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Preface

Plants utilize light not only for photosynthesis but also for monitoring changes
in environmental conditions essential to their survival. Wavelength, intensity,
direction, duration, and other attributes of light are used by plants to predict
imminent seasonal change and to determine when to initiate physiological and
developmental alterations. Most plants sense red/far-red light and blue light
through photoreceptors: phytochromes detect red/far-red light, while there are
several kinds of blue-light receptors, including cryptochromes, phototropins, and
ZLP/FKF/LKP/ADO. The typical phytochrome responses known as red/far-red
photoreversible phenomena were discovered in 1952 by Borthwick et al. and 
the phytochrome was characterized as a chromoprotein in 1959 by Butler et al.
However, blue-light receptors were not identified until cryptochrome was found
in 1993 by Cashmore’s group. Now we are in an exceptional period of discovery
of blue-light receptors such as phototropins, ZLP/FKF/LKP/ADO, and PAC in
Euglena. Thus, it is very timely to publish this book on light sensing and signal
transduction in plant photomorphogenesis written by leading scientists gathered
at Okazaki from all over the world in June 2004. It was a great opportunity to
discuss new discoveries in the field. It also marked the retirement of Prof. Masaki
Furuya, who has contributed substantially to this field for many years.

This volume, published as part of the special-issue series of The Botanical
Society of Japan, presents the advances made over the last 5 to 10 years in many
of the related fields. Included are Prof. Furuya’s “History and Insights” of plant
photomorphogenesis, three overviews of the main photoreceptors, and Prof.
Briggs’ epilogue comparing the status of research in 1986 and 2004, when the
XVI and the LVIII Yamada Conferences on plant photomorphogenesis were
held at Okazaki. I believe that this book will prove indispensable and will con-
tribute to the advancement of the study of photomorphogenesis.

I express my sincere gratitude to Yamada Science Foundation and to the 
executive members of the Foundation for their generosity, which made it pos-
sible for us to publish this book.

Masamitsu Wada
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Part I
Prologue



Genesis (Legend to 1950s)

Human beings have always relied on plants to provide their staple foods and raw
materials for diverse tools, and since prehistoric times must have known that sun-
light greatly influences plant development and reproduction. From the Renais-
sance onwards, careful observations of nature led to a growing awareness that
both higher and lower plants respond variously to light in terms of irradiation
dosage for photosynthesis, direction for phototropism, timing and duration for
photoperiodism, and wavelengths for photomorphogenesis. Joseph Priestley
(1772) discovered that green plants utilize light as their source of energy for the
production of complex organic substances. Julius Sachs (1864) demonstrated that
only the blue region of visible light resulted in phototropic bending of plants.
Charles Darwin and his son (1881) carried out a pioneering experiment on light-
signal transduction of phototropism, in which they separated the photoreceptive
site from the responding growth region in monocot seedlings. In 1910, Georg
Klebs gathered a lot of evidence that the environmental light greatly influences
growth and development of seed plants and ferns. However, the molecular basis
of light perception and signal transduction in plants was not elucidated until quite
recently.

The physiological capacity of plants to adjust processes throughout their life
cycle to the seasonal change of environment is crucial for their survival. Julien
Tournois (1914), a graduate student of the École Normale Supérieure in Paris,
discovered that night length rather than day length was the determining factor
for flowering time of his experimental material, Japanese hop. Wightman Garner
and Harry Allard (1920) at the Arlington Farm of USDA carried out compre-
hensive experiments on flowering time in several plants by changing the night
length using three dark houses. They discovered that most of the plants tested

Chapter 1

History and Insights
Masaki Furuya1,2

1 Retired, the University of Tokyo in 1987, Riken Frontier Research Program in 1992, and
Hitachi Advanced Research Laboratory in 2001 (see Furuya 2004)
2 Permanent address: 6-2-10 Kugahara, Ota-ku, Tokyo 146-0085, Japan
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could be classified as “short-day” or “long-day” plants, and established the
concept of photoperiodism. Karl Hamner and James Bonner (1938) made a deci-
sive contribution to photoperiodism research by finding that a brief exposure of
light in mid-night, given under normally inductive conditions for flowering,
caused cocklebur, a short-day plant, to remain completely vegetative.

Recognition that many responses of plants to light have a common underly-
ing cause came from the measurement of action spectra using a custom-built
spectrograph (Parker et al 1949). The year 1952 was a momentous year in the
history of plant photomorphogenesis, because Harry Borthwick and his col-
leagues of USDA in Beltsville discovered the red (R) and far-red (FR) 
photoreversible effect on seed germination in lettuce and night-break of 
photoperiodic floral induction in cocklebur (Borthwick et al 1952). They soon
formulated the unique idea that reversible changes in the optical density of
appropriate tissues might result from irradiating the sample alternately with
actinic R and FR light.This hypothesis was proved by Warren Butler, Karl Norris,
Bill Siegelman and Sterling Hendricks (1959), who showed repeatedly photore-
versible absorption changes at 660 and 730nm regions upon alternately given R
and FR actinic light in etiolated maize tissues and a crude extract of the relevant
proteinaceous pigment. Shortly after this discovery, the term “phytochrome” was
half-jokingly used by Butler in their laboratory, then published by Borthwick and
Hendricks (1960). It is remarkable that the members of the same institution dis-
covered all key phenomena such as the photoperiodism, the R/FR reversible
effect and the photoreceptor phytochrome (Sage 1992).

The Era of Spectrophotometry, Physiology, and 
Biochemistry (1960s–1980s)

Photoreversible Regulation and Molecular Properties 
of Phytochrome
The discoverers of phytochrome had proposed a simple hypothesis that phy-
tochrome in its red light absorbing form (Pr) is physiologically inactive, and is
only active in its far-red absorbing form (Pfr). In the following few years,
they attempted to prove this hypothesis photometrically and biochemically
(Siegelman and Butler 1965), but the puzzle did not prove to be simple. Pfr was
found to undergo non-photochemical transformations in vivo such that both Pfr

decay and Pfr reversion to Pr took place in the dark (Butler et al 1963). However,
in crude extracts, Pfr showed neither decay nor reversion, and Pr and Pfr appeared
quite stable in vitro (Furuya et al 1965). After a dual-wavelength difference spec-
trophotometer, Ratiospect R2, became commercially available in 1963, several
laboratories began to measure phytochrome in vivo to examine the correlation
of photoreversible responses of plants to R and FR light with photometrically
measured phytochrome content, initial Pfr state and dark transformation of Pfr in
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vivo. However, most of these attempts failed to find any correlation (Hillman
1967). This presented an obstacle, which persisted for some time, and is reflected
in the fact that the number of publications on spectrophotometric measurements
of phytochrome in vivo reached a plateau of ca. 20 papers/year by 1966.

In an alternative approach, workers were attempting to clarify the structure
and molecular properties of phytochrome. The Beltsville group initially devel-
oped a procedure for the isolation and purification of phytochrome, finding its
average molecular weight as a monomer to be ca. 40 kilodaltons (kDa). However,
other larger forms of phytochrome, including degraded “small” (<60kDa) and
undegraded “large” (114–118kDa) phytochromes were subsequently discovered
(Briggs and Rice 1972, Pratt 1982), culminating in the isolation of full-length
“native” (124kDa) phytochrome by Vierstra and Quail (1982). In parallel with
these efforts, Wolfhart Rüdiger and his colleagues spent two decades engaged in
determining the nature of the phytochrome chromophore, and were finally able
to describe the chemical structure of phytochromobilin in both Pr and Pfr forms
(Rüdiger et al 1983). Lagarias and Rapoport (1980) discovered the structure of
the A ring of phytochromobilin and demonstrated the manner of its linkage to
the phytochrome peptide. Since the 1970s, Pill-Soon Song has developed his
model of phytochrome molecules in terms of photoreversible change of the chro-
mophore topography between Pr and Pfr and inter-domain crosstalk between the
chromophore and the apoprotein (Park et al 2000, Chapter 6).

Although phytochrome was long believed to be easily extractable from plant
tissues using a simple buffered solution, Rubinstein et al (1969) provided an evi-
dence for bound phytochrome fraction in oat cells. Quail et al (1973) found that
the pelletability of phytochrome from crude extracts was enhanced by a brief
irradiation of etiolated tissues with R light. Using immunocytochemistry,
Mackenzie et al (1975) observed a photoreversible redistribution of Pfr seques-
tering in the cytoplasm, but were not able to demonstrate the physiological 
significance of this process. In contrast, Wolfgang Haupt (1970) clearly 
demonstrated a role for membrane-bound phytochrome in chloroplast move-
ment in Mougeotia using a microbeam irradiation technique.

During this era, evidence accumulated in support of the existence of two phys-
iologically, photometrically, and immunochemically distinct phytochrome pools
controlling R/FR reversible reactions in higher plants. Namely, “labile” type I
phytochrome (phyI) is synthesized as Pr in the dark and Pfr is destroyed rapidly
in the light, whereas “stable” type II phytochrome (phyII) is produced constitu-
tively and stays in cells for longer time irrespective of the light conditions (Furuya
1993). In fact, the hottest issue in the Yamada Conference held at Okazaki in
1986 (Furuya 1987) was “green” phytochrome. At the enthusiastic request of the
participants, an extra session was organized, in which Yukio Shimazaki from the
Pratt laboratory, Jim Tokuhisa from the Quail laboratory, and Hiroshi Abe from
my laboratory told their latest stories on biochemically and immunochemically
distinguishable phytochromes from etiolated and “green” tissues. Further, during
the past several decades, researchers in Wageningen genetically isolated many
photomorphogenic mutants, including a cucumber long hypocotyl mutant (lh)
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that was immunochemically determined to be a phyII-deficient mutant (López-
Juez et al 1992).

A Period of Groping in Studies on Photomorphogenesis
From the 1960s to the 1980s, only phytochrome was the known photoreceptor
for photomorphogenesis, and its action could only be recognized in R/FR pho-
toreversible, low fluence (LF) responses. During this period, researchers had
become aware that plants respond to light in a variety of other ways, but the cor-
responding photoreceptor pigments were not known.

In many early studies, we suffered from a significant effect on photomorpho-
genesis of the extremely dim “green safe light” used in dark rooms, which did not
cause significant change of spectrophotometrically measured phytochrome in
vivo. To avoid this effect and to prepare totally etiolated samples, we had to grow
plants in lightproof aeration boxes. Blaauw et al (1968) found that red light of
very low fluence (VLF) inhibited growth in Avena seedlings, and that this effect
was not reversed by far-red light. Similar reports about VLF effects in etiolated
plants increased time being, but further analysis was technically very difficult in
those days.

Hans Mohr and his colleagues in Freiburg had extensively investigated the
effect of blue and far-red light on photomorphogenesis in terms of sensor pig-
ments, signal amplification, and gene expression, and established the concept of
the High Energy Reaction (Mohr and Schäfer 1983), which was later renamed
the high irradiance reaction (HIR). In a crucial experiment using bichromatic
light, Karl Hartmann (1966) was able to show that although the HIR does not
show R/FR reversibility and does not obey the reciprocity law, it is indubitably
mediated by phytochrome.

Since the early report of Sachs (1864), blue and near-UV light effects on devel-
opment and metabolism were widely documented in the plant kingdom and
microbes (Senger 1980), but at this time we understood little about the photore-
ceptor pigments for these phenomena. One of the reasons for this frustrating sit-
uation was that plant cells contain a number of natural compounds that absorb
light in the blue and/or near-UV spectral regions. Using only the conventional
spectrophotometric, biological, and biochemical methods of the day, it was very
difficult to identify any of them as photoreceptors for specific phenomena.

It is our good fortune that we can look back at the early history of phytochrome
studies in the book by Linda Sage (1992) and of photomorphogenesis in the pro-
ceedings of symposia (Mitrakos and Shropshire 1972, Smith 1976 1983, De Greef
1980, Furuya 1987, Thomas and Johnson 1990), an encyclopedia (Shropshire and
Mohr 1983), and other more advanced treatises (Kendrick and Kronenberg
1994).
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The Era of Molecular Genetic Approaches (1990s)

Differential Photoperception by Phytochromes
The year 1989 was another turning point for phytochrome research, because of
the discoveries of the phytochrome gene family by Bob Sharrock and Peter Quail
(1989) and of the det mutant, which caused morphogenesis to follow the photo-
morphogenic path in complete darkness, by Joanne Chory and her collaborators
(1989).These findings caused a great sensation among us and provided new ques-
tions about whether individual phytochrome family members have discrete phys-
iological or photosensory functions, and whether each has a discrete primary
mechanism of action and a unique signal transduction pathway.

To answer these questions, molecular genetic approaches using Arabidopsis
mutants soon became a main highway in this field during the 1990s, while trans-
genic overexpression of each phytochrome gene (PHY) proved to be less fruit-
ful. Individual phytochrome photoreceptor mutants were reported in 1993, and
phytochrome A (phyA) null mutant (phyA) and phytochrome B (phyB) null
mutant (phyB) were soon being extensively used. One of Maarteen Koornneef’s
Arabidopsis mutants, hy3 (Koornneef et al 1980), was found to have mutations
in the PHYB gene by Reed et al (1993), whereas hy1 and hy2 were shown to be
chromophore-deficient mutants. Several different groups screened mutant
seedlings under continuous FR light and identified phyA mutants, finding that
phyA-null mutants of Arabidopsis display a WT phenotype in white light 
(Whitelam et al 1993), and that phyA and phyB showed overlapping functions
in Arabidopsis development (Reed et al 1994). Despite the apparently unique
photoperception of phyA and phyB under continuous irradiation with FR light
(cFR) and R light (cR) respectively, evidence soon accumulated for redundancy
between phyA and phyB effects and for mutual antagonism between the actions
of these phytochromes (Whitelam and Devlin 1997). Fifteen PHYA-regulated
genes identified by fluorescent differential display screen were expressed pho-
toreversibly by R/FR exposures, suggesting redundancy among phyA, phyB, and
other phyII type phytochromes (Kuno et al 2000).

Using the relevant Arabidopsis phyA and phyB mutants, Shinomura et al
(1996) determined separate action spectra for phyA- and phyB-specific induc-
tion of seed germination at Okazaki large spectrograph.We discovered that phyA
induces seed germination photo-irreversibly in response to VLF light in the range
300–780nm, while phyB regulates germination in R/FR reversible manner of LF
light, identical with the result by Borthwick et al (1952). The classic HIR is now
known to include phyA-, phyB-, and blue-UV photoreceptor-mediated HIRs.
Shinomura et al (2000) found that the phyA-HIR can in fact be replaced by inter-
mittent irradiation with FR pulses if given at intervals of 3min for 24h, and that
the action spectra for phyA-HIR determined by such intermittent treatment of
300–800nm lights using Arabidopsis WT, phyB-, and phyAphyB-mutants had
peaks at blue and FR regions and was very similar to the action spectra con-
structed for the HIR in Sinapis (Mohr and Schäfer 1983). Very similar differen-
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tial photoperception by phytochromes was recently shown in rice using phyA-,
phyB- and phyC-mutants (Chapter 12).

In addition to photoreceptor mutants, putative mutants for early steps in light
signal transduction were isolated in Arabidopsis in the laboratories of Peter
Quail (Chapter 2), Nam-Hai Chua (Bolle et al 2000) and several others. These
mutants were characterized for their epistasis with phyA and phyB mutations,
allowing some (FHY1, FHY3, FAR1, and PAT1) to be assigned to phyA 
signaling and others (PEF2, PEF3, and RED1) to phyB, while a third group
(PIF3, PSI2, and PEF1) could be assigned to both (see review by Hudson 
2000). However, it seems too early to assemble the entire phytochrome signal-
ing pathway upon these mutant studies. The constitutively de-etiolate mutants,
cop/det/fus, mimic the phenotype of light-grown seedlings when grown in the
dark and appear to act at later stages of light signal transduction in association
with the COP1/COP9 signalosome (Chapter 29).

Apart from the mutant analyses described above, a new field of phytochrome
signaling studies was born in this era, based on the growing recognition that 
light-induced nuclear import of cytosolic phytochromes is a multi-step signaling
process. The first evidence came from the demonstration by immunocytochem-
istry and PHYB::GUS transgenic techniques that phyB was translocated into the
nucleus under cR (Sakamoto and Nagatani 1996). This observation has subse-
quently been extended to all five Arabidopsis phytochromes, using PHYA-
E::GFP fusion proteins in transgenic plants (Nagy and Schäfer 2002), and
indicates the importance of phytochromes in the control of gene expression. The
intracellular distribution of native phytochromes has also been observed using
cryosectioning and immunochemical staining techniques at the optical (Hisada
et al 2000) and electron microscope (Hisada et al, 2001) levels. Another victory
in this era was the successful chemical synthesis of phytochromobilin and its
diverse derivatives by the group of Katsuhiko Inomata in Kanazawa, enabling us
at long last to analyze the relationship between chromophore structure and phy-
tochrome function in vitro and in vivo (Hanzawa et al 2001, 2002).

Thanks to recent genome projects, phytochrome-related proteins have been
discovered in cyanobacteria and eubacteria, and this has opened new avenues 
for investigating biliprotein photosensory function and the evolution of phy-
tochromes in the entire plant kingdom (Montgomery and Lagarias 2002, Chapter
3). The diversity of phytochrome gene families reflects the diverse evolutionary
histories of plants, and it would be of interest to investigate a possible relation-
ship between the most functionally advanced phytochrome, phyA, and the evo-
lutionary emergence of seed plants.

Discovery of Blue Light Photoreceptor Pigments
Every meeting on plant photomorphogenesis during the 1970s and 1980s con-
sisted of two major sessions, respectively dealing with phytochrome and blue-UV
absorbing pigments. In the latter of these sessions we had long been frustrated
with our inability to identify photoreceptor pigments. However, in 1993 Margaret
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Ahmad and Tony Cashmore have opened this heavy door using one of 
Koornneef’s Arabidopsis mutants, hy4, which was defective in blue light-
dependent photomorphogenesis. They isolated a T-DNA tagged hy4 allele, which
allowed the cloning of the HY4 gene (Ahmad and Cashmore 1993). The protein
encoded by HY4 was a member of the photolyase family and was named cryp-
tochrome (cry). Chentao Lin and colleagues (1996) cloned and characterized a
second member of the cry family containing a distinct C-terminal sequence, which
named cry2, and the HY4-encoded cry renamed as cry1. Since that time,
Arabidopsis cryptochromes have been shown to be nuclear proteins that mediate
light control of stem elongation, leaf expansion, photoperiodic flowering, and the
circadian clock (Chapters 13, 14, 38).

Jiten Khurana and Ken Poff (1989) isolated several Arabidopsis mutants
specifically defective in phototropic responses.Winslow Briggs and his colleagues
cloned and characterized genes (NPH1–4) of these mutants, and showed that the
gene product of NPH1 was a blue light receptor, which was renamed phototropin
1 (Chapter 15). Phototropin research is the most rapidly moving area of photo-
morphogenesis research at the moment (Chapters 15–22).

The most recently discovered blue photoreceptor, FKF1, is essential for pho-
toperiodic-specific light signaling in Arabidopsis (Imaizumi et al 2003). Looking
through the literature of blue light effects and pertinent pigments (Table 1), it is
quite likely that we will find other blue light receptors in future.

Problems and Dreams

A Working Hypothesis of Phytochrome Actions
The recent rapid progress of molecular genetic approaches to the study of phy-
tochrome has increased our knowledge enormously, but I feel that we are still
sailing on a boat cast adrift on a dark ocean (Furuya 2004). To get out of this sit-
uation, we need to provide a marine chart for further sailing. Let us try to draw
a chart using the accumulated evidence about the different modes of photoper-
ception by phytochromes. Here I present a tentative chart (Figure 1) as a model
for discussion, assuming that: (1) all phytochromes are synthesized as Pr in cyto-
plasm; (2) upon light irradiation, all phytochromes produce “functionally indis-
tinguishable Pfr” as the active form, and differential functional activities among
their gene family members arise from different kinetics of intracellular Pfr

translocation; (3) phytochrome degradation occurs mainly in nucleus; (4) VLF
light is sufficient for photoconversion of phyIr to phyIfr, kI1, whereas that of kII1

requires LF; (5) kI3 > > > > kI4; most phyIfr binds to a hypothetical carrier
protein(s) very soon after its photoconversion to Pfr, so that only a minimal
amount of phyIfr remains in cytoplasm; (6) in contrast, kII3 < < < kII4; the binding
affinity of phyIIfr to the carrier is significantly low, so the majority of phyIIfr stays
in cytoplasm for a long time, and results in a slow escape reaction; (7) the affin-
ity of the carrier proteins to phytochromes is speculated from physiological
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Table 1. Identification of photoreceptors for blue and UV-A light-dependent phenom-
ena in plants (after Table 2 in Wada and Kadota 1989, with additions)

Organism Photoreceptors References
Phenomena

Anthophyta
Stem elongation cry1, cry2 Ahmad and Cashmore 1993, Folta and

Spalding 2001, Chapter 13
phyA Shinomura et al 2000
phot1 Folta and Spalding 2001

Leaf expansion cry2 Lin et al 1998
phot1, phot2 Sakai et al 2001, Sakamoto and Briggs 2002,

Chapter 15
Phototropism phot1, phot2 Huala et al 1997, Sakai et al 2001, Chapter 15
Chloroplast relocation
Accumulation response phot1, phot2 Sakai et al 2001, Chapter 22
Avoidance response phot2 Kagawa et al 2001, Chapter 22
Stomata opening phot1, phot2 Kinoshita et al 2001, Chapter 21
Circadian clock cry1, cry2 Somers et al 1998, Devlin and Kay 2000,

Chapters 38–41
Photoperiodic flowering cry2 Guo et al 1998, Chapters 38–41

FKF1 Imaizumi et al 2003
Cytosolic Ca2+ increase phot1, phot2 Baum et al 2001, Harada et al 2003
Ca2+ current phot1, phot2 Stoelzle et al 2003
Anthocyanin synthesis cry1, cry2 Jackson and Jenkins 1995

Pteridophyta
Spore germination
Protonema elongation
Phototropism phot?, phy3 Kawai et al 2003
Polarotropism phot?, phy3 Kawai et al 2003
Apical swelling
Cell cycle regulation (G1 phase)
Chloroplast relocation
Accumulation response phot?, phy3 Kawai et al 2003, Chapter 22
Avoidance response phot2, phy3 Kagawa et al 2004, Kawai et al 2003,

Chapter 22
Membrane potential

Bryophyta
Phototropism
Polarotropism
Chloroplast movement photA, photB Kasahara et al 2004, Chapter 22
Branching cry1a, cry1b Imaizumi et al 2002

Chlorophyta
Hair whorl formation
Cap formation
Chloroplast movement

Vaucheriophyta
Growth promotion
Phototropism
Apical swelling
Branching
Chloroplast movement
Cortical fiber reticulation
Electric current



results to be phyAfr > > phyCfr > > > phyBfr, and no Pr of any of the phytochromes
binds to the carriers; and (8) kI5 = kII5, or similar rate; these Pfr-carrier complexes
would transfer to nucleus at the same or similar speed along the cytoskeleton
(Smith and Raikhel 1999).

The evidence that the peaks of action spectra for VLFR and LFR are essen-
tially the same as those of the absorption spectrum of Pr strongly suggests that
the both reaction would initiate from the phototransformation of Pr to Pfr, and
that the difference between VLFR and LFR is the required amount of Pfr. The
model (Figure 1) explains why only a small amount of phyIfr is enough to exceed
the threshold level in the nucleus, while a higher level of phyIIfr in the cytoplasm
to support the required level of nuclear import. As discussed for a long time by
Freiburg workers and others (Kendrick and Kronenberg 1994), real HIR
processes would probably be more complicated than the scheme in Figure 1. If,
however, phyA-HIR occurs anyway in this cycle, this model not only can account
for all three modes of phytochrome photoperception, VLF, LF, and HIR, but also
can explain why type I phytochrome is labile while type II stable.This model also
explains why no major overall differences have been observed between PHYA-
and PHYB-overproducers in Arabidopsis.
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In this model, we expect photoreversible effects of all phytochromes, though
VLFR was reported as photo-irreversible (Shinomura et al 1996). However,
VLFR could be photoreversible if plants are exposed to extremely short R and
FR pulses, and we have indirect evidence to support this idea. The reciprocity
law holds when Arabidopsis seed germination is induced by exposure to 760nm
light of 5 mmolm-2 for 3 s or longer, but not if exposure times are less than 3 s 
(Shinomura, unpublished), indicating an involvement of some slow rate-limiting
process such as the interaction with carriers.

The NH2-terminal chromophoric domain (N-domain) of phyA alone is light
stable in transgenic Arabidopsis (Wagner et al 1996), probably because it cannot
bind as monomer to the carriers. In contrast, the COOH-terminal domain (C-
domain) of phyB exists as dimer in vivo and when fused with GUS (Sakamoto
and Nagatani 1996) or GFP (Chapter 7) translocates into nucleus irrespective of
the light conditions. Both phyAfr (Wagner et al 1996) and phyBfr (Chapter 7) can
only induce their biological effects as dimers.This evidence, together with the fact
that the N-domain contains the determinants for the differences in photosensory
specificity and photolability between phyA and phyB (Quail 1997) suggests a
possibility that differential nuclear import of phytochromes could result from the
N-domain dependent change of surface properties of C-domain in terms of
hydrophobicity and reactability. In such a case, the C-domains of all phy-
tochromes in Pr form would be so hydrophilic that they stay in cytosol, whereas
the C-domain of phyIfr is most hydrophobic and that of phyIIfr is less hydropho-
bic, so they interact with other proteins accordingly. However, we have no idea
at present whether only Pfr–Pfr homodimer can bind with the carrier, or whether
Pr–Pfr heterodimer is also translocatable to nucleus (Furuya and Schäfer 1996).

Phytochrome effects clearly show a great variation in the lag period between
light exposure and the onset of detectable responses in plants, from 2.5 s (Chapter
9) to several hours, and even days (Table 4 in Furuya 1968) and in the escape
rate in photoreversible reactions, from a few minutes to many hours (Table 5 in
Furuya 1968). From these observations, I assume that there are two essentially
different sites of phytochrome primary action; the cytoplasm and the nucleo-
plasm (Figure 1). Phytochrome action in the cytoplasm rapidly regulates cyto-
plasmic properties (Chapter 9), while its action in the nucleus occurs more slowly
through up- or down-regulation of gene expression (Chapter 2). In this respect,
it would be interesting to know where, when and how each phytochrome inter-
acts with PIF3 (Chapter 30), NDPK2 (Im et al 2004), and other interacting factors
(Chapter 29).

Despite many attempts since its discovery, none has yet succeeded to develop
an in vitro assay system for the primary action of phytochrome molecules. The
model (Figure 1) suggests it may not be so easy to find such an assay system, but
it could be achieved if it would allow us to identify the hypothetical carrier
protein(s) chemically, and to carry out binding assays of the identified carrier
protein(s) with phyAfr, phyBfr, or any others by an affinity sensor.
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Crosstalk of Light-, Clock-, and Hormone-Dependent
Signaling
The overlapping effects among phytochrome family members are widely
observed in plants, and the model in Figure 1 will give a hint of candidate sites
for their crosstalk. Cryptochromes also may act by interacting with phy-
tochromes, COP1, and clock proteins (Chapters 13, 33 and 38). Interaction
between signal transduction pathways from phytochrome and phototropins is
evident (Figure 1 in Chapter 22). Besides light, plants respond to other physical
stimuli like gravity for which signaling pathways are also likely to involve
crosstalk with light signaling (Chapter 32). Light signaling pathways interact
widely and diversely with the circadian clock in not only eukaryotes but also
prokaryotes. Several models for crosstalk between downstream phytochrome sig-
naling and the clock are proposed in other chapters of this book (Chapters 38–41).

During the last century, plant physiologists spent enormous time and energy
to understand the action of plant hormones, starting from auxins in 1920s, gib-
berellins in 1930s, cytokines in 1950s, abscisic acid and ethylene in 1960s, and more
recently expanding to brassinolides and jasmonic acid. They encountered very
complicated interactions among these hormones, and could find no clear molec-
ular mechanism for their crosstalk. It seems that it is now our turn as photo-
morphogenesis researchers to struggle with this old but fundamental problem in
plant development, as crosstalk between light- and hormone signaling has now
been widely discovered in plants (Chapter 31). Again, it is not yet clear where
and how the above-mentioned crosstalk occur in plant cells. The reality of
interactions among light-, clock-, and hormonal signaling pathways appears too
complicated to allow the analysis of each separate interaction down to its to ele-
mentary processes by conventional methods and equipment, so we need a totally
new approach to address the extremely complex system of a cell in its entirety.

Application of Photobiology to Plant Industry
We all now know that a wide range of growth and developmental processes in
plants are controllable by environmental light, and it follows that the efficiency
of productivity in agriculture, horticulture, forestry, and animal husbandry could
be improved through manipulation of relevant photoregulatory systems in target
plants. However, I know only two examples of applied photobiology in plants;
namely, the production of chrysanthemum flowers and a spinach-like vegetable
(Salsola komarori, Amaranthaceae) become possible throughout the year using
the classic night-break of photoperiodism. The fact that our knowledge of 
photoregulation in plants has been not applied widely to these industries results
from the wide gap between the basic photobiology and the industrial application.
For example, the shade avoidance syndrome (Smith and Whitelam 1997) may be
a good candidate for application in plant industries, but appropriate methods and
inexpensive devices for large-scale irradiation with lights of specifically designed
wavelength and timing in industrial fields have not been developed. To bridge
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this gap, new investment to support collaborations between photobiologists and
diverse types of engineers will be required. With growing awareness of the need
to avoid chemical pollution and other environmental damage, an increased
emphasis on applied photobiology and the development of new technology is
warranted in the near future.
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