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Preface 

This collection of essays is dedicated to Professor Klaus Neumann, Head 
and Chair of the Institute for Economic Theory and Operations Research 
WiOR at the University of Karlsruhe. On the occasion of his emeritation, 
disciples, colleagues, scientific companions, and friends coming from dif­
ferent fields have contributed their perspectives on Operations Research 
to form a broad view on the discipline. The papers are organized in four 
parts on optimization, OR in production and service management, OR in 
logistics, and interdisciplinary approaches. We thank all the authors for 
their participation in publishing this volume. Mrs. Ute Wrasmann from 
Deutscher Universitats-Verlag deserves credit for her interest and assis­
tance on this project. Finally, we would like to express our gratitude to 
PTV Planung Transport Verkehr AG in Karlsruhe and to numerous former 
WiOR colleagues for their financial support. 

Klaus Neumann was born in Liegnitz (Silesia) in 1937. Prom 1955 to 
1961 he studied mathematics at the Technical Universities of Dresden and 
Munich. His first paper on analog computers and dynamic programming 
was published less than two years later. In 1964 he obtained a Ph.D. in 
mathematics under the supervision of Josef Heinhold in Munich. After a 
two-year stay in industry, he returned to his alma mater, working on the 
fields of dynamic optimization and control theory. In 1968 he was conferred 
the venia legendi for mathematics from the Technical University of Munich 
with a habilitation thesis on optimization subject to nonholonomous con­
straints. The same year he moved to the University of Karlsruhe, where he 
took up the head of the computer center. Since 1970 he is full professor of 
Operations Research at the School of Economics and Business Engineering 
in Karlsruhe. 

Klaus Neumann has strongly influenced the development of Operations 
Research in Germany over more than four decades. For generations of 
German-speaking students his seminal trilogy Operations-Research-Ver-
fahren has been the OR textbook of choice. His books on Operations 
Research and Production and Operations Management published in the 
1990s remain a major reference in the field. Scientific monographs on dy-
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namic programming (1969), control theory (1969), stochastic project net­
works (1979 and 1990), and project scheduUng (2003) are evidences of his 
fruitful research, which has repeatedly been supported by the German Re­
search Foundation DFG and by industry. The main achievements of this 
research are outlined in the first chapter of this book. From 1970 to date 
Klaus Neumann has supervised more than 30 doctoral and habilitation can­
didates. He held visiting professorships at the Universities of California at 
Berkeley and Riverside, Stanford, Florida, Waikato at Hamilton, Kunming, 
and Beijing Institute of Technology. Since 1972 he has been editor of sev­
eral scientific series and journals like Mathematical Systems in Economics^ 
Methods of Operations Research^ and Mathematical Methods of Operations 
Research. In addition, he has been chairman and (and still is) member of 
the program committee of numerous scientific conferences such as EURO 
WG PMS, lEPM, IKM, or MISTA. 

All over the years, students and colleagues at WiOR have not only 
benefited from Klaus Neumann's comprehensive scientific knowledge and 
expertise. We all have been influenced by his cultivated personality and 
generosity. Memorable excursions, wine tastings, and exquisite dinner re­
ceptions at his home in Conweiler have set very high cultural standards at 
our institute. We wish Klaus all the best for the future. 

Giefien, Clausthal-Zellerfeld, Bern Martin Morlock 
November 2005 Christoph Schwindt 

Norbert Trautmann 
Jiirgen Zimmermann 
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1 Introduction 

In this paper we give a short overview of the research conducted, initiated, 
and supervised by Klaus Neumann from the early sixties up to present. Of 
course, we do not claim exhaustiveness of our review. The major themes of 
research can be clustered into the three main areas sketched in Sections 2 
to 4: 

• Control Theory and Dynamic Programming (1960s and 1970s) 

• GERT Networks (1970s to 1990s) 

• Resource-Constrained Project Scheduling (since 1990s) 

In any of those fields, Klaus Neumann has significantly influenced the de­
velopment of OR in Germany and beyond. Prom the very beginning, his 
research has combined solid mathematical foundation and applicability of 
theoretical results. The relevance of his achievements to the treatment of 
real-world problems has been reflected in many applied research and devel­
opment projects. A selection of the projects that have been carried out in 
cooperation with different industrial partners is sketched in Section 5. 

2 Control Theory and Dynamic Programming 

Among the various approaches existing at the beginning of the 1970's in 
quantitative economic science, only linear programming has been successful 
on a broad front. For this simply structured class of static optimization 
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problems, a commonly accepted and transparent model as well as efficient 
solution algorithms could be developed and applied due to the enormous 
advances in computer technology. 

However, a multitude of practical problems in management and eco­
nomics is not static in nature, but concern the analysis and optimal solution 
of time-dependent (decision) processes. Such problems are well-known as 
control problems (particularly in technology). To find an optimal solution 
to such problems, mainly two different approaches have been investigated: 
control theory and dynamic programming. 

Control theory in continuous time is based substantially on an analytic 
approach referring to the Pontrjagin maximum principle and transversality 
conditions. Fundamental to dynamic programming is the so-called Bellman 
optimality principle^ which was developed in the 1950's by the American 
mathematician Richard Bellman (cf. Neumann 1969a). In particular Neu­
mann contributed several publications to the spreading of those two opti­
mization techniques and to their application. Together with Bauer (1969), 
he was one of the first who explained in a very lucid way these two fun­
damental approaches and their relationship. For the acceptance and suc­
cessful use of dynamic models, both their theoretical foundation and the 
development of numerical methods were essential. Major contributions to 
the latter topic, as well as descriptions of relevant applications, can be 
found for example in Neumann (1969a) and (1975a). 

Initial considerations were concerned with the question whether analog 
or digital computers should be used for the numerical solution of dynamic 
optimization problems, especially for dynamic optimization problems in 
continuous time (cf. Neumann and Neumann 1963). Rapid progress in the 
digital computer technology soon decided in favor of the digital comput­
ers. In the following, research in the areas of control theory and dynamic 
programming concentrated on the development of solution procedures for 
different problems with a great diversity of applications and on their the­
oretical foundations (cf. e.g., Neumann 1965a, 1965b, 1968, 1969b, 1969c, 
1970a, and 1971a). In addition, for applying the dynamic optimization 
principle, which represents a universally applicable instrument, large nu­
merical problems had to be tackled. Dynamic programming mainly suf­
fers from the curse of dimensionality. This means that the search process 
exploiting Bellman's optimality principle in higher-dimensional state and 
control spaces results in exponentially growing computational requirements. 
Some efficient procedures reducing the costs of computation by using ap­
proximating approaches and appropriately adapted gradient methods are, 
for example, presented in Neumann (1970b, 1975b). 

A substantial strength of the Bellman optimality principle and its sue-
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cessful use appears if the problem decomposes into many similar and inter­
dependent sub-problems. These sub-problems are exposed to coincidental 
influences and the solution of the total problem can be built up from opti­
mal solutions of the sub-problems. This is for instance the case for Markov 
decision problems. These problems belong to the field of stochastic dynamic 
programming and cover economic questions for which stochastic influences 
are relevant. The aspect of risk, connected with economic acting, plays 
a more and more important role in decision making (cf. Neumann and 
Morlock 2002). 

Finally, a class of problems which are relevant to practice and for which 
stochastic dynamic programming proved suitable are known as decision 
activity networks. This is a very clear planning instrument for the repre­
sentation and handling of stochastic network project control and scheduling 
problems, which, since the middle of the 1970's, are studied in numerous 
pubhcations (cf. Neumann 1977a). In the following section, those networks 
are treated in more detail. 

3 GERT Networks 

Project planning, scheduling, and control are widely used in practice to 
accomplish outcomes under critical time constraints and given limited re­
sources. Classical network techniques like CPM, MPM, or PERT are used 
for projects whose evolution in time can be uniquely specified in advance 
(cf. Neumann and Morlock 2002). Unfortunately, in practice this condition 
is frequently not fulfilled. Consider for instance an inspection that takes 
place during a production process and which reveals that a product does 
not conform to a set of given specifications. Thus it must be repaired or 
replaced, i.e., we have to return to a preceding stage of the production 
process. Since only a certain percentage of tested products does not com­
ply with the specifications, this feedback loop occurs with a probability of 
less than one. To deal with these more general projects, whose evolution 
in time cannot be anticipated precisely (stochastic evolution structure of 
the project) and where feedback is permitted, so-called GERT networks 
with an activity-on-arc representation have been introduced (cf. Neumann 
1971b, 1976, and 1977b). 

The essential features of GERT networks as compared to CPM or 
PERT networks are more general arc weights, cycles to represent feedback, 
and six different types of nodes. These node types arise from combin­
ing three different node entrances corresponding to the logical operations 
"and", "inclusive-or", and "exclusive-or" as well as two possible node exits^ 
which determine whether exactly one ("stochastic exit") or all ("determin-
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istic exit") emanating activities must be performed if the corresponding 
node is activated. For each arc (activity) there is a conditional execution 
probabiHty given that the corresponding initial event has occurred and a 
conditional distribution function for the duration of that activity given that 
the activity is carried out. For an in-depth treatment of the theory of GERT 
networks, we refer to Neumann and Steinhard (1979a) and Neumann (1989, 
1990). 

In CPM, MPM, or PERT network techniques, the temporal analysis 
of the project includes the determination of the earliest and latest start 
times of the project activities, the earliest and latest occurrence times of 
certain project events, as well as the computation of the project duration 
or its distribution. For GERT networks these concepts have been discussed 
by Neumann (1979a) and Neumann and Steinhard (1979a). However, in 
the case of GERT networks the meaning of those concepts is quite different 
because project events may occur several times and their computation is 
much more complicated. Therefore, the temporal analysis of GERT net­
works usually only considers quantities that are associated with the termi­
nal events of the project such as the probability that certain terminal events 
will occur (a GERT network generally has more than one sink) and the re­
spective (conditional) distribution function (cf. Neumann 1979b, 1990). For 
general GERT networks the temporal analysis is usually very time consum­
ing because it requires the evaluation of multiple integrals (cf. Neumann 
1984b). For special GERT networks such as so-called EOR networks^ or 
reducible GERT networks'^ results from Markov renewal processes can be 
exploited for the temporal evaluation of the network, which simplifies the 
determination of the activation distributions (cf. Fix and Neumann 1979, 
Neumann and Steinhard 1979b, and Neumann 1985). 

Besides the temporal analysis of stochastic projects, the cost mini­
mization of such projects is of great interest. In the case of GERT net­
works different types of costs are incurred by the execution of activities 
and the occurrence of events. For EOR networks the cost minimization 
problem again leads to a Markov renewal decision process and can thus be 
modeled and solved as stochastic dynamic programming problem (see Neu­
mann 1981, 1984a and Foulds and Neumann 1989). A different approach to 
solving the cost minimization problem, which leads to an optimal control 
problem, has been proposed by Delivorias et al. (1984). 

If scarce resources (e.g., machines) are required for performing the proj-

^EOR networks are GERT networks whose nodes have an "exclusive-or" entrance. 
•̂ A GERT network is called reducible, if all nodes with "and" or "inclusive-or" en­

trances are part of special subnetworks which can be reduced to structures containing 
only "exclusive-or" nodes with a stochastic exit. 
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ect activities, so-called GERT scheduling problems have to be solved, 
whose type depends on the structure of the underlying production processes 
(cf. Neumann 1999). In particular single machine, parallel machine, flow 
shop, and job shop scheduling problems with GERT network precedence 
constraints arise in practical applications involving product variants. For 
single machine scheduling problems with stochastic precedence constraints 
a dynamic programming approach can be found in Neumann (1990). Poly­
nomial algorithms for single machine scheduling problems with precedence 
constraints given by an EOR network are developed by Biicker et al. (1994). 
Heuristic procedures for parallel machine problems with GERT precedence 
constraints are discussed in Foulds et al. (1991) and Neumann and Zimmer-
mann (1998). Neumann and Schneider (1999) deal with minimizing the ex­
pected makespan of flow shop and job shop scheduling problems with EOR 
network precedence constraints. A comprehensive summary on scheduling 
problems with GERT precedence constraints is given by Neumann (1990, 
1999). 

4 Resource-Constrained Project Scheduling 

In this section we consider the planning of projects for which the evolu­
tion structure, activity durations, and resource data can be estimated in 
advance with sufficient accuracy. In this case we may consider the pre­
dictive data as being deterministic and take uncertainty into account by 
constructing robust plans or dynamically reacting on disruptions during 
the implementation. Project scheduling as part of project planning is con­
cerned with computing time intervals for the execution of project activities 
in such a way that the precedence relationships between activities are sat­
isfied and an objective function formulating the planning goal is minimized 
or maximized. In resource-constrained project scheduling, the latter prob­
lem amounts to allocating scarce resources over time to the execution of 
the activities. Different types of resources have been considered in the lit­
erature. The availability of renewable resources like personnel, machines, 
or equipment at a given time solely depends on the activities being in 
progress. Examples of cumulative resources, whose availability depends on 
the complete project history, are funds, materials, or storage space. 

For what follows, we suppose that the execution modes defining the 
resource requirements of each activity have been fixed and that the activ­
ities must not be interrupted during their execution. A solution to such a 
single-mode scheduling problem is usually represented as a vector of activ­
ity start times, which is called a schedule. Furthermore, we assume that 
the precedence relationships between activities are given as minimum and 
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maximum time lags between the start times of activities. The activities 
and time lags can be modeled as an MPM network, possibly containing 
cycles. Minimum and maximum time lags allow to formulate many con­
straints arising in practical applications of project scheduling hke release 
dates, deadlines, quarantine and shelf life times, or overlapping activities 
(see Pranck et al. 1997 and Neumann and Schwindt 1997, 1998 for applica­
tions of project scheduling models in production planning). Minimum and 
maximum time lags greatly add to the complexity of resource-constrained 
scheduling problems since in difference to the case of ordinary precedence 
constraints, the problem of finding a feasible schedule is already NP-hard 
even if the project only contains renewable resources. 

An overview of models and methods for project scheduling is given by 
Brucker et al. (1999), which also provides a three-field classification scheme 
for project scheduling problems. Many of the results on project scheduling 
in MPM networks mentioned in this section are presented in more detail 
in a review by Neumann et al. (2002b) and the monograph by Neumann et 
al. (2003a). 

Exact and heuristic algorithms for project scheduling are based on the 
exploration of finite sets containing eflJcient points of the feasible region. 
The type of schedules to be investigated depends on the objective function 
under consideration. Based on a structural analysis of the feasible region, 
Neumann et al. (2000) have proposed a classification of objective functions 
and corresponding efiicient points. The analysis shows that basically, ef­
ficient points can be enumerated in two alternative ways. If the temporal 
scheduling problem arising from deleting the resource constraints can be 
solved efficiently, the classical approach consists in using some relaxation-
based generation scheme branching over alternatives to resolve resource 
conflicts. Examples of objective functions for which temporal scheduling 
can be done efficiently are the makespan (project duration) and the sum 
of discounted cash flows associated with the project activities (net present 
value of the project). If already the temporal scheduling problem is NP-
hard, an optimal schedule can be computed with a constructive generation 
scheme, which iteratively establishes binding temporal or precedence con­
straints. Resource leveling problems, where the objective is to smooth the 
resource utilization over time, belong to this second class of problems. 

For solving the project duration problem with renewable resources, 
both the constructive and the relaxation-based approache have been used. 
Priority-rule based methods exploiting the cyclic structure of the MPM 
project network have first been presented by Neumann and Zhan (1995) 
and Brinkmann and Neumann (1996). In Pranck et al. (2001), the per­
formance of different priority-rule based methods, local search procedures, 
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and truncated branch-and-bound algorithms based on resource relaxation 
have been compared with respect to accuracy and computation time. A 
branch-and-bound algorithm for the project duration problem with cumu­
lative resources can be found in Neumann and Schwindt (2002). 

Schedule-construction algorithms for the net present value problem 
have been devised by Neumann and Zimmermann (2000). A relaxation-
based branch-and-bound algorithm for this problem has been developed 
by Neumann and Zimmermann (2002). In this algorithm, the temporal 
scheduling problems are solved by efficient primal and dual vertex-following 
algorithms. 

Brinkmann and Neumann (1996) and Neumann and Zimmermann (1999, 
2000) have treated several variants of the resource leveling problem. 
Depending on whether the maximum resource usage or the variability in 
resource utilization shall be minimized, different sets of tentative activity 
start times are investigated. According to the principle of the constructive 
schedule-generation scheme, the sets are chosen in way ensuring that in 
each iteration some temporal or precedence constraint becomes binding. 
Order-based neighborhoods for project scheduling problems with general 
nonregular objective functions like the net present value of resource level­
ing functions can be found in Neumann et al. (2003b). 

5 Selected Applications 

In what follows, we briefly discuss some selected applications of the research 
that has been described in the preceding sections. Together with further 
applications, they all are the result of applied research projects carried out 
in cooperation with partners from different industries. 

A six-year research and development project building on the achieve­
ments in the field of resource-constrained project scheduling was concerned 
with short-term production planning in the process industries. 
In those industries, final products arise from several successive chemical 
or physical transformations of bulk goods, Uquids, or gases processed on 
processing units such as reactors, heaters, or filters. Each transformation 
process may consume several input products and may produce several out­
put products, whose amounts may be chosen within prescribed bounds. 
Perishable products must be consumed within a given shelf life time, which 
may be equal to zero. In addition, the storable intermediate products must 
be stocked in dedicated storage facilities like tanks or silos. Further pecu-
Uarities encountered in the process industries are cyclic product structures 
and sequence-dependent cleaning times on processing units. 

For the case of batch production, Neumann et al. (2002a) present a new 
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solution approach, which can solve much larger practical problems than the 
methods known at this time. The new approach decomposes short-term 
planning for batch production into batching and batch scheduling. Batch­
ing converts the primary requirements for products into individual batches, 
where the objective is to minimize the resulting workload. The batching 
problem is formulated as a mixed-integer nonlinear program. The latter 
problem is transformed into a mixed-binary linear program of moderate 
size, which can be solved by standard MILP software. A solution to the 
batch scheduling problem allocates the batches to scarce resources such as 
processing units, workers, and intermediate storage facilities, where some 
regular objective function like the makespan is to be minimized. The batch 
scheduling problem is modeled as a resource-constrained project scheduling 
problem, which can be solved by new efficient truncated branch-and-bound 
or priority-rule based methods. The performance of the new solution proce­
dures for batching and batch scheduling is demonstrated by solving several 
instances of a case study from process industries. Recently, the truncated 
branch-and-bound algorithm for the batch scheduling problem has been 
generalized to the case of continuous material flows (cf. Neumann et al. 
2005). 

Schwindt und Trautmann (2003) study a real-world scheduling problem 
arising in aluminium industry. They consider the production of rolling in­
gots, i.e., ingots of a certain aluminium alloy in rectangular form. These 
ingots are the starting material for the rolling of sheet, strip, and foil. It 
is shown how to model this scheduling problem as a resource-constrained 
project scheduling problem using minimum and maximum time lags be­
tween operations, different kinds of resources, and sequence-dependent 
changeovers. A solution procedure of type branch-and-bound is presented. 

Now we turn to a project scheduling application from the area of ser­
vice operations management. Car manufacturers increasingly organize 
visit programs for the customers that pick up their new cars at the factory. 
Such a program consists of a broad range of event-marketing activities and 
is designed to estabUsh an emotional relationship between the customer 
and the brand. Mellentien et al. (2004) study the problem of scheduling all 
program activities of one day in such a way that the sum of the customers' 
waiting times during their visit is minimized. In service operations manage­
ment, short customer waiting times are considered to be a key performance 
indicator of customer satisfaction. 

Eventually, resource-constrained project scheduling has been applied 
to the problem of managing research and development projects in 
the pharmaceutical industries. Kolisch et al. (2003) study the problem of 
scheduling research activities in drug development. A particularity of this 
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problem is that the manpower requirements of the activities may vary over 
time, the requirement profiles being subject to decision. 

In a current research project, quantitative methods for decision sup­
port in the service industries are developed. Schon-Peterson (2003) has 
developed various models and solution methods for the pricing of telecom­
munication services. 
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1 Introduction 

In this paper shop scheduling problems are modeled by matrices. Initially 
we assume that each job is processed at most once on each machine. It is 
shown how the model can be extended to shop problems with more than 
one operation on each machine and to the case that preemption is allowed. 

Modelling shop problems by matrices is a very natural approach of 
modelling such scheduling problems. At first it was presented by BRASEL 

[1]. The model is easy comprehensible and can be applied to simplify the 
description of algorithms in this field, for instance the block-approach idea 
for job shop problems and algorithms in the case of unit processing times. 

Moreover, this model gives rise to new theoretical results. We give a 
brief review on such papers. The complexity question of some open shop 
problems with unit processing times was solved, see for instance BRASEL 

ET AL. [7], [8] and [9], TAUTENHAHN [16] and [17]. The insertion technique 
(cf. [1]) was developed for enumeration algorithms and beam search strate­
gies, see for instance BRASEL ET AL. [10], WERNER AND WINKLER [18] 
and SOTSKOW ET AL. [15]. Theoretical results were obtained for count­
ing problems, see BRASEL AND KLEINAU [5], HARBORTH [14] and BRASEL 

ET AL. [2] and [3]. Moreover, the model was applied for structural inves­
tigations of sequences and schedules: Shop scheduling spaces were char-
acterizised algebraically by DHAMALA [12]. The irreducibility theory was 
developed, introduced by BRASEL AND KLEINAU [6]. Here especially the 
papers of BRASEL ET AL. [2], [3] and WILLENIUS [19] has to be mentioned. 
Furthermore, the software package LiSA works with this model succesfully. 



18 Heidemarie Brasel 

However, there is no article in English to explain the basic model in 
detail. This paper closes this gap. It is organized like an introductory 
lecture on shop problems. We start with basic notations, give an overview 
on the used graphs and their description by matrices and present simple 
algorithms concerning the defined matrices. The insertion technique for 
construction of sequences is introduced and some properties of sequences 
are charakterized. We next show how the model can be modified for other 
classes of shop problems. Finally, the software package LiSA - A Library of 
Scheduling Algorithms is presented which contains the introduced matrices 
and their visualization as graphs and Gantt charts. 

2 Basic No ta t ions 

In a shop scheduling problem a set of n jobs ^4 ,̂ i G / = { 1 , . . . , n} , has to 
be processed on a set of m machines Mj, j € J = { 1 , . . . , m}, in a certain 
machine environment a under certain additional constraints /? such that 
an objective function 7 is optimized. Such a problem is called determinis­
tic if all parameters are fixed and given in advance. Various optimization 
problems concerning allocation of restricted resources can be modeled as 
scheduling problems. We use the standard a | /? | 7 classification of deter­
ministic scheduling problems developed by GRAHAM ET AL. [13]. 

At first we consider so-called classical shop problems, i.e., each job is 
processed on each machine at most once. 

Processing of job Ai on machine Mj is called an operation {ij), PT 
denotes the matrix of processing times: PT = \p%j\. The set of all opera^ 
tions SIJ is given by SIJ = {{ij) \ Pij > 0}. We assume that each job is 
processed on at most one machine at a time and each machine processes at 
most one job at a time. For certain shop problems, a release time ri > 0, 
a due date d̂  > 0 or a weight Wi > 0 for job A^, z G / , are requested. 
Let Ui and Vj be the number of operations for job Ai and on machine Mj, 
respectively. Then we define: 

The machine order of the job Ai is the order of machines on which this 
job has to be processed: Mj^ —> Mj^ —•...—> Mj^.. 

The job order on machine Mj is the order of the jobs which this machine 
processes: Ai^ —^ Ai^ -^ ... ^ Ai^.. 

In a job shop problem (a = J) the machine order of each job is given in 
advance. In a flow shop problem (a = F) the machine orders of each job 
are the same , w.l.o.g. in the case of SIJ = I x J: Mi —̂  M2 ^ . . . -^ Mn-
In an open shop problem (a = O) both machine orders and job orders can 
be chosen arbitrarily. Other precedence constraints on the operations can 
be easily integrated into the model. 



Matrices in Shop Problems 19 

In a shop problem a combination of machine orders and job orders 
is to determine such that a time table of processing (schedule) can be 
constructed, which satisfies the additional constraints and minimizes the 
given objective function. 

Let Ci be the completion time of job -Af. An objective function 7 = 
F{C\^. .^<,Cn) is called regular if it has the following property: 
If for two schedules S and 5* the inequality C* > Ci holds for all i E / 
then F(Ci*, . . . , C*) > F ( C i , . . . , Cn) is satisfied. 

The makespan Cmax, the weighted sum of completion times "^WiCi, the 
maximum lateness Lmax^ the weighted tardiness Y!,'^i'^i ^^^ the weighted 
number of late jobs ^WiUi are regular, where: 
Cmax = max{Ci}, Lmax = m3x{di -Ci}, E ^ i ^ i = E ^ i max{0, di-d} 

tei tei i^i 

and Ui = I ' * * for alH G / . Often Wi = \ for alH E / holds. 
[̂  0, otherwise 

3 Graphs and Matrices for Shop Problems 

This chapter starts with a model of shop problems where preemption of 
the operations is not allowed. 

3.1 Partial Orders and Schedules 

We define the following digraphs where in each case the set of vertices is 
the set SIJ of operations: 

• The digraph of machine orders G{MO) = {SIJ, Amo) contains all arcs 
which describe the direct precedence constraints in all machine orders. 

i = k A after the processing of job Ai on 

(i ((^i)»(fcO) ^AMO • • , 
Mj job Ai is processed on machine Mi 

The digraph of job orders G{JO) = {SIJ, Ajo) contains all arcs which 
describe the direct precedence constraints in all job orders. 

( 

, , . .̂  ,. .,^ , t j = I A after the processing of job Ai on 
{{ij), {kl)) G AJO <=^ { & J I 

machine Mj machine Mj processes Ak-

• The digraph G{MO, JO) = {SIJ, A) contains all arcs of A = AMO U 
AJO-

A combination {MO, JO) of machine orders and job orders is called feasible, 
if the corresponding digraph G{MO, JO) does not contain a cycle. In this 
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case G{MO, JO) is called a sequence graph. The described acyclic graphs 
are partial orders on the set of all operations. 

Example 1 Assume that three jobs have to be processed on four machines. 
The matrix PT of processing times is given by 

PT 

2 1 0 1 

2 3 4 3 

1 5 1 2 

, therefore SIJ = I x J\{(13)} holds. 

We consider the following machine orders and job orders: 

Ai : Ml -^ M2 —> M4 Ml : Ai —^ A2 —^ As 

A2 : M2 -* M4 -̂  Ml —> M3 M2 : A2-^ A^-^ Ai 

A^: M4 —> Ml -̂  M2 —• M3 M3 : A^-^ A2 

M 4 : ^3 -^ i4i —• A2 

The corresponding digraph G{MO,JO), see Figure i , contains verti­
cal arcs, which represent job orders on the machines and horizontal arcs 
representing machine orders of the jobs. 

The combination of machine orders and job orders is not feasible because 
G{MO,JO) contains the cycle (12) -^ (14) -> (24) - • (21) -^ (31) -^ 
(32) —* (12). Since we have a cycle, there can not exist any schedule of 
processing. 

If we choose the natural order of the machines in each machine order 
and of the jobs in each job order, the digraph G{MO, JO) cannot contain 
any cycle, because all arcs are directed to the left or downwards. In this 
case a corresponding schedule can easily be constructed. 

Now we assign the weight pij to each vertex (ij) of the sequence graph 
G{MO,JO), Then a schedule can be constructed. Usually schedules are 
described by the start times or the completion times of all operations. 
There exist the following classes of schedules: 
A schedule is called a non-delay schedule, if no machine is kept idle when 
there exists a job available for processing. 
A schedule is called active, if no operation can be completed earlier by 
changing the job orders without delaying any other operation. 
A schedule is called semiactive, if no operation can be completed earlier 
without changing the job order on any of the machines. 

Note, that each non-delay schedule is also active and each active sched­
ule is also semiactive, but not vice versa. 
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G(MO) G(JO) 

G(MO,JO) 

Figure 1: G{MO), G{JO) und G{MO,JO) for Example 1 

In the case of regular objective functions there always exists an optimal 
semiactive schedule and the computing of a longest path in G{MO, JO) 
yields the makespan. We use the notation longest path with respect to the 
sum of the weights of the vertices contained in the path. Schedules are 
visualized by Gantt charts, which can be machine oriented or job oriented. 
In Figure 2 a job-oriented Gantt chart of a schedule with minimal makespan 
is given (see Example 1). There cannot be any better schedule because the 
longest job A2 has no idle time within its processing. 

In general, the set of schedules is infinite, but the set of sequences is 
finite. The binary relation R in the set of schedules: 
"schedule 1 R schedule 2 if and only if both schedules have the same ma­
chine orders and job orders" is an equivalence relation. We can choose 
all semiactive schedules with unit processing times as representativs of the 
equivalence classes, whose number is finite. 



22 Heidemarie Brasel 

I 

A3 

A2 

Al 

\ 

Ms Ml M4 

M2 

M4 

M2 

Ml 

M2 

M4 

Ml 

M3 

12 

Figure 2: J oh-oriented Gantt chart 

3,2 Matrices in Shop Problems 

In the literature the most commonly used model for shop problems is the 
well-known disjunctive graph model, see for instance BRUCKER [11]. We 
obtain the model used here by the following modifications: 
- Cut the inserted source and sink and the corresponding incident arcs. 
- Determine an acyclic orientation of the disjunctive graph. 
We obtain the sequence graph (cf. Section 3.1) by deleting all transitive 
arcs which are not direct precedence constraints in the machine orders and 
in the job orders. 

Now we define a set of matrices, where in each matrix an information 
of the operation (ij) on position (ij) is contained, this is the real advan­
tage of the model. The digraphs G{MO), G{JO) and G{MO, JO) and in 
particular, the structure of the contained paths are visible by the matrices 
without drawing the digraphs. The number of vertices on a longest path 
with respect to unit weights of all vertices from a source to the vertex v is 
called rank of v\ rk{v). Now we define the following matrices: 

• the machine order matrix MO = [mof^]: moij is the rank of the 
operation (ij) € SIJ in the digraph G{MO), 

• the job order matrix JO = [joij]: joij is the rank of the operation 
{ij) e SIJ in the digraph G{MO). 

• the sequence (matrix) PO = \poij\: poij is the rank of the operation 
{ij) € SIJ in the sequence graph G{MOy JO), 

These matrices describe structural properties of a solution of a shop prob­
lem. 

We extend this set by matrices with properties of the weighted sequence 
graph, i.e. the corresponding schedule (see Figure 3): 


