 9,984 900 3,350

D4
AC 5 10 17 11 1 1,718 5,912
AC 61 35 54 64 1 3,056 6,632
0,0.4,0.8,1.2

D1
AC 6,128 1,191 450 95 0 1,161 315
AS 9,765 1,442 376 60 0 1,072 9

D2
AC 3,868 8,171 7,285 4,830 20 7,366 2,123
AS 181 7,922 6,656 3,505 8 5,034 3

D3
AC 1 634 2,248 5,058 9,980 774 3,132
AS 0 598 2,898 6,371 9,989 949 3,322

D4
AC 3 4 17 17 0 699 4,430
AS 54 38 70 64 3 2,945 6,666

the differences of θ1, . . . ,θ4 increase, all these four distributions tend to be clas-
sified more as having medium tails. But for large differences of the location
parameters each of the tests in the adaptive scheme should reveal these differ-
ences. For the normal and the Cauchy distribution the classification performance of
(M̂S,M̂T ) is hardly affected by the shift. Similar results hold for c = 3 samples and
other sizes.
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Now, let us analyze the data Example 1 from Sect. 2. What is an appropriate test
for these data? First, we calculate the measures M̂S and M̂T of the combined ordered
sample X(1), . . . ,X(N) of the four samples in order to guarantee that the resulting
adaptive test AC maintains the level. For the data we get M̂S = 3.80 and M̂T = 1.41,
i.e. the distribution of the data is extremely skewed to the right, see Table 2. The
selector statistic S = (3.80,1.41) belongs to D4 and we have to apply the HFR-test.
Because of HFR = 5.636 < χ2

0.95(3) = 7.815, H0 is not rejected at level α = 5%.
It should be noted that the adaptive test AC is only asymptotically distribution-free
because an asymptotical critical value of HFR is used.

If we calculate the measures M̄S and M̄T from each of the four samples separately,
we get M̄S = 5.51 and M̄T = 1.79. Thus, we have to apply the HFR-test, too, and
we get the same test decision. But notice, the adaptive test AS based on the selector
statistic S = (5.51,1.79) is not distribution-free.

In the same sense as described above adaptive tests may be constructed for or-
dered alternatives H(2)

1 and umbrella alternatives H(3)
1 by including Jonckheere-type

or Mack–Wolfe-type tests in the adaptive scheme, see Büning [6] and Büning and
Kössler [9].

4 Power Study

We investigate via Monte Carlo methods (10,000 replications) the power of all the
tests from Sect. 3. The selected distributions are the same as in Table 2 where each of
them has mean or median (Cauchy) equal to zero. Here, we again consider only the
case of c = 4 samples with equal sizes ni = 20, i = 1, . . . ,4. The location parameters
θi are defined by θi = kiσF as in Sect. 3.3. The nominal level of the tests is α = 5%.
Table 4 presents the power values.

We can state:
The F-test maintains the level α quite well for all distributions considered with

the exception of the Cauchy for which finite moments do not exist. In this sense, the
approximation of the distribution of F by the chi-square distribution does not work,
see Sect. 3.1. Thus, for the Cauchy a power comparison of the F-test with the other
tests becomes meaningless.

For each of the distributions (with exception of the normal) there is a linear rank
test which has higher power than the F-test, e.g. the Gastwirth test for the uniform,
the Kruskal–Wallis test for CN1 and the logistic, the LT -test for the double expo-
nential and CN2 and the Hogg–Fisher–Randles test for both distributions skewed to
the right, CN3 and Exp.

The adaptive tests, AC and AS, are the best ones over this broad class of distribu-
tions. The AS-test has (slightly) higher power than the AC-test, but since in all cases
the actual level of the AS-test starts higher than the level of the AC-test, it is difficult
to assess the higher power values of the AS-test in comparison to the AC-test. Ex-
cept for the normal distribution the AC-test is more powerful than the F-test for all
symmetric and asymmetric distributions.
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Table 4 Power of some tests (in percent) under selected distributions α = 5%, c = 4,
(n1,n2,n3,n4) = (20,20,20,20)

Tests k1,k2,k3,k4 Uni Norm CN1 Log Dexp CN2 Cau CN3 Exp
F 0, 0, 0, 0 4.8 4.9 4.9 4.8 4.8 4.3 1.8 5.2 4.3

0, 0.2, 0.4, 0.6 3.5 33.7 36.4 35.4 34.7 40.3 34.7 36.9
0, 0.3, 0.6, 0.9 68.5 68.8 69.3 68.9 69.2 71.3 69.3 69.9

G 0, 0, 0, 0 4.5 4.6 4.9 4.6 4.9 4.8 5.1 4.7 4.2
0, 0.2, 0.4, 0.6 50.4 27.6 33.4 28.2 25.0 51.9 12.1 32.7 70.7
0, 0.3, 0.6, 0.9 85.1 59.5 65.2 57.2 52.6 84.1 21.0 65.6 90.7

KW 0, 0, 0, 0 4.6 4.7 4.7 4.4 4.9 5.0 5.0 4.8 4.3
0, 0.2, 0.4, 0.6 29.3 31.7 39.3 36.7 45.4 70.5 31.2 37.6 64.2
0, 0.3, 0.6, 0.9 61.5 65.8 75.2 71.4 81.0 96.7 60.8 72.3 92.1

LT 0, 0, 0, 0 4.6 4.9 4.9 4.8 4.7 5.1 5.3 4.8 4.5
0, 0.2, 0.4, 0.6 18.7 28.9 36.0 35.1 49.2 70.0 39.9 43.2 53.4
0, 0.3, 0.6, 0.9 40.8 60.2 71.4 69.2 84.2 97.0 72.7 66.8 87.7

HFR 0, 0, 0, 0 4.5 4.7 4.9 4.9 4.6 5.0 5.1 4.7 4.8
0, 0.2, 0.4, 0.6 23.3 24.8 31.3 29.6 36.5 59.0 26.8 43.5 86.1
0, 0.3, 0.6, 0.9 50.0 54.2 63.9 60.0 70.6 90.0 50.7 78.6 99.2

AC 0, 0, 0, 0 4.5 4.8 4.8 4.4 4.7 5.1 5.3 4.7 4.7
0, 0.2, 0.4, 0.6 49.1 30.8 37.9 35.9 47.6 70.5 39.9 37.6 72.9
0, 0.3, 0.6, 0.9 78.9 64.1 73.6 70.1 82.5 97.0 72.7 71.3 94.1

AS 0, 0, 0, 0 5.1 5.3 5.2 4.9 5.0 5.2 5.4 6.0 4.8
0, 0.2, 0.4, 0.6 50.5 32.5 38.7 37.1 48.7 70.4 39.9 41.8 75.8
0, 0.3, 0.6, 0.9 84.9 66.0 74.1 71.2 83.2 97.1 72.7 75.9 96.2

The adaptive test AC is not the best one for a special distribution but mostly
second or third best. That is just the philosophy of an adaptive test, to select the best
one for a given data set.

5 Outlook

In our paper we studied an adaptive c-sample location test which behaves well
over a broad class of distributions, symmetric ones with different tailweight and
right-skewed distributions with different strength of skewness. Further adaptive tests
for the two- and c-sample location problem can be found in Hogg et al. [23],
Ruberg [34], Hill et al. [20], Hothorn and Liese [24], Büning [4, 5, 6], Beier
and Büning [2], Sun [36], O’Gorman [30], Büning and Kössler [9], Büning and
Rietz [10] and Neuhäuser et al. [29]. For an adaptive two-sample scale test, see Hall
and Padmanabhan [17] and Büning [8] and for an adaptive two-sample location-
scale test of Lepage-type, see Büning and Thadewald [11]. An adaptive test for
the general two sample problem based on Kolmogorov–Smirnov- and Cramér- von
Mises-type tests has been proposed by Büning [7]. A very comprehensive survey of
adaptive procedures is given by O’Gorman [31].
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In our proposal for an adaptive test in Sect. 3.3 we restrict our attention to two
measures for skewness and tailweight, M̂S and M̂T . Other measures for skewness
and tailweight are discussed in the literature, see, e.g. the measures Q̂1 and Q̂2 of
Hogg [21]. Of course, we may add other types of measures in order to classify
the unknown distribution function possibly more correctly, e.g. we can include an
additional measure for peakedness, see Büning [3] and Hogg [21]. In this case we
have a three dimensional selector statistic S defining our adaptive scheme. To our
experience, there is, however, no remarkable gain in power of the adaptive test by
adding the peakedness measure, see Handl [19]. Thus, we propose to use only two
measures, one for skewness and one for tailweight.

As a result of all our studies on adaptive tests we can state without any doubt,
that adaptive testing is an important tool for any practising statistician and it would
be a profitable task to add adaptive procedures to statistical software packages.
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