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Preface 

The main force behind climate change is the elevated concentration of CO2 in the at
mosphere. Carbon dioxide and air pollutants come mostly from the same industrial 
sources and diffuse globally, so that air pollution is also part of global change in the pre
sent era. The impacts on plants and plant ecosystems have complex interrelationships and 
lead to global change in a circular manner as changes in land cover and atmospheric and 
soil environments. Plant metabolism of CO2 and air pollutants and their gas fluxes in 
plant ecosystems influence the global gaseous cycles as well as the impacts on plants. 

The 6th International Symposium on Plant Responses to Air Pollution and Global 
Changes was held at the Tsukuba Center for Institutes and Epochal Tsukuba, in Tsukuba, 
Japan, October 19-22, 2004. The aim of the symposium series is to bring together scien
tists of various disciplines who are actively involved in research on responses of plant 
metabolism to air pollution and global change. The previous symposia were held in Ox
ford, UK, 1982 (1st), in Munich, Germany, 1987 (2nd), in Blacksburg, USA, 1992 (3rd), 
in Egmond aan Zee, The Netherlands, 1997 (4th), and in Pulawy, Poland, 2001 (5th). 

This book is one of three publications (this volume and special issues of Phyton and 
the Journal of Agricultural Meteorology) coming out of the symposium and contains a 
selection of invited papers. It also includes current topics on plant metabolism of air pol
lutants and elevated CO2, responses of whole plants and plant ecosystems, genetics and 
molecular biology for functioning improvement, experimental ecosystems and climate 
change research, global carbon-cycle monitoring in plant ecosystems, and remote sensing 
and modeling of climate change impacts, with additional topics in risk assessment and 
protection against air pollution and global change in East Asia. Because the authors are 
researchers from 18 countries, coming from Europe, the United States, Australia, and 
East Asia, readers can obtain information on current research in those regions as well as 
finding a source of expert knowledge about the topics that are included. 

The publication of this volume has been made possible by a grant from the Commemo
rative Organization for the Japan World Exposition ('70). 

Kenji Omasa 
Isamu Nouchi 
Luit J.De Kok 
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I. Plant Responses to Air Pollution 



Metabolism of atmospheric sulfur gases in onion 

Mark Durenkamp, Freek S. Posthumus, C. Elisabeth E. Stuiver, and Luit J. De Kok 

Laboratory of Plant Physiology, University of Groningen, P.O. Box 14, 9750 AA Haren, 
The Netherlands 

Summary. The impact of atmospheric sulfur gases was studied in onion (Allium cepa 
L.). The occurrence of toxic effects of H2S in onion depended not only on the atmos
pheric H2S level but also on the duration of the exposure. Prolonged exposure of onion to 
> 0.3 |xl 1"̂  H2S resulted in a strong reduction in shoot biomass production. H2S exposure 
resulted in a decrease in the organic N/S ratio at all levels (0.15 to 0.6 ^11'̂ ), which could 
be attributed to an increase in the pool of secondary sulfur compounds and not to changes 
in the sulfolipid content. The latter even decreased upon H2S exposure when expressed 
on a lipid basis. SO2 exposure resulted in an enhanced content of sulfate and total sulfur 
in the shoot, whereas roots were not affected. In contrast to exposure to H2S, SO2 expo
sure did not result in an increase in non-protein organic (secondary) sulfur compounds, 
which showed that these compounds only were a sink pool for reduced atmospheric sul
fur, when both the uptake of sulfate by the roots and its reduction in the shoot were by
passed. 

Key yvords. Allium cepa, H2S, SO2, Sulfolipids, Sulfur metabolism 

1. Introduction 

Generally, sulfate taken up by the roots is used as the main source of sulfur for plants and 
the uptake, transport and subcellular distribution of sulfate are mediated by specific sul
fate transporter proteins (Hawkesford 2003; Hawkesford et al. 2003; Buchner et al. 
2004). The uptake of sulfate by the roots and its transport to other plant parts are highly 
regulated and the affinity of the sulfate transporters towards sulfate is high; a maximum 
uptake and transport rate is generally already reached at < O.l mM sulfate (Hawkesford 
and Wray 2000; Durenkamp and De Kok 2004; Buchner et al. 2004). The expression and 
activity of the sulfate transporter proteins, as well as the activity of the enzymes of the 
sulfate reduction pathway, strongly depend on the sulfur nutritional status of the plant 
(Buchner et al. 2004). Prior to its incorporation into organic compounds, sulfate needs to 
be reduced to sulfide, a process that primarily takes place in the chloroplasts. Subse
quently, sulfide is incorporated into cysteine, the precursor for most other organic sulfur 
compounds (Fig. 1). In most plants the predominant proportion of the organic sulfur is 
present in the protein fraction as cysteine and methionine residues (up to 70 % of total S), 
however, species like onion also may contain high amounts of secondary sulfur com
pounds. Part of the organic sulfur is present in the lipid fraction; in general sulfoquinovo-
syldiacylglycerol (SQDG) appears to be the predominant plant sulfolipid and it accounts 
for 1 to 6 % of total S (Heinz 1993; De Kok et al. 1997; Benning 1998; Harwood and 
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Okanenko 2003). 
In spite of their potential phytotoxic effects, foliarly deposited atmospheric sulfur 

gases as H2S and SO2 can also be used as sulfur source for growth, and they even may be 
beneficial if the sulfate supply to the roots is limited (De Kok et al. 2000, 2002a,b; 
Durenkamp and De Kok 2004). Due to the impermeability of the cuticle, H2S and SO2 are 
taken up via the stomates and their uptake is both dependent on the stomatal conductance 
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and the internal (mesophyll) resistance towards these gases (De Kok et al. 1998, 
2002a,b). The uptake of H2S is largely determined by the internal resistance, viz. the rate 
of metabolism of the absorbed sulfide into cysteine (Fig. 1). The rate of uptake depends 
on the activity of 0-acetylserine(thiol)lyase and the availability of its substrate O-
acetylserine (Stuiver and De Kok 2001) and it shows saturation kinetics with the atmos
pheric H2S level, which can be described by Michaelis-Menten kinetics (De Kok et al. 
1998; Stuiver and De Kok 2001; Durenkamp and De Kok 2002). In contrast to H2S, the 
uptake of SO2 is largely determined by the stomatal conductance, since the internal resis
tance to SO2 is low due to its high solubility and hydration in the cell sap. In general, 
there is a linear relation between the uptake of SO2 and the level in the atmosphere (De 
Kok and Tausz 2001). Although SO2, via sulfite, can directly be used in the sulfate reduc
tion pathway, the greater part is oxidized to sulfate and transferred into the vacuole, espe
cially at levels exceeding the sulfur requirement for growth (Fig. 1). Atmospheric sulfur 
gases have shown to be a useful tool to study sulfate uptake and sulfur assimilation by 
providing an extra source of sulfur taken up by the shoot, beyond the existing controls of 
sulfate uptake by the roots. 

Allium cepa (onion) is one of the most important horticultural crops in the world. Sec
ondary sulfur compounds (y-glutamyl peptides and alliins) and their degradation products 
are responsible for the important role oiAllium species in the food and phytopharmaceu-
tical industry. The y-glutamyl peptides are thought to act as precursors for the synthesis 
of alliins and they might have a function in the storage of sulfur and nitrogen (Randle and 
Lancaster 2002; Jones et al. 2004). The likely precursors for the synthesis of y-glutamyl 
peptides and alliins are the thiol compounds y-glutamyl cysteine and glutathione, which 
are products of the sulfur assimilation pathway (Fig. 1). In onion H2S exposure resulted 
in an increase in sulfate, thiols and other organic sulfur compounds in the shoot. The es
timated N/S ratio of the latter compounds appeared to be 2 or less (Durenkamp and De 
Kok 2002, 2003, 2004), indicating that the increase could not be explained by an increase 
in the protein fraction (N/S ratio of proteins is generally around 40). It needs to be evalu
ated whether the increase in organic sulfur compounds upon H2S exposure was due to an 
accumulation of secondary sulfur compounds (y-glutamyl peptides and alliins) and/or sul-
folipids (Durenkamp and De Kok 2002, 2003, 2004). In addition, it needs to be assessed 
to what extent the observed accumulation of sulfur compounds is specific for H2S or the 
consequence of by-passing the regulatory control of the uptake of sulfate by the roots. In 
the present paper the impact of H2S and SO2 on growth and sulfur metabolism has been 
compared. The significance of sulfolipids and secondary sulfur compounds as possible 
pool for excessive deposited atmospheric sulfur and the possible down-regulation of the 
sulfate reduction pathway upon H2S exposure are discussed. 

2. Atmospheric H2S: toxin vs. nutrient 

Atmospheric sulfur gases are potentially phytotoxic, however, there is a large variation 
between species in the susceptibility towards these gases and the mechanisms of toxicity 
are still not completely understood. Like cyanide, sulfide complexes with high affinity to 
metallo groups in proteins (for instance heme-containing NADH oxidizing enzymes) and 
this reaction is probably the primary biochemical basis for the phytotoxicity of H2S 
(Maas and De Kok 1988; De Kok et al. 1998, 2002b). Mutagenic effects of accumulated 



6 M. Durenkamp et al. 

thiol compounds (Glatt et al. 1983) or sulfide itself might also be a cause for the phyto-
toxicity of H2S, since exposure to H2S resulted in an increase in chromosomal aberrations 
in apical meristems and root tips (Wonisch et al. 1999a,b; Stulen et al. 2000). In general, 
dicotyledons are more susceptible to H2S than monocotyledons, since in the latter H2S 
hardly has direct access to the vegetation point (Stulen et al. 2000). 

Onion and related ̂ ///wm species, as monocotyledons, were not very susceptible to the 
toxic effects of H2S (Durenkamp and De Kok 2002, 2003, 2004). A one-week exposure 
up to 0.6 \i\ r̂  H2S, a level which by far exceeds the sulfur requirement for growth, did 
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Fig. 2. Impact of prolonged H2S exposure on growth and sulfur and nitrogen metabolism of onion 
shoots {Allium cepa L.). Seedlings were grown in vermiculite for two weeks and subsequently 
transferred to a regular potting soil and exposed to 0, 0.15, 0.3 and 0.6 îl 1'̂  H2S for 38 days. Fresh 
weight (g), dry matter content (%), metabolite contents (̂ imol g'̂  FW), sulfate/total sulfur ratio and 
organic N/S ratio of the shoot were determined as described in Durenkamp and De Kok (2002, 
2004). Data represent the mean of three measurements with five plants in each (± SD). 



Metabolism of atmospheric sulfur gases in onion 7 

not result in a reduction of growth in onion (Durenkamp and De Kok 2004). However, 
prolonged exposure to the same range of H2S levels for 38 days resulted in a substantial 
decrease in biomass production and a slight increase in dry matter content in onion shoots 
at levels > 0.3 \i\ Y^ H2S (Fig. 2). Apparently, the occurrence of toxic effects of H2S in on
ion depended not only on the atmospheric H2S level but also on the duration of the expo
sure. The latter might be due to a cumulative effect of sulfide or produced toxic metabo
lites for instance in meristematic tissue. Prolonged exposure to H2S resulted in an 
increased content of sulfate and other sulfur-containing compounds, as illustrated by a 
maximal five-fold increase in the total sulfur content of the shoot upon exposure up to 0.6 
[i\ V^ H2S (Fig. 2). The organic N/S ratio was decreased at all levels of H2S exposure, in
dependent of the effects of H2S phytotoxicity (Fig. 2). The decrease in the organic N/S 
ratio could be attributed to an increase in non-protein organic (secondary) sulfur com
pounds, which pool might be a sink for reduced sulfur (Durenkamp and De Kok 2002, 
2003, 2004). Prolonged H2S exposure also resulted in an enhancement of nitrogen-
containing compounds in the shoot, which possibly was the consequence of a disturbed 
metabolism and/or an alteration in tissue and shoot development. 

Atmospheric H2S could be used as a sulfur source for growth in onion, especially 
when the sulfate supply to the roots was deprived (Durenkamp and De Kok 2004). How
ever, upon prolonged exposure H2S appeared to be phytotoxic and it reduced biomass 
production. 

3. Impact of H2S exposure on sulfolipids 

The main plant sulfolipid sulfoquinovosyldiacylglycerol (SQDG) is synthesized from 
UDP-sulfoquinovose and diacylglycerol with sulfite as the likely sulfur precursor (Sanda 
et al. 2001; Harwood and Okanenko 2003). Sulfite is synthesized from APS by APS re
ductase and this enzyme is the predominant site of regulatory control of the sulfate reduc
tion pathway (De Kok et al. 2002a; Vauclare et al. 2002). The sulfolipid content of the 
shoot (expressed on a lipid basis) decreased upon exposure to H2S (Table 1), which could 
be caused by a down-regulation of the sulfate reduction pathway and by a subsequent de
crease in sulfite production, the sulfur precursor of SQDG (Sanda et al. 2001). This sug
gestion is supported by observations in Brassica oleracea, where a similar decrease in 
sulfolipid content (expressed on a lipid basis) was observed upon H2S exposure (De Kok 
et al. 1997). The sulfate reduction pathway is known to be down-regulated via APS re
ductase upon H2S exposure in B. oleracea (Westerman et al. 2001b). Since the sulfolipid 
content was not increased upon exposure to H2S, sulfolipids did not act as a sink pool for 
atmospheric reduced sulfur. 

The total lipid content of the shoot was increased upon exposure to H2S, which could 
not be explained by an increase in either sulfolipid or pigment content (Table 1). It needs 
to be evaluated to what extent this increase in lipid content upon H2S exposure can be at
tributed to changes in the overall structure and/or composition of membranes. Another 
option for the increase in total lipid content could be the formation of vesicles containing 
secondary sulfur compounds (as suggested by Turnbull et al. 1981). The possible en
hancement of secondary sulfur compounds content in the shoot might be accompanied 
with a subsequent increase in vesicle formation resulting in an increase in the total lipid 
content. The latter was not observed in Brassica oleracea (De Kok et al. 1997), since in 
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Table 1. Impact of short-term H2S exposure on pigment content in shoot and lipid content in shoot 
and roots of onion (Allium cepa L.). Seedlings were grown in vermiculite for two weeks and 
subsequently transferred to a 25% Hoagland nutrient solution. Four-week-old seedlings were 
transferred to a fresh nutrient solution and exposed to 0.3 nl 1'̂  H2S for one week. Total lipid 
content and sulfolipid content in shoot and roots were determined as described by De Kok et al. 
(1997) and the content of chlorophylls and carotenoids in the shoot was measured as described by 
Lichtenthaler (1987). Data represent the mean of three measurements with 12 plants in each (± 
SD). 

0 Hi r̂  H2S 0.3 1̂ r̂  H2S 
Shoot 
Total lipid content (mg g'̂  FW) 
Sulfolipid content (nmol g"̂  FW) 
Sulfolipid content (nmol mg"̂  total lipids) 
Sulfolipid content (nmol mg*̂  chlorophyll) 
Total chlorophyll content (mg g'̂  FW) 
Total carotenoid content (mg g'̂  FW) 

3.60 ± 0.09 
89.0 ±6.1 
24.7 ± 2.1 
189 ±5 

0.47 ± 0.03 
0.11 ±0.00 

4.26 ±0.17** 
86.6 ± 2.6 
20.7 ± 0.2* 
187 ±10 

0.46 ± 0.01 
0.11 ±0.00 

Root 
Total lipid content (mg g"̂  FW) 
Sulfolipid content (nmol g"̂  FW) 
Sulfolipid content (nmol mg"̂  total lipids) 

1.44 ±0.12 
36.5 ± 4.2 
25.3 ±1.0 

1.52 ±0.15 
37.3 ± 4.2 
24.5 ± 0.3 

*P<0.05; **P<0.01 vs 0 îl 1*' H2S; Student's r-test. 

this species an accumulation of secondary sulfur compounds was absent upon H2S expo
sure (Westerman et al. 2001a). 

The observed increase in the non-protein organic sulfur content upon H2S exposure 
(Durenkamp and De Kok 2002, 2003, 2004) could not be attributed to changes in the 
content of sulfolipids. Therefore, secondary sulfur compounds appeared to be the most 
likely pool for excessive deposited atmospheric sulfur in onion. 

4. Impact of atmospheric SO2 on sulfur metabolism: a 
comparison with H2S 

In general, plant exposure to SO2 results in an increase in the sulfate content and a slight 
increase in the thiol content (mainly glutathione) of the shoot since part of the SO2 can be 
assimilated into organic sulfur compounds via sulfite (De Kok and Tausz 2001; Tausz et 
al. 2003; Yang et al. 2003). 

Growth of onion was not affected upon exposure to 0.3 ^l l'̂  SO2 (Table 2). An in
crease in the sulfate and total sulfur content of the shoot was observed upon exposure to 
SO2 in both sulfate-sufficient and sulfate-deprived plants, whereas the content in the roots 
was not affected (Table 2). The increase in the total sulfur content of the shoot in sulfate-
sufficient plants could solely be explained by an increase in the sulfate content (Table 2). 
Apparently, SO2 was for the greater part oxidized to sulfate and transferred into the vacu
ole (Fig. 1). In contrast to exposure to H2S, SO2 exposure did not result in a significant 
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Table 2. Impact of sulfate nutrition and short-term SO2 exposure on growth and sulfur metabolism 
in shoot and roots of onion (Allium cepa L.). Seedlings were grown in vermiculite for two weeks 
and transferred to a 25% Hoagland nutrient solution. Four-week-old seedlings were transferred to a 
fresh nutrient solution with 0 (-S) or 0.5 (+S) mM sulfate and exposed to 0 (-SO2) or 0.3 (+SO2) 1̂ 
r̂  SO2 for one week. Fresh weight (g), sulfate and total sulfur content (fimol g'̂  FW) and 
sulfate/total sulfur ratio in shoot and roots were determined as described in Durenkamp and De Kok 
(2002, 2004). Data represent the mean of four measurements with 12 or 24 (initial) plants in each 
(± SD). Different letters indicate significant differences between treatments (P<0.05, Student's t-
test). 

Shoot 
Fresh weight 
Total sulfur content 
Sulfate content 
Sulfate/total sulfur 

Root 
Fresh weight 
Total sulfur content 
Sulfate content 
Sulfate/total sulfur 

Initial 

0.48 ± 0.05 
9.0 ± 0.3 
2.6 ± 0.2 

0.29 ± 0.03 

0.23 ± 0.02 
9.2 ± 0.7 
5.6 ±0.5 

0.61 ± 0.05 

-S 

1.10 ±0.04" 
4.0 ± 0.3" 
0.6 ± 0.0" 

0.14 ±0.03" 

0.43 ± 0.03" 
4.1 ±0.2" 
0.9 ± 0.3" 

0.21 ± 0.08" 

-S +SO2 

1.12 ±0.06"^ 
9.3 ± 0.3^ 
4.7 ± 0.2' 

0.50 ± 0.02' 

0.42 ± 0.06" 
4.3 ± 0.6" 
0.8 ± 0.3" 

0.18 ±0.06" 

+S 

0.98 ± 0.23"^ 
8.5 ± 1.2*̂  
3.6 ± 0.5^ 

0.43 ± 0.02^ 

0.40 ± 0.08" 
8.9 ± 0.3^ 
5.1 ±0.2^ 

0.58 ± 0.02^ 

+S +SO2 

1.27 ±0.13'' 
14.8 ±1.2' 
9.0 ± 0.5'̂  

0.61 ± 0.03̂ ^ 

0.46 ± 0.03" 
9.5 ± 0.4'̂  
5.5 ± 0.2' 

0.58 ±0.01^ 

decrease in the organic N/S ratio of the shoot of sulfate-sufficient plants (27.7 ±1.8 and 
23.9 ± 3.5 at 0 and 0.3 ^1 1'̂  SO2, respectively). As has been indicated above, a decrease 
in the organic N/S ratio upon H2S exposure could likely be attributed to an increase in 
secondary sulfur compounds (Durenkamp and De Kok 2002, 2003, 2004). These com
pounds only seemed to be a sink for reduced atmospheric sulfur like H2S, via by-passing 
of the sulfate uptake in the roots and its reduction in the shoot, and not for oxidized 
(atmospheric) sulfur like SO2. The reduction of sulfate is known to be highly regulated 
(De Kok et al. 2002a; Vauclare et al. 2002), in contrast to the uptake of SO2, which 
resulted in an accumulation of sulfate upon SO2 exposure. Sulfate accumulation was not 
observed when onion was subjected to increasing levels of pedospheric sulfate, since 
uptake of sulfate by the roots was strictly regulated (Hawkesford and Wray 2000; 
Durenkamp and De Kok, 2004; Buchner et al. 2004). A combination of H2S exposure and 
different levels of pedospheric sulfate nutrition will be used to further investigate the 
regulation of sulfate uptake, transport, subcellular distribution and reduction through APS 
reductase, since these processes predominantly control the assimilation of sulfate in 
plants. 
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Summary. Brassica oleracea L. (curly kale) was exposed to 0, 2, 4, 6 and 8 fi\ X^ NH3 
during one week and the impact on growth and N compounds was determined. Exposure 
to NH3 increased shoot biomass production at 2 and 4 //I r \ but resulted in an inhibition 
of shoot and root growth at 6 and 8 //I r \ Shoot to root ratio was not affected up to 4 ixX \' 
\ but decreased at higher levels. Shoot total N content was increased at all levels, mainly 
due to the increase in free amino acids. Even at atmospheric NH3 levels, at which the fo-
liarly absorbed NH3 would cover a limited proportion of N requirement there was already 
an enhancement of the nitrogen content of the shoots and roots. Apparently there was no 
direct regulatory control of and/or interaction between atmospheric and pedospheric ni
trogen utilization in B. oleracea. It needs to be evaluated to what extent foliarly absorbed 
NH3 is used as nitrogen source for growth. 

Key words Ammonia, Brassica oleracea. Nitrogen pollutants. Nutrient, Toxin 

1. Atmospheric N deposition in Europe 

NH3 is a major air pollutant, which accounts for up to 80% of the total N deposition in 
central Europe (Fangmeier et al. 1994; Gessler and Rennenberg 1998; Krupa 2003). At
mospheric NH3 pollution is the consequence of intensive farming activities (animal ma
nure and fertilizer use), and to a lesser extent to anthropogenic sources and natural back
ground emissions (Leith et al. 2002; Krupa 2003; Pitcairn et al. 2003; Erisman and 
Schaap 2004). High NH3 emissions and consequently, excessive N deposition will lead to 
direct phytotoxic effects, eutrophication and acidification (Stulen et al. 1998; Rennenberg 
and Gessler 1999; Krupa 2003). The toxic effect of NH3 has often been ascribed to nutri
ent imbalances due to cation release (Wollenweber and Raven 1993). 

While the impact of atmospheric N deposition on ecosystems such as heathlands (Van 
der Eerden et al. 1991; Leith et al. 2002; Sheppard and Leith 2002) and forests (Hogberg 
et al. 1998; Rennenberg and Gessler 1999; Bassirirad 2000) has been studied in detail, 
fewer studies have dealt with its impact on crop plants (Van der Eerden 1982; Clement et 
al. 1997). In addition, there are hardly any data available on the contribution of foliar up
take of atmospheric NH3 to the plant's N requirement for growth (Perez-Soba and Van 
der Eerden 1993; Stulen et al. 1998). 

Plant Responses to Air Pollution and Global Change 
Edited by K. Omasa, I Nouchi, and L J. De Kok ( Springer-Verlag Tokyo 2005 ) 
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2. Foliar uptake and metabolism of NH3 

The uptake of NH3 shows a diurnal variation and is dependent on the water status of the 
plant, temperature, light intensity, internal CO2 level and nutrient availability (Hutchin
son et al. 1972; Rogers and Aneja 1980; Van Hove et al. 1987; Husted and Schjoerring 
1996; Schjoerring et al. 1998). The foliar uptake of NH3 is determined by the stomatal 
conductance and the internal (mesophyll) resistance to the gas and its uptake via the cuti
cle surface can be neglected (Krupa 2003). The internal resistance of the mesophyll cells 
appears to be the limiting factor for foliar uptake of NH3 (Hutchinson et al. 1972). The in
ternal resistance to NH3 is low, since this gas is highly water-soluble and in addition it is 
rapidly converted into N H / in the aqueous phase of the mesophyll cells (Fangmeier et al. 
1994). NH3 uptake takes place as long as the atmospheric level exceeds the internal NH/ 
level (Husted and Schjoerring 1996). 

The N H / formed in the mesophyll cells may be assimilated by the glutamine syn-
thetase/glutamate synthase cycle (Lea and Mifflin 1974; Perez-Soba et al. 1994; Pearson 
and Soares 1998). Foliar NH3 uptake may affect plant metabolism in various ways and 
result in changes in parameters as metabolic compounds, enzyme activity, root uptake 
and plant growth (Perez-Soba et al. 1994; Gessler and Rennenberg 1998; Pearson and 
Soares 1998). Metabolic changes related to the NH3 assimilatory capacity of the plant 
generally lead to an increase in the pool of N-containing metabolites, such as amino acids 
and total N content (Van Dijk and Roelofs 1988; Perez-Soba et al. 1994; Clement et al. 
1997; Gessler and Rennenberg 1998). Visible symptoms, such as black spots and necrosis 
in the leaves, arise when NH3 uptake by the shoot exceeds the assimilation capacity of the 
plant (Van der Eerden 1982; Fangmeier et al. 1994). 

3. Impact of NH3 on growth and N metabolism of Brassica 
oleracea 

The present case study was aimed at investigating the impact of a range of NH3 levels on 
growth and N metabolism of Brassica oleracea L. Plants were grown on a Hoagland nu
trient solution containing 3.75 mM nitrate (for experimental details see Castro et al. 
2004). B. oleracea was chosen because it is an economically important crop plant with a 
relatively high RGR, and it is a suitable species because of its preference for nitrate 
(Pearson and Stewart 1993) as well as its sensitivity to NH/ (Britto and Kronzucker 
2002). Brassica species originate from saline, sulfur-rich environments and are consid
ered to have a high S requirement for growth (Westerman et al. 2000). Therefore, the im
pact of NH3 on S compounds was measured as well. 

Upon NH3 exposure the shoot biomass production was slightly increased at levels up 
to 4 ju\ r \ whereas it was decreased at levels ^ 6 //11'^ NH3. Root biomass production was 
decreased significantly at 6 and 8 ju\ V^ NH3, showing that exposure of the shoot to NH3 
had a negative effect on root growth (in the used experimental conditions, the formation 
of NH4 ,̂ by dissolution of atmospheric NH3 into the nutrient solution, was prevented). 
Relative growth rate (RGR), calculated on a plant basis was only significantly decreased 
at 8 iu\ r̂  NH3. Exposure to 6 and 8 ju\ V^ NH3 affected root biomass production relatively 
more than shoot biomass production, resulting in a higher shoot to root ratio (S/R, 
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Table 1. Impact of NH3 on growth of Brassica oleracea. Seedlings (26 days old) were exposed for 
7 days. Shoot and root growth (g FW) was calculated by subtracting the final fresh weight from the 
initial fresh weight. RGR, relative growth rate (g g'̂  day"̂ ) on a plant basis. S/R, shoot to root ratio 
on a fresh weight basis. DMC, dry matter content (%). Data represent the mean of 2 experiments, 
with 3 measurements per experiment with 3 plants in each (±SD). Means followed by different 
letters are statistically different at p< 0.01. Statistical analysis was performed by using an unpaired 
Student's t-test. For further experimental details see Castro et al. (2004). 

[NH3] 

Shoot growth 

Root growth 

RGR 

S/R 

Shoot DMC 

Root DMC 

QfiW'^ 

1.90±0.07' 

0.55±0.20^ 

0.20±0.0r 

3.3±0.6' 

14.1 ±1.2' 

6.4±1.2' 

2fi\Y^ 

2.0410.04'' 

0.3610.06*^ 

o.2o±o.or 
4.2±0.3' 

14.211.5' 

6.I1O.8' 

4/iir^ 

2.4510.25^ 

0.4810.08^ 

0.20l0.0r 

4.110.4' 

13.111.0' 

7.210.5' 

6/i,ir* 

1.7810.45' 

0.1010.07' 

0.1610.04' 

5.811.l'' 

13.011.2' 

1110.4' 

8/iir* 

1.6910.30' 

O.2O1O.II' 

0.1510.03*' 

5.911.5*' 

14.010.9' 

9.110.9*' 

Table 1). Shoot dry matter content (DMC) was not affected upon exposure to NH3, 
whereas root dry matter content was decreased at 6 and 8 fi\ V^ NH3 (Table 1). 

Exposure to NH3 resulted in a substantial increase in shoot total N content at all at
mospheric levels (Fig. la). This was mainly due to an increase in the soluble N fraction 
(amino acids, amides and NH/), viz. 1.5 fold and 5.6-fold at 4 pt\ V^ and at 8 ju\ \'\ re
spectively, compared to that of the control (0 //I \'\ results not shown). Root total N con
tent was only increased at Ijul V^ NH3 (Fig. la). Shoot nitrate content was increased at all 
NH3 levels, but most at 4 ju\ \'\ Root nitrate content was increased at 2 //I \'\ not affected 
at 4 ju\ r \ and decreased at 8 ju\ V^ (Fig. Ic). The free amino acid content in the shoot in
creased with increasing NH3 levels (8% and 15% at 4 //I 1'̂  and 8 fi\ \'\ respectively), 
while no effect was observed in the roots (Fig. le). 

Shoot sulfur content was not affected by exposure to 2 ju\ V^ NH3, but decreased at 
higher levels. Root total sulfur was increased at 2 to 6 //I \'\ and decreased at 8 //11'^ (Fig. 
lb). Shoot sulfate content was increased at 4 ju\ \'\ and decreased at 6 and 8 //I r \ Root 
sulfate content was increased at 2 fi\ V\ not changed at 4 jul \'\ and decreased at 6 and 8 
fi\ r' (Fig. Id). 

The impact of atmospheric NH3 on total S and sulfate (Fig. lb,d) can be explained by 
changes in RGR (Table 1), rather than by a direct effect of NH3 exposure on S com
pounds. Noteworthy is the relatively high sulfate content found in this species. Other ex
periments with Brassica seedlings also showed that a high percentage (90%) of total S is 
present as sulfate, and only 10% as organic S (Castro et al. 2003). Therefore, for this spe
cies the definition of "sulfur requirement for growth" may have to be redefined, as "or
ganic sulfur need for growth" (Castro et al. 2003). In the shoot, the organic N/S ratio in
creased with increasing NH3 levels, which correlates well with the increase in free amino 
acid content. Changes in the organic N/S ratio in the root were minor. 
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Total nitrogen content Total sulfur content 

0.0 2.0 4.0 6.0 8.0 

Free amino acid content 

0.0 2.0 4.0 6.0 8.0 

Organic N/S ratio 

0.0 2.0 4.0 6.0 
[NH3] ^1 r̂  

2.0 4.0 6.0 
[NH3] Hi r̂  

Fig. 1. Impact of NH3 on N and S compounds in Brassica oleracea. Seedlings (26 days old) were 
exposed for 7 days. Shoot data is given in dark-grey bars, root data in light-grey bars. Data on total 
nitrogen, nitrate and free amino acids contents represent the mean of 2 experiments, with 3 meas
urements per experiment with 3 plants in each (±SD), Data on total S and sulfate content represent 
the mean of 3 measurements with 3 plants in each (±SD). The organic N/S ratio, a parameter was 
calculated by subtracting the nitrate and sulfate contents from total nitrogen and sulfur contents, re
spectively. Different letters indicate significant differences at p< 0.01. Statistical analysis was per
formed by using an unpaired Student's t-test. For experimental details see Castro et al. (2004). 

4. Impact of NH3 on nitrate uptake by Brassica oleracea 

The net nitrate uptake rate (NNUR) was not affected at 2 1̂ 1'̂  but was reduced by 25% 
upon exposure to ^4 |il 1"̂  NH3 (Table 2). It has been suggested that a decrease in NNUR 
upon NH3 may be due to a down-regulation of the nitrate transporters by reduced N 


