Dawna Armstrong, William Halliday, Cynthia Hawkins, Sachio Takashima

Pediatric Neuropathology
A Text–Atlas

With 1,020 Figures, Including 917 in Color
Dawna Armstrong, M.D.
Formerly Professor of Pathology, Baylor College of Medicine
Houston, Texas, USA

William Halliday, M.D.
Professor, University of Toronto;
Staff Neuropathologist, The Hospital for Sick Children, DPLM
555 University Ave., Toronto, M5G 1X8, Canada

Cynthia Hawkins, M.D., Ph.D.
Assistant Professor, University of Toronto;
Staff Neuropathologist, The Hospital for Sick Children, DPLM
555 University Ave., Toronto, M5G 1X8, Canada

Sachio Takashima, M.D.
Professor, International University of Health and Welfare;
Director, Yanagawa Institute for Developmental Disabilities
Yanagawa, Fukuoka, Japan
Pediatric Neuropathology: A Text–Atlas is dedicated to our friend and colleague

Dr. Laurence E. Becker
Pediatric Neuropathologist
Hospital for Sick Children, Toronto
1974–2002
Preface

Dr. Takashima and Dr. Becker were planning this text–atlas when Dr. Becker was prematurely taken from us. We have, with enthusiasm, completed the book according to the original plan. The material is gathered from our combined experiences over 30 years at the Hospital for Sick Children, Toronto; the Texas Children’s Hospital, Houston; the Health Sciences Centre (Winnipeg Children’s Hospital), Winnipeg; and the National Institute of Neuroscience, Tokyo. We acknowledge with gratitude the families who have allowed us to study these cases. It is our hope that our involvement has contributed to a better understanding of pediatric neuropathology.

The discipline of neuropathology with its interpretation of morphology stands between the patient with his or her physician and the neurobiologist with his or her science. It requires a correlation of clinical, morphological, and biological information. When interpreting pediatric neuropathology, brain development must also be considered. Thus, each case at its unique age can potentially (1) disclose critical periods of brain development that may be interrupted by a particular disease process or (2) define cell populations of selective vulnerability.

The past three decades have provided amazing techniques that increase the neuropathologist’s ability to define morphology. Histochemistry, immunocytochemistry, in situ hybridization, and fluorescence in situ hybridization (FISH) now allow us to define specific cell types, proteins, and chromosomes that are involved in pediatric neurological disease. Brain imaging reveals exquisite details of brain lesions, and neurobiologists offer tests that define tissue-specific genetic abnormalities. Our new technologies have required increased interaction between clinician, pathologist, and scientist; but they also rely heavily on the knowledge and techniques of classic neuropathology.

In the text–atlas we have attempted to summarize the categories of disease that affect the pediatric patient and have used examples of these diseases taken from our case records. In each case, when possible, there is a brief paragraph summarizing the current clinical, morphological, and biological information about the disease. This information is greatly abbreviated, but with illustrative images we have emphasized morphology—the hallmark of neuropathology and the starting place for further investigation.

The text–atlas is incomplete. There are many diseases we do not understand, especially those most debilitating disorders of childhood—the pervasive developmental disorders, which interrupt neural connectivity and function with no obvious morphological alteration. It is our hope that the text–atlas will be a useful guide for students of neuropathology, neurology, and neuroscience, and that these students will go on to make our understanding more complete.

Acknowledgments

The authors are grateful to many colleagues, past and present, who have supported, stimulated, and educated them. Some have also provided important images for the production of this atlas.

Vernon Edwards, (Retired) Formerly of the Department of Pathology, The Hospital for Sick Children, Toronto, Canada
Yasuhiro Arai, M.D., Department of Pediatrics, Juntendo University, Tokyo, Japan
Masayuki Itoh, M.D., Ph.D., National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
Masashi Mizuguchi, M.D., Department of Pediatrics, Tokyo University, Tokyo, Japan
Mitsuhiro Kato, M.D., Department of Pediatrics, Yamagata University, Yamagata, Japan
Akemi Kakita, M.D., Department of Pathological Neuroscience, Brain Research Institute, Niigata University, Niigata, Japan
Komyo Eto, M.D., National Institute for Minamata Disease, Minamata, Kumamoto, Japan
Meena Bhattacharjee, M.D., Department of Pathology, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, USA
Takeshi Kanaumi, M.D., Department of Pediatrics, Fukuoka University, Fukuoka, Japan
Barry Rewcastle, M.D., (Retired) Formerly of the Division of Neuropathology, University of Toronto, Toronto, Canada
Jan Goddard-Finegold, M.D., Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
Marc Del Bigio, M.D., Ph.D., Department of Pathology, University of Manitoba, Manitoba, Canada
Contents

Preface ... VII
Acknowledgments .. IX

1. Normal Development ... 1
 1.1. Developmental Characteristics of the Fetal Brain:
 Gross Brain .. 2
 1.2. Developmental Characteristics of Neurons 4
 1.3. Dendritic and Synapse Development 6
 1.4. Glial Development and Myelination in the Cerebral
 White Matter ... 8
 1.5. Vascular Architecture in Developing Brains 10

2. Malformations .. 13
 2.1. Neural Tube Defects, Anencephaly 14
 2.2. Meningoencephalocele, Encephalocele 16
 2.3. Iniencephaly .. 18
 2.4. Spinal Dysraphisms .. 20
 2.5. Chiari (Arnold-Chiari) Malformations 22
 2.6. Dandy-Walker Malformation 24
 2.7. Holoprosencephaly (Synonyms: Holotelencephaly,
 Telencephalosynapsis, Arhinencephaly) 26
 2.8. Semilobar and Lobar Holoprosencephaly 28
 2.9. Callosal Agenesis (Synonym: Agenesis of Corpus
 Callosum) .. 30
 2.10. Neuronal Heterotopia 32
 2.11. Classic (Type 1) Lissencephaly (Agyria-Pachygyria) ... 34
 2.12. Miller-Dieker Syndrome, Double Cortex Syndrome,
 X-Linked Lissencephaly with Abnormal Genitalia 36
 2.13. Hemimegalencephaly and Focal Cortical Dysplasia 38
 2.14. Cobblestone (Type 2) Lissencephaly: Fukuyama
 Congenital Muscular Dystrophy 42
 2.15. Walker-Warburg Syndrome 44
 2.16. Malformations of Cortical Organization 46
 2.17. Thanatophoric Dysplasia Type 1 48
 2.18. Hydrocephalus .. 50
 2.19. Porencephaly ... 52
 2.20. Schizencephaly ... 54
 2.21. Hydranencephaly .. 56
2.22. Cysts: Subependymal Cysts, Colloid Cysts, Glioependymal Cysts 58
2.23. Arachnoid Cyst, Neuroenteric Cyst .. 60
2.24. Malformation of the Cranium: Craniosynostosis, Meckel-Gruber Syndrome, Amniotic Band 62
2.25. Malformation of the Brain Stem ... 64
2.26. Agenesis of the Vermis of the Cerebellum and Joubert Syndrome ... 66
2.27. Malformation of the Cerebellar Hemispheres and Spinal Cord .. 68
2.28. Infantile Olivopontocerebellar Atrophy/Hypoplasia, Pontocerebellar Hypoplasia 70

3. Chromosomal Abnormalities ... 73
3.1. Down Syndrome ... 74
3.2. Trisomy 13 and Trisomy 18 ... 76
3.3. Chromosome 1q- ... 78
3.4. Chromosome 4p- ... 80

4. Perinatal Brain Damage ... 83
4.1. Birth Trauma in Term Infants .. 84
4.2. Periventricular/Intraventricular Hemorrhage and Cerebellar Hemorrhage in Preterm Infants 86
4.3. Sequelae of IVH and Other Hemorrhages in Preterm Infants .. 88
4.4. Perinatal Hypoxic-Ischemic Encephalopathy .. 90
4.5. Parasagittal Infarction, Ulegyria, Lobar Sclerosis .. 92
4.6. Sequelae of Cerebral Necrosis in Fetal and Perinatal Hypoxia .. 94
4.7. Periventricular Leukomalacia ... 96
4.8. Sequelae of Periventricular Leukomalacia .. 98
4.9. Subcortical Leukomalacia, Multicystic Encephalomalacia .. 100
4.10. Hippocampal Necrosis and Pontosubicular Neuron Necrosis .. 102
4.11. Perinatal Brain Stem Necrosis, Moebius Syndrome, Ondine’s Curse .. 104
4.12. Cerebellar Hemorrhage, Olivocerebellar Transneuronal Degeneration, Cerebellar Infarction, Cerebellar Cystic Leukomalacia .. 106
4.13. Kernicterus ... 108

5. Vascular Diseases ... 111
5.1. Arteriovenous Malformation .. 112
5.2. Aneurysm ... 114
5.3. Moyamoya Disease .. 116
5.4. Cavernous Hemangioma and Pediatric Strokes .. 118
5.5. Venous Thrombosis (Septic/Other) .. 120
Contents

6. Increased Intracranial Pressure
- 6.1. Cerebral Edema
- 6.2. Sequelae of Hypoxic Encephalopathy During Childhood

7. Neurocutaneous Syndromes
- 7.1. Tuberous Sclerosis Complex (Bourneville’s Disease)
- 7.2. Neurofibromatosis 1 (von Recklinghausen’s Disease)
- 7.3. Sturge-Weber Syndrome
- 7.4. Ataxia Telangiectasia

8. Lipidosis
- 8.1. GM1 Gangliosidoses
- 8.2. GM2 Gangliosidosis
- 8.3. Gaucher’s Disease
- 8.4. Niemann-Pick Disease
- 8.5. Neuronal Cereoid Lipofuscinoses
- 8.6. Neuronal Cereoid Lipofuscinoses
- 8.7. Farber’s Disease, Wolman’s Disease, Fabry’s Disease

9. Mucolipidosis
- 9.1. Galactosialidosis
- 9.2. I Cell Disease, Mucolipidosis Type 2
- 9.3. Multiple Sulfatase Deficiency
- 9.4. Mucopolysaccharidoses
- 9.5. Sialidosis Type 2

10. Glycogen Storage Disease
- 10.1. Pompe’s Disease

11. Peroxisomal Disorders
- 11.1. Zellweger’s Syndrome
- 11.2. Neonatal Adrenoleukodystrophy
- 11.3. Adrenoleukodystrophy

12. Urea Cycle Disorders
- 12.1. Arginosuccinic Aciduria
- 12.2. Glutaric Aciduria
- 12.3. Ornithine Transcarbamylase Deficiency
XIV Contents

13. Amino Acid Metabolism Disorders 187
 13.1. Homocystinuria 188
 13.2. Phenylketonuria and Maple Syrup Urine Disease 190

14. Mitochondrial Cytopathy 193
 14.1. Wernicke’s Encephalopathy 194
 14.2. Subacute Necrotizing Encephalopathy of Leigh (Leigh’s Syndrome) 196
 14.3. Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-like Episode (MELAS) Syndrome 198
 14.4. Alpers-Huttenlocher Syndrome (Progressive Neuronal Degeneration in Childhood With Liver Disease) 200

15. Other Heredodegenerative Diseases 203
 15.1. Dentato-Rubro-Pallido-Luysian Atrophy 204
 15.2. Friedreich’s Ataxia 206
 15.3. Lafora Body Disease 208
 15.4. Rett Syndrome 210
 15.5. Autism 212
 15.6. Congenital Myotonic Dystrophy 214

16. Basal Ganglia Diseases 217
 16.1. Wilson’s Disease 218
 16.2. Menkes Syndrome 220
 16.3. Juvenile Huntington Disease 222

17. Neuroaxonal Degeneration 225
 17.1. Infantile Neuroaxonal Dystrophy (Seitelberger’s Disease) 226
 17.2. Hallervorden-Spatz Disease 228

18. Leukodystrophy 231
 18.1. Vanishing Leukoencephalopathy (Childhood Ataxia with Central Hypomyelination Syndrome) 232
 18.2. Metachromatic Leukodystrophy 234
 18.3. Krabbe’s Disease (Globoid Cell Leukodystrophy or Galactosylceramide Lipidosis) 236
 18.4. Alexander’s Disease 238
 18.5. Canavan’s Disease, Spongy Degeneration of the Neuraxis (Canavan–van Bogaert–Bertrand Disease) 240
 18.6. Cockayne’s Syndrome, Connatal Cockayne’s Syndrome 242
 18.7. Pelizaeus-Merzbacher Disease 244
19. Demyelination ... 247
 19.1. Acute Disseminated Encephalomyelitis (Postinfectious/Postvaccination Perivenous Encephalomyelitis) 248
 19.2. Acute Necrotizing Encephalopathy 250

20. Infection .. 253
 20.1. Congenital Cytomegalovirus Infection 254
 20.2. Disseminated Varicella Zoster 256
 20.3. Herpes Simplex Type 1 Encephalitis 258
 20.4. Japanese Encephalitis 260
 20.5. Pediatric Human Immunodefeciency Virus (HIV) and Opportunistic Infection 262
 20.6. Progressive Multifocal Leukoencephalitis and Acute Hemorrhagic Leukoencephalitis (Hurst's Disease) 264
 20.7. Rabies, Poliomyelitis, Parvovirus B19 Infection 266
 20.8. Subacute Sclerosing Panencephalitis 268
 20.9. Tuberculosis .. 270
 20.10. Acute Bacterial Meningitis and Brain Abscess 272
 20.11. Fungal Infections .. 274
 20.12. Toxoplasmosis, Congenital Toxoplasmosis 276
 20.13. Amebiasis ... 278
 20.14. Echinococcus, Trichinella Spiralis, Cysticercus 280

21. Intoxication .. 283
 21.1. Minamata Disease ... 284
 21.2. Fetal Alcohol Syndrome, Other Drug Intoxication 286
 21.3. Carbon Monoxide Intoxication; Other Chemical and Drug Intoxication ... 288

22. Tumors ... 291
 22.1. Astrocytic Tumors ... 292
 22.2. Pilocytic Astrocytoma 294
 22.3. Miscellaneous Astrocytomas 296
 22.4. Ependymomas and Oligodendrogliomas 298
 22.5. Choroid Plexus Tumors 300
 22.6. Neuroepithelial Tumors of Uncertain Origin 302
 22.7. Neuronal and Mixed Neuronal-Glial Tumors 304
 22.8. Desmoplastic Infantile Astrocytoma and Desmoplastic Infantile Ganglioglioma 306
 22.9. Dysembryoplastic Neuroepithelial Tumor (Grade I) 308
 22.10. Embryonal Tumors .. 310
 22.11. Medulloblastoma (Grade IV) 312
 22.12. Supratentorial Primitive Neuroectodermal Tumors 314
 22.13. Atypical Teratoid/Rhabdoid Tumor (Grade IV) 316
 22.14. Peripheral Neuroblastic Tumors 318
 22.15. Pineal Parenchymal Tumors 320
 22.16. Meningeal Tumors .. 322
22.17. Tumors of the Sellar Region: Developmental Mass Lesions and Cysts ... 324
22.18. Developmental Masses and Cysts 326
22.19. Tumors of the Hematopoietic System 328
22.20. Germ Cell Tumors 330
22.21.1. Tumors of Cranial and Peripheral Nerves: Schwannoma and Neurofibroma 332
22.21.2. Tumors of Cranial and Peripheral Nerves: Perineurinoma and Malignant Peripheral Nerve Sheath Tumor .. 334
22.22. Familial Tumor Syndromes Involving the Nervous System ... 336

23. Motor Neuron Disease ... 339
23.1. Spinal Muscular Atrophy (Werdnig-Hoffmann Disease) ... 340

24. Peripheral Neuropathy .. 343
24.1. Peripheral Neuropathy Diseases 344
24.2. Hereditary Motor and Sensory Neuropathies (Charcot-Marie-Tooth Disease) 346
24.3. Hereditary Sensory and Autonomic Neuropathies 348

25. Muscle Disease ... 351
25.1. Muscle Development .. 352
25.2. Classification of Muscle Disease: Normal Muscle Structure ... 354
25.3. Progressive Muscular Dystrophy 356
25.4. Congenital and Other Muscular Dystrophies (Merosin Deficiency, Fukuyama Congenital Muscular Dystrophy) .. 358
25.5. Congenital Myotonic Dystrophy and Late-Onset Myotonic Dystrophy ... 360
25.6. Congenital Myopathies; Myopathies With Abnormal Structure .. 362
25.7. Inflammatory Myopathies 364
25.8. Metabolic Myopathies .. 366
25.9. Mitochondrial Cytopathies 368
25.10. Miscellaneous Muscle Pathology 370
25.11. Muscle in Neurogenic Disorders 372

26. Epilepsy ... 375
26.1. Ammon’s Horn Sclerosis 376
26.2. Microdysgenesis ... 378
26.3. Epilepsy with Inflammatory Lesions 380
26.4. Malformations and Epilepsy 382
26.5. Tumors and Epilepsy 384

27. Accidents, Sudden Death 387

27.1. Trauma During Infancy 388
27.2. Sudden Infant Death Syndrome 390
27.3. Child Abuse .. 392

References .. 395
Subject Index ... 407
1 Normal Development
1. Normal Development

1.1 Developmental Characteristics of the Fetal Brain: Gross Brain

Characteristics of Fetal Cerebral Hemispheres

The cerebral surface develops gradually from the fetal flat (lissencephalic) brain to the adult gyral pattern, increasing the cortical surface area until the second year of life. The sylvian fissure is apparent at approximately 14 weeks' gestation (GW). The primary sulci, such as rolandic, calcarine, superior temporal, and precentral sulci, appear after 20GW, the secondary sulci appear from 28GW, and the tertiary sulci from 36GW. The gestational age of a brain can be estimated by counting the number of convolutions (gyri) crossed by a line drawn from the frontal to the occipital pole above the insula and adding 21 to the gyral count [1]. Gestational age can also be estimated by counting gyri and sulci in neuroimages [ultrasonography and magnetic resonance imaging (MRI)].

The posterior horns of lateral ventricles are large (colpocephalic) during the second trimester of fetal life. The volume of the germinal matrix increases until 26GW and begins to decrease at 30GW. The germinal matrix, or neuroepithelium, persists as small islands in the wall of the ventricle until after birth. The largest island is the ganglionic eminence between the thalamus and the caudate. It is present at birth and disappears during the first year of life [2]. The periventricular germinal matrix produces neural stem cells in the innermost zone of the epithelium. These progenitor cells first produce neurons, which are translocated and migrate toward their final destination. The immature astrocytes and oligodendrocytes differentiate and migrate later.

Fig. 1.1-1. Fetal brain at 23 weeks' gestation, lateral view. The Sylvian fissure is widely open, and the first sulci are found in the central area.

Fig. 1.1-2. Fetal brain at 31 weeks' gestation, lateral view. The Sylvian fissure is slightly open, and secondary sulci are found in the whole hemisphere.
Fig. 1.1-3. Left. Basal view of the fetal brain in 1.1-1. The cerebellum is very small compared with the brain stem. Right. Horizontal section of the fetal brain in 1.1-1. Posterior horns are large in the very immature brain.

Fig. 1.1-4. Left. Basal view of the fetal brain seen in 1.1-2. The cerebellum is still small. Right. Horizontal section of the fetal brain seen in 1.1-2. Posterior horns are still large in the preterm fetus. The cavum septi pellucidi is normally present in all fetuses and newborns and disappears during the first 2 years.

Fig. 1.1-5. Preterm fetal brain. The coronal section shows no sulcus formation (except sylvian fissures) and a thick subependymal germinal layer. H&E.

Fig. 1.1-6. Term neonatal brain. The coronal section shows various depths of sulci and little subependymal germinal layer. H&E.
1.2 Developmental Characteristics of Neurons

Neurons, astrocytes and oligodendrocytes are derived from neural stem cells in the neuroepithelium of the ventricular wall [3]. Neurons develop in a caudal-rostral order from spinal cord to cerebral cortex. Those in the spinal cord and brain stem develop during the early fetal period; most neurons in the cerebral and cerebellar cortex develop and mature during the late fetal and infantile periods.

In the telencephalon, at 6–8 GW, Cajal Retzius (CR) and subplate neurons migrate from the neuroepithelium to form the preplate [4]. Subsequently, maturing pyramidal cortical neurons migrate along the radial glia [5] separating the CR and subplate neurons to form the six-layered cerebral cortex. The neurons of layer VI migrate first in an “inside-out” sequence. Tangential migration of granular neurons follows, completing the population of the cortex. Proteins such as Lis-1 [6] and Reelin [7] regulate neuronal migration and cortical organization. Reelin is produced by the CR neurons. A superficial granular layer, originating from the periventricular germinal epithelium, appears transiently underneath the leptomeninges of the cortex at 13–39 GW [8].

In the cerebellum Purkinje cells from the alar plate of the neural tube and the granule cells from the rhombic lip migrate toward the cortex of cerebellar folia, forming a complex circuitry with the brain stem, spinal cord, cerebellar nuclei, and basal ganglia. The external granular cell layer is under the control of Math1, which influences the normal development of the internal granular cell layer [9]. The maturation of the cerebellum lags behind the cerebral hemisphere, so mature numbers of folia and of internal granular neurons develop after birth. Involution of the external granular layer proceeds until 1 year of age. The maturation of the vermis occurs before that of the cerebellar hemispheres [10].

Fig. 1.2-1. The developing telencephalon and cerebellum at 14 weeks.

Fig. 1.2-2. The developing telencephalon and cerebellum at 17 weeks.
Fig. 1.2-3. The developing cerebral hemisphere and cerebellum at 19 weeks.

Fig. 1.2-4. The developing cerebral cortex and cerebellum at 28 weeks.

Fig. 1.2-5. The developing cerebral cortex and cerebellum at 33 weeks.

Fig. 1.2-6. The developing cerebral cortex and cerebellum at 40 weeks.
1.3 Dendritic and Synapse Development

Neurons are composed of soma, dendrites, and axons. The soma (nucleus and cytoplasm) has a variable shape and size depending on its location in the brain and its function. The soma of the developing neuron extends several neurites: one becomes the axon, developing presynaptic specializations; the others become dendrites, developing postsynaptic specializations. Many factors determine the destiny of the neurites. Axons produce growth cones that are guided to target neurons by extracellular matrix, the cell surface, and diffusion molecules. Some factors cause revulsion, inhibition, or cessation of movement. Neuronal survival is influenced by factors from the neurons they innervate, synaptic inputs, and neighboring neurons and glia. The point of communication between neurons is the synapse, formed when the growth cone contacts an appropriate “postsynaptic cell”; and there is expression of chemical transmitters required for neural transmission. The synapse is about 1μm in size and is localized to dendritic protrusions, the spines [11,12]. In the immature brain, neuronal somas are closely packed. When the neurons mature, the packing density decreases as the individual neurons develop expanding dendritic branches and axonal arborizations.

Dendritic and spine development can be defined in camera lucida drawings of Golgi preparations. Dendritic and synaptic development of neurons varies in each area of the cerebral cortex. For example, the neurons in the motor cortex mature a month ahead of those in the visual cortex. Within the cortical layers there is also variation in the time of dendritic maturation. For example, at 20GW basal dendrites are developed only in the deeper pyramidal cell layers [11,13].

Fig. 1.3-1. The visual cortex at 24 weeks’ gestation. The cell processes of superficial and poorly differentiated neurons remain attached to the pia. The deep pyramidal neurons are relatively developed, exhibiting short basal dendrites.

Fig. 1.3-2. At 28 weeks’ gestation the superficial neurons are poorly differentiated. Layer 3 pyramidal neurons are more developed, with small branched basal dendrites and occasional spines on the apical dendrites. Layer 5 neurons have more basal dendrites and spines.
Fig. 1.3-3. At 40 weeks’ gestation (term) there is a marked increase in the number of satellite and other association neurons. Fusiform cells are present in the deepest cortical layers. Spines are less on the proximal portions of pyramidal cell dendrites and are increased on the more distal portions of dendrites.

Fig. 1.3-4. At 6 months of age many more stellate neurons have appeared. The length and thickness of dendrites has increased, and apical dendrites have numerous branches.

Fig. 1.3-5. At 28 weeks’ gestation there are more spines on the proximal dendrites than on the distal dendrites.

Fig. 1.3-6. At 6 months of age, there is a small number of spines on the proximal portions of the apical and basal dendrites. The numbers gradually increase with increasing distance from the neuronal soma.
1.4 Glial Development and Myelination in the Cerebral White Matter

The glial cells are the astrocyte, the oligodendroglial cell, and the microglial cell. The astrocyte and oligodendrocyte arise from specific neural precursor cells and migrate from the germinal matrix. There are several astrocytic types based on their morphology and position in the nervous system: The protoplasmic astrocyte has glutamate transporters and contributes to the blood–brain barrier; the reactive astrocyte shows marked glial fibrillary acidic protein (GFAP) immunoreactivity and contains neurotrophic factors. There are Bergman astrocytes in the cerebellum, Müller cells in the retina, and radial glia in cerebral vesicles during development. The astrocyte, which has been identified to have voltage-gated ion channels and receptors for neurotransmitters, serves important functions in brain development, maintaining neurons, and the blood–brain barrier. The oligodendroglial cell is responsible for the production and maintenance of myelin. Myelination glia are immature forms of oligodendroglia with pale vesicular nuclei, nucleoli, and wispy tails of eccentric cytoplasm [8]. The maturing oligodendroglial cells can be identified by markers: the late oligodendroglial progenitor (NG2 proteoglycan+, O1+), the immature oligodendrocyte (O4+O1+), and the mature oligodendrocyte (myelin basic protein +) [14,15]. They are increased during the premyelination period. Microglia are the resident macrophages of the brain and are derived from mononuclear phagocyte precursor cells, which enter the brain during the period of developmental cell death. They are small, elongated bipolar cells with several finger-like processes and are ubiquitous in the parenchyma; they react to brain injury by producing cytokines [16,17], proteases, and nitric oxide.
Fig. 1.4-4. Myelination of cerebral white matter at 40 weeks’ gestation represented in a T2-weighted magnetic resonance (MR) image and a whole mount of brain stained with luxol fast blue (LFB).

Fig. 1.4-5. Myelination of cerebral white matter at 8 months represented in a T2-weighted MR image and in a whole mount of brain stained with LFB.

Fig. 1.4-6. Myelination of cerebral white matter at 3 years represented in a T2-weighted MR image and in a whole mount of brain stained with LFB.
1.5 Vascular Architecture in Developing Brains

The vascular pattern in the meningeal vessels varies with gestational age. The anterior, middle, and posterior cerebral arteries appear during the fourth month of gestation. The middle cerebral artery spreads out more rapidly with aging than the other cerebral arteries. In the venous system, the superior, inferior, anterior, and posterior cerebral veins are present. The superior, inferior, and posterior cerebral veins develop most rapidly.

In the cerebral hemispheres, the perforating arteries branching from the leptomeningeal arteries supply the cortex and underlying superficial and deep white matter as the cortical, subcortical, and medullary arterial branches, respectively. As the brain matures with the formation of gyri, the medullary arteries arising from the sulci appear shorter and their number of lateral branches increases.

The venous drainage of the cerebral mantle is divided, with cortical and subcortical veins draining into the meninges, and medullary veins from the deep white matter draining toward the ventricle. The deep white matter is drained by a fan-shaped array of medullary veins that flow vertically into the subependymal veins. The medullary veins in the deep cerebral white matter mature before the subcortical veins and before the arteries of the deep white matter [19]. This developmental discrepancy between deep white matter arteries and veins may be a predisposing factor for periventricular leukomalacia (PVL) and periventricular white matter hemorrhage [20].

Fig. 1.5-1. Arterial architecture of the frontal lobe in a preterm neonate at 26 weeks’ gestation.

Fig. 1.5-2. Arterial architecture of the cerebral hemisphere in a preterm neonate at 30 weeks’ gestation.
Fig. 1.5-3. Arterial architecture of the cerebral hemispheres at the level of the mammillary body in a 1-year-old child.

Fig. 1.5-4. Arterial architecture of the cerebral hemispheres and cerebellum at the level of the occipital horn in a 1-year-old child.

Fig. 1.5-5. Venous architecture of the cerebral hemisphere in a preterm neonate at 28 weeks' gestation. Note the brush-like veins in the subependymal matrix.

Fig. 1.5-6. Venous architecture of the cerebral hemisphere in a full-term neonate.
2 Malformations
2.1 Neural Tube Defects, Anencephaly

The brain and upper spinal cord form from the neural plate during primary neurulation beginning at 22 days’ gestation; the sacral spinal cord forms from the tail bud during secondary neurulation [1]. The various classifications of neural tube defects (NTDs) is complex and somewhat contradictory [2]. Practically, they can be considered as “open” (e.g., anencephaly, craniorachischisis, myelomeningocele) or “closed” (e.g., encephaloceles, meningoceles, split spinal cord). There are several pathoetiologies [3]. Folic acid supplementation before and during early pregnancy prevents most NTDs [3,4]. A mutant mouse model for NTD, Splotch, is being used to define the mechanism of teratogenesis by folate insufficiency [5]. A second mutant, curly tail, has an NTD that responds to myoinositol [6].

Craniorachischisis is the most severe form of NTD in which the brain and spinal cord are exposed to the surrounding amniotic fluid, resulting in neural tissue degeneration and angioma-like formations. Anencephaly is characterized by the absence of the calvarium and abnormalities of the base of the skull and the sphenoid bone with shallow orbits causing protrusion of the eyes. The cerebral hemispheres are replaced by the area cerebrovasculosa, a mass of neuroglial tissue and vessels. Exencephaly is rarely described in human fetal brain because the brain tissues usually become necrotic when exposed to amniotic fluid; the exencephalic appearance is converted to anencephaly by mid to late gestation [7].
Fig. 2.1-3. Acalvaria (acrania). The head appears intact but lacks the calvarium (skull cap).

Fig. 2.1-4. Acrania (same case as in 2.1-3). The brain situated underneath the skin and scalp appears complete.

Fig. 2.1-5. Acrania (same case as in 2.1-3). Coronal section of both hemispheres shows relatively normal gyral formation.

Fig. 2.1-6. Acrania (same case as in 2.1-3). The brain stem (right) is small compared with that of a normal age-matched control (left). H&E.
2.2 Meningoencephalocele, Encephalocele

A meningocele is the herniation of dura and arachnoid through a vertebral or calvarial defect, with the spinal cord or brain remaining in the spinal canal or cranium. A midline vertebral or cranial defect without any herniation is termed spina bifida or cranium bifidum respectively. Myelocele or encephalocele consists of a developmental vertebral or cranial defect through which there are herniations of the spinal cord or brain tissues.

Meningomyelocele or meningoencephalocele is herniation of part of the brain or spinal cord and meninges through a vertebral or calvarial defect associated with skin and hair abnormalities. In 80% of meningoencephalocele cases, the defect occurs in the occipital region and is associated with skin abnormalities. Occipital encephalocele occurs through the occipital bone and contains fragments of disorganized cerebral hemispheres with ventricular cavities. Polymicrogyria may be associated with meningoencephaloceles. The occipital encephalocele is an important component of Meckel-Gruber syndrome, which is a lethal autosomal recessive disorder that maps to 17q21–14 and consists of polydactyly, polycystic kidney, hepatic fibrosis, and various brain malformations (see Section 2.24) [2].

Fig. 2.2-1. Occipital meningoencephalocele in a fetus of 20 weeks’ gestation.

Fig. 2.2-2. Lateral views of the brain in 2.2-1 shows a meningoencephalocele at the level of the cerebellum.
Fig. 2.2-3. Meningoencephalocele of a fetus. Histology shows spongy changes and increased vascularity in thin cerebral hemisphere under thick meninges and normal skin. H&E.

Fig. 2.2-4. Meningoencephalocele of a fetus. Note the marked astrogliosis in the molecular layer and part of the cellular layer of the cortex. GFAP immunohistochemical stain.

Fig. 2.2-5. Meckel-Gruber syndrome in a term neonate. This lethal autosomal recessive syndrome consists of occipital encephalocele, polydactyly, polycystic kidney, and hepatic fibrosis with bile duct proliferation.

Fig. 2.2-6. Meningoencephalocele in the nuchal region.
2.3 Iniencephaly

Iniencephaly is a rare axial dysraphic complex malformation characterized by (1) an occipital bone defect, (2) cervical dysraphic changes, and (3) retroflexion of the whole spine [8,9]. Iniencephaly differs from anencephaly in that the cranial cavity is present and skin covers the head and retroflexed region [9]. Severe retroflexion of the neck is found by fetal ultrasonography and magnetic resonance imaging (MRI).

Anomalies of the central nervous system (CNS) may be numerous, ranging from lesions similar to those in anencephaly to less-advanced dysgenesis of the brain. NTDs affecting the spinal cord consist of iniencephaly, meningocele, and meningomyelocele. Iniencephaly is characterized by spina bifida of the cervical vertebrae usually associated with anomalies of the brain stem.

Fig. 2.3-1. Iniencephaly: retroflexion of the neck.

Fig. 2.3-2. Iniencephaly. Radiograph from lateral side of the whole body.