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Preface

The aim of the present work is to describe the early development of approxi-
mation theory. We set as an endpoint the year 1919 when de la Vallée-Poussin
published his lectures [Val19]. With these lectures all fundamental questions,
that is, non-quantitative theorems, series expansions and quantitative prob-
lems, received their first summarized discussion.

The clear priority of the present investigations are the contributions of
Pafnuti Lvovich Chebyshev and of the St Petersburg Mathematical School
founded by him. Although some overviews and historical contributions have
been published on this subject (e. g., [Gon45], [Gus61] and [But92]) we think
that nevertheless it makes sense to go into this topic again for at least five
reasons:

Firstly, you find contradictory statements about the exact efforts of Cheby-
shev and his pupils. So the statement that Chebyshev himself proved the al-
ternation theorem is wrong and the claim that St Petersburg mathematicians
had not been interested in the theory of functions is pure nonsense.

Secondly, the available material of Soviet origin is sometimes tendentious
and exaggerated in its appreciations of the persons involved, both positively
in the almost cultic adulation of Chebyshev and negatively in neglecting the
scientific results of mathematicians like Sochocki and his students who did
not stand in the limelight, or in belittling the work of Felix Klein.

Thirdly, nearly all historical comments are written in Russian or in one
of the languages of the Soviet Union (except for some articles, for example
the contributions of Butzer and Jongmans ([BuJo89], [BuJo91] and [BuJo99])
and some papers of Sheynin. So it was time to explain this era of enormous
importance for the development of mathematics in Russia and the Soviet
Union to those who are not able to read Russian and do not have the time or
opportunity to dig in Russian archives and libraries.

In this regard, we feel that it would be disrespectful and unhelpful to refer
to Russian contributions which nearly no-one could have access to. Therefore
you will find many quotations from the works listed in the References.
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Fourthly you will recognize that we did not want only to describe the
results of the St Petersburg Mathematical School, but also to discuss its
historico-philosophical background, and so its character and how it interacted
with other European schools.

And lastly we present some interesting facts about the rôle played by
Gôttingen in spreading Russian contributions and in their further develop-
ment.

The breadth of this subject made some restrictions necessary. Definitely
you will miss the problems of moments. But we think that also without them
the basic tendency of the development described here would not have changed.
Only the rôle of A. Markov, Sr. then would have been of even higher impor-
tance.

We did not analyse the work of Bernstein as carefully as the contribu-
tions of other authors because the German translation of Akhiezer’s scientific
biography of Bernstein [Akh55] was published in 2000 by R. Kovacheva and
H. Gonska.
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Introduction

“All exact science is dominated by the idea of approximation.”

This statement, attributed to Betrand Russell, shows the borders of exact
science, but is also intended to point out how to describe nature by means of
mathematics.

The strength of mathematics is abstraction concentrating on simple and
clear structures which it aims to rule completely.

To make abstract theories useful it is necessary to adopt them to certain
a posteriori assumptions coming from reality: Measured data cannot be more
exact than the instrument which recorded them; numerical computations are
not better than the exactness of the computer.

Whenever one computes, one approximates.
It is therefore not surprising that the problem of approximative determi-

nation of a given quantity is one of the oldest challenges of mathematics. At
least since the discovery of irrationality, considerations of this kind had be-
come necessary. The formula for approximating the square root of a number,
usually attributed to the Babylonians, is a case in point.

However, approximation theory is a relatively young mathematical branch,
for it needed a concept which describes the mutual dependence between quan-
tities exactly, i.e., the concept of a function. As is well-known, the first ap-
proach to defining a function based on this dependence and to abstract from
formulae was developed by Euler.

The first abstract definitions of this concept were followed by reflections
on how to represent functions to render them pratically useful. Thus, formulae
were developed to assist in approximating mainly transcendental functions. At
first these representations relied on Taylor’s formula and some interpolation
formulae based on Newton’s ideas.

Although these formulae gave good approximations in certain special cases,
in general they failed to control the approximation error because the functions
were not approximated uniformly; the error grew beyond the interpolation
points or the expansion point. The least square method developed by Gauß
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provided some improvement, but points might still exist within the interval
considered where the error of approximation becomes arbitrarily large.

It follows that new ideas had to be found to solve problems in those cases
where it was important to control approximating errors over whole intervals.
The present work starts with the first known problems which made such con-
siderations indispensable.

Probably the first work on this subject is attributed to Leonhard Euler who
tried to solve the problem of drawing a map of the Russian empire with exact
latitudes. He gave a best possible approximation of the relationship between
latitudes and altitudes considering all points of one meridian between given
latitudes, i. e., over a whole interval [Eul77].

Because of the enormous size of the Russian empire all known projections
had very large errors near the borders of the map, therefore Euler’s approach
proved helpful.

A problem encountered by Laplace was similar in character. One paragraph
of his famous work [Lap43] (first published in 1799) dealt with the question of
determining the ellipsoid best approximating the surface of the earth. Here,
too, it was important to have the error held small for every point on the
earth’s surface.

Euler solved his problem for a whole interval, whereas Laplace assumed
a finite number of data which was very much larger than the number of
parametres in the problem. This fact alone prevented a solution of the problem
by interpolation.

In 1820 Fourier generalized Laplace’s results in his work ‘Analyse des
équations determinés’ [Fou31], where he approximatively solved linear equa-
tional systems with more equations than parametres by minimizing the max-
imum error of every equation.

In 1853 Pafnuti Lvovich Chebyshev was the first to consolidate these con-
siderations into the ‘Theory of functions deviating the least possible from
zero,’ as he called it.

Starting out from the problem of determining the parameters of the driv-
ing mechanism of steam engines—also called Watts parallelogram—in such
a manner that the conversion of straight into circular movement becomes as
exact as possible everywhere, he was led to the general problem of the uniform
approximation of a real analytic function by polynomials of a given degree.
The first goal he achieved was the determination of the polynomial of nth
degree with given first coefficient which deviates as little as possible from
zero over the interval [−1, 1]. Today this polynomial is called a Chebyshevian
polynomial of the first kind.

Further results were presented by Chebyshev in his work ‘Sur les ques-
tions des minimas’ [Cheb59] (written in 1857), where he stated a very general
problem: that of determining parameters p1, . . . , pn of a real-valued function
F (x, p1, . . . , pn) so that over a given interval [a, b] the maximum error

max
x∈[a,b]

|F (x, p1, . . . , pn)|
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is minimized. Under certain assumptions for the partial derivatives

∂F

∂p1 . . . ∂pn
(x, p1, . . . , pn)

he was able to prove a generally necessary condition for the solution of the
problem.

Using this condition he showed that in special cases (polynomial, weighted
polynomial and rational approximation) it led to the necessary condition that
F has a fixed number of points where it assumes the maximum value. These
points are now known as deviation points. However, the alternation theorem
which clearly follows from this result has never been proved by Chebyshev
himself.

The aim he sought to achieve with this contribution is to find the poly-
nomial uniformly deviating as little as possible from zero for any number of
given coefficients. Later his pupils would work on several problems arising
from this general challenge. This remained the determining element of all
contributions of the early St Petersburg Mathematical School on the subject
of approximation theory.

[Cheb59] was the only work by Chebyshev devoted to a general problem
of uniform approximation theory. But it was followed by a series of more
than 40 publications in which he dealt with the solution of special uniform
approximation problems, mainly from the theory of mechanisms.

Another major part of his work was devoted to least squares approxima-
tion theory with respect to a positive weight function θ. In his contribution
‘About continuous fractions’ [Cheb55/2] he proved that (as we say now) the
orthogonal projection of a function is its best approximation in the space
L2(θ). In a number of subsequent papers he discussed this fact for certain
orthonormal systems and defined general Fourier expansions.

He merged the theoretical results in the publication ‘On functions de-
viating the least possible from zero’ [Cheb73], in which he determined the
monotone polynomial of given degree and the first coefficient which deviates
as little as possible from zero. This was the first contribution to what we know
now as shape preserving approximation theory.

All of Chebyshev’s work was aimed at delivering useful solutions to prac-
tical problems. The above-mentioned contributions all arose from practical
problems, e. g., from the theory of mechanisms or ballistics. A small part of
his work was devoted to problems from geodesy, cartography or other sub-
jects. This ambition pervaded all of Chebyshevs work: to him practice was
the ‘leader’ of mathematics, and he has always demanded from mathematics
that it should be applicable to practical problems. Apparently he did not view
this as being in contradiction to his early theoretical work, which had been
devoted mainly to number theory. So we can speculate about his concept of
application.

On the other hand, he clearly disassociated himself from contemporary at-
tempts, mainly on the part of French and German mathematicians, to define
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the basic concepts of mathematics clearly and without contradictions. Cheby-
shev qualified the discussion about infinitely small quantities as ‘philosophiz-
ing’. It follows that his methods, without exceptions, were of an algebraic
nature; he did not mention limits except where absolutely necessary. A char-
acteristic feature of his work is the fact that, if convergence was intuitively
possible, to him it was self-evident. Thus, he often omitted to point out that
an argument was valid if a function converged (uniformly or pointwise).

Besides his scientific achievements which also extended into probabil-
ity theory, Chebyshev distinguished himself as a founder of a mathematical
school. The first generation of the generally so-called Saint Petersburg Math-
ematical School only consisted of mathematicians who began their studies
during Chebyshev’s lifetime and were completely influenced by his work, but
even more by his opinion about what mathematics should be. In Aleksandr
Nikolaevich Korkin, the eldest of the schools’ members, we have a truly or-
thodox representative of the algebraic orientation. For example he referred to
modern analytic methods of treating partial differential equations as ‘deca-
dency’ because they did not explicitly solve explicit equations. Other members
also disassociated themselves from new mathematical directions, most notably
Aleksandr Mikhajlovich Lyapunov, who sweepingly disqualified Riemannian
function theory as ‘pseudogeometrical’.

However, this radical position was not typical of all students of Chebyshev.
Egor Ivanovich Zolotarev showed an interest in basic mathematical questions,
both in his written work, where we see his deep knowledge of function theory,
and in his lectures, where he endeavoured to define concepts like the con-
tinuous function as early as in the 1870s. Julian Sochocki’s work was even
exclusively devoted to the theory of functions in the manner of Cauchy and
later these results were used by others (e.g., by Posse) to prove Chebyshev’s
results in a new way.

Nevertheless the Saint Petersburg Mathematical School was characterized
by the orientation towards solving concretely posed problems to get an explicit
formula or at least a good algorithm which is suitable for practical purposes.

It is not surprising, then, that the contributions of the members of the Saint
Petersburg Mathematical School were predominantly of a classical nature and
employed almost exclusively algebraic methods.

This is particularly true for the schools’ work on approximation theory.
Outstanding examples include the papers by Zolotarev and the brothers An-
drej Andreevich Markov, Sr. and Vladimir Andreevich Markov, which were
devoted to special problems from the field of uniform approximation theory.

Zolotarev investigated the problem of determining the polynomial of given
degree which deviates as little as possible from zero while having its two high-
est coefficients fixed. Thus he directly followed the objective set by Chebyshev
himself. Andrej Markov’s most important contribution on this subject was
the determination of a polynomial least deviating from zero with respect to
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a special linear condition of its coefficients. Vladimir Markov generalized this
problem and solved his brother’s problem for any linear side condition.

The above-mentioned three contributions were all distinguished by the
fact that they presented a complete theory of their problems. This is most
distinctly illustrated by the work of Vladimir Markov, who proved a special
alternation theorem in this context, as well as another theorem which in fact
can be called a first version of the Kolmogorov criterion of 1948. As the most
important result of Vladimir Markov’s paper we today acknowledge the in-
equality estimating the norm of the kth derivative of a polynomial by the
norm of the polynomial itself. Later Sergej Natanovich Bernstein used this
result to prove one of his quantitative theorems. However, consistent with the
nature of the task, these investigations remained basically algebraic.

The last contribution to early uniform approximation theory coming from
Saint Petersburg were Andrej Markov’s 1906 lectures ‘On Functions Deviat-
ing the Least Possible from Zero’, [MarA06] where he summarized and clearly
surveyed the respective results of Saint Petersburg mathematicians. For the
first time a Petersburg mathematician presented the uniform approximation
problem as a problem of approximating a continuous function by means of
polynomials and proved a more general alternation theorem. Conspicuously,
however, he soon returned to problems of the Chebyshev type. It is somewhat
amazing that he never referred to any of the results achieved by Western Euro-
pean mathematicians in this context. Even the basic Weierstrassian theorem
of 1885, which states the arbitrarily good approximability of any continuous
function by polynomials, was not cited in these lectures.

It thus emerges with particular clarity that, because of its narrow setting of
problems and its rejection of analytical methods, the uniform approximation
theory of functions as developed by the Saint Petersburg Mathematical School
ended in an impasse at the beginning of the twentieth century.

Outside Russia, approximation theory had other roots. A more theoretical
approach had been preferred abroad because of the strong interest in basic
questions of mathematics generated since the end of the 18th century by the
problem of the ‘oscillating string’.

The clarification of what is most likely the most important concept in
modern analysis—the continuous function—generated intense interest in the
consequences resulting from Weierstrass’ approximation theorem. The latter
had defined the aim; one now tried to make use of it, i.e., to find explicit and
simple sequences of algebraic or trigonometric polynomials which converge to a
given polynomial. Secondly it had to be determined how fast these sequences
could converge, how fast the approximation error decreases. Such were the
objectives of the long series of alternative proofs which emerged early after
the original work of Weierstrass.

Natural candidates for such polynomial sequences were the Lagrange in-
terpolation polynomials and the Fourier series.
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It is surprising that a first positive result was found for the Fourier series,
although the existence of continuous functions with a divergent Fourier series
had been known since 1876. Lipót Fejér showed in 1900 that every function
could be approximated by a version of its Fourier series, where the sum was
taken from certain mean values of the classical Fourier summands.

For the case of interpolating polynomials the question likewise seemed to
be negatively answered by the results of Runge [Run04] and Faber [Fab14].
However, it was again Fejér who showed that for every continuous function the
sequence of the ‘Hermite–Fejér Interpolants’ (as we now call them) converges
to the function itself.

Chebyshev’s results became more commonly known in Western Europe
only after the first edition of his collected works in 1899. With the introduction
of analytical methods his findings could be theoretically expanded by the work
of Hilbert’s pupil Paul Kirchberger in 1902 [Kir02], and Émile Borel in 1905
[Bor05].

We call Dunham Jackson the founder of the quantitative approximation
theory which is designed, inter alia, to determine the degree of the approxi-
mation error subject to specific requirements on the approximating function.
Jackson proved a series of direct theorems in his doctoral dissertation of 1911
[Jack11]. Actually it was Hilbert’s pupil Sergej Natanovich Bernstein who, a
little earlier, had proved theorems of this kind—he is today considered the
author of the inverse theorems which laid the foundation of the constructive
function theory that characterizes functions by the order of their approxima-
tion error.

The roots of the constructive function theory lay in a very special-looking
problem to which Lebesgue’s proof of Weierstrass’ theorem had already at-
tracted attention: the approximation of the function |x|. In 1898 Lebesgue
proved Weierstrass’ theorem by initially approximating a continuous func-
tion by polygon lines and subsequently proving that a polygon line can be
arbitrarily well approximated by polynomials [Leb98].

In the years that followed, the question of how fast |x| can be approxi-
mated and the answer given by Bernstein gave rise to investigations which
connected the approaches of Chebyshev and Weierstrass, that is, algebraic
and analytic ideas. Especially the way he used the results of Vladimir Markov
led to the insight that the degree of approximation reveals certain properties
of a function. Thus, approximation theory, born from practical mechanics,
helped to solve important basic mathematical problems.

Bernstein’s results completed the frame of modern approximation theory,
as first described in de la Vallée-Poussin’s lectures from 1919, within which
the theory has remained to this day [Val19].

The following key theses are first presented and substantiated in the
present book:

1. The chief aim of the activities of the Saint Petersburg Mathematical
School around P. L. Chebyshev on the subject of approximation was to
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determine the polynomial of nth degree which deviates as little as possi-
ble from zero while having an arbitrary but fixed number of given leading
coefficients.

2. This aim prevented the application of modern analytical methods to ap-
proximation theory during the early period in Saint Petersburg.

3. A merger of Weierstrass’ and Chebshev’s approaches was first achieved by
Bernstein. Thus, we see that the Göttingen School around David Hilbert
and Felix Klein had a decisive influence on the early development of ap-
proximation theory.

The present book is structured as follows:

1. In the first chapter we discuss the two works that may be considered
forerunners of uniform approximation theory: Euler’s cartographic inves-
tigations and Laplace’s geodetic problem.

2. The second chapter is dedicated to the work of P. L. Chebyshev: His
most important contributions to the uniform approximation problem are
analysed and arranged in historical context. In addition, Chebyshev’s phi-
losophy of mathematics is discussed.

3. The work of Chebyshev’s students founding the Saint Petersburg Mathe-
matical School is reviewed in chapter three. We analyse in what manner
they continue Chebyshev’s work and adopt his aims. It becomes clear
that the ideas of the mathematicians of the Saint Petersburg Mathemati-
cal School are not perfectly homogeneous. We examine their opinion about
basic principles of mathematics, especially the concept of a function.

4. The absolutely different development of approximation theory in Western
Europe is summarized in the fourth chapter. Starting from the problems
connected with Weierstrass’ approximation theorem, I have focused on
questions of approximative representations of functions and their (uni-
form) convergence. The role of the undoubted centre of mathematics of
that time, the Göttingen School around David Hilbert and Felix Klein,
in the development of approximation theory is outlined on the basis of
material from several archives.

5. The fifth chapter addresses the thesis that the framework of the founda-
tion of modern approximation theory was shaped by the contributions of
Bernstein. The content of what he called ‘Constructive Function Theory’
is described. We shall see that he achieved the link between Chebyshev’s
and Weierstrass’ approaches.
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1

Forerunners

1.1 Euler’s Analysis of Delisle’s Map

Cartography arose in the beginning of the 18th century in Russia with the
first map covering the whole Russian empire; it was made by I. K. Kirillov in
1734 and held the scale 1:11,7 Mill. In 1745 it was followed by the “Mappa
Generalis Totius Imperii Russici” (1:8,9 Mill.) developed by the St Petersburg
Academy of Sciences under the main supervision of the astronomer Joseph
Nicolas Delisle (1688-1768), and with co-operation of Leonhard Euler1 (see
[KayoJ]).

1.1.1 The Delislian Projection

S. E. Fel’ [Fel60, p. 187] describes the construction of the maps of this atlas:
“The maps of this atlas are drawn in the cone projection which preserves
distances and is attributed to J. Delisle [...] The main scale is preserved in the
two cutting parallels and all meridians. The map of Russia covers the region
between 40o and 70o of northern latitude, thus the middle parallel lies at 55o,
and the cutting parallels are chosen at 47o30′ and 62o30′. So they have equal
distance to the middle and the outer parallels. The meridians are divided with
preservation of distances.”

This kind of projection is often used when it is necessary to project a big
map like the Russian empire.

Stereographic projection often used to map polar regions have the following
advantages and disadvantages:
1 Leonhard Euler (*Basel 1707, †St Petersburg 1783), 1720–1724 studies of mathe-

matics and physics at Basel university, 1727 move to St Petersburg, 1730 profes-
sorship of physics at the Academy of Sciences, 1733 professorship of mathematics
as successor of Daniel Bernoulli, 1735 co-operation with the department of ge-
ography, 1741 move to Berlin, 1744 director of the department of mathematics
(“mathematische Klasse”) of the Berlin Academy of Sciences, 1766 again profes-
sorship at the St Petersburg Academy of Sciences.
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Figure 1.1. Scheme of the Delislian cone projection with the cutting parallels PP ′

and QQ′

1. Advantages:
a) Parallels and meridians intersect perpendicularly
b) It gives locally good approximation

2. Disadvantages:
a) The latitudes are not equally long because the scale grows from the

center to the border of the map
b) In the case of an equatorial projection (or another non-polar projec-

tion) the meridians curve to the borders of the map. Thus taking
details from such a map does not make much sense

Because of the latter disadvantage one would have to choose polar pro-
jections for an overall map of Russia. But because of the growing scale one
would get a global inaccuracy of the map.
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Figure 1.2. Distance preserving division of meridians

The map of the entire Russian Empire drawn by J. M. Hasius2 is a polar
projection. Euler had it in mind as he compared the different projections.

On the other hand, the Delislian projection meets the following claims:

• All meridians are represented by straight lines
• All parallels have the same size
• Meridians and parallels intersect perpendicularly

In 1777 Euler analysed the local and global accuracy of the Delislian
conic projection in the contribution De proiectione geographica De Lisliana in
mappa generali imperii Russici usitata [Eul77], where he tried to approximate
the proportion of longitudes and latitudes of the map to the real proportion
of the terrestrial globe.

The Delislian conic projection usually has cutting parallels with equal
distance to the center and the borders of the map, as described above. Then
the error of the proportions within the section between the cutting parallels is
smaller then between the borders and the cutting parallels (see [Fel60, p. 187]).

1.1.2 Euler’s Method

Now we want to get into a more exact analysis of Delisle’s conic projection.
Consider a cone with the following properties (see figure 1.1):

2 In 1739 Johann Matthias Hasius (1684–1742) published in Nuremberg the “Im-
perii Russici et Tatariae universae tam majoris et Asiaticam quam minoris et
Europaeae tabula” (cited after [Eul75, p. 583, entry 195]).
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1. It has a common axis with the earth.
2. Its top Z lies above the north pole.
3. It has two common parallels with the earth.

Now take a meridian M of the globe with points P and Q intersecting the
cone.

The map M ′ of M on the cone is now divided preserving distances, that is,
every distance of latitudes on the cone is the same as of the globe with respect
to a constant factor. To illustrate this we can turn the cone into position M ′′

(see figure 1.2) and then unwind the meridian of the globe onto the cone.3

Using this construction it is possible to define a “latitude” for the top of
the cone Z, since the position of Z and the distance |ZP | is determined by P
and Q.

Thus, the projection is exact according to the latitudes.

���
Equator

���
Pole

���
P

���
Q

Figure 1.3. The proportion between longitudes and latitudes from the equator to
the pole is the cosine of the latitude to 1.

To analyse the error of the longitudes on the cone, which is especially obvious
regarding the pole, we will compute the length of one degree of longitude on
the map.

On the surface of the globe the proportion between longitudes is the cosine
of the latitude to 1. (see figure 1.3). One degree of longitude on the parallel
PP ′ has therefore the length δ cos p, if δ is the length of one degree of latitude
on the surface of the globe. On the map the length of one degree of longitude
on the parallel PP ′ is ω|ZP |, if ω is the angle corresponding with one degree
of longitude on the map (see figure 1.4).

Euler constructed a map where the maximal error of longitudes was min-
imized by a suitable selection of intersecting parallels P and Q.

3 Then the cone’s meridian is stretched by a factor which is equal to the quotient
of the geodetic and the Euclidean distance between P and Q.
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Figure 1.4. Construction of one degree of longitude

1.1.3 Determining the Intersecting Parallels P and Q

To construct with the above defined least maximal error we have to derive
assumptions for the positions of the points P and Q.

With this we define p and q as the latitudes of P and Q on the globe.
The length of the distance ZP and thus the position of the conic pole Z is
then

|
︷ ︷
QQ′ | − |

︷ ︷
PP ′ |

|PQ| =
|
︷ ︷
PP ′ |
|ZP | ,

that is,

|ZP | =
|q − p| cos p

cos q − cos p
. (1.1)

Now we determine the angle ω which corresponds to a degree of longitude
on the map. It is

ω =
|
︷ ︷
PP ′ |
|ZP |

and with (1.1)

ω =
δ(cos q − cos p)

|q − p| , (1.2)

δ being the length of a latitude of the globe.
Let z be the distance between Z and the Earth’s pole on the globe.

The assumption that our projection preserves the latitude allows us to
compute
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|ZP | =
π

2
− p + z.

Using (1.1) we get

z =
|q − p| cos p

cos q − cos p
− π

2
+ p. (1.3)

With the help of the equations (1.1) and (1.3) we will determine the posi-
tions of P and Q. Additionally we will assume that the errors of the projection
at the upper border of the map A and the lower border B will be equal in
value.

1.1.4 Minimization of the Error of the Projection

Firstly we will compute the error in the border parallels A and B. We set a
and b as their latitudes.

Their distances from the Earth’s pole can be computed as above: π
2 −a and

π
2 −b, respectively, similarly we have |ZA| = π

2 −a+z and |ZB| = π
2 −b+z. To

get the arc length of a degree of longitude δa and δb in A and B respectively,
we must multiply these values with ω.

Hence we have:

δa = ω|ZA|
= ω(

π

2
− a + z) (1.4)

=
δ(cos q − cos p)(π

2 − a + z)
|q − p| ,

δb = ω|ZB|
= ω(

π

2
− b + z) (1.5)

=
δ(cos q − cos p)(π

2 − b + z)
|q − p| .

But the exact values would be (see fig. 1.3) δ cos a and δ cos b.
We remember that we wanted to determine P and Q under the assumption

that the errors reach their maximal value in both border parallels A and B.
Therefore we can set

ω(
π

2
− a + z) − δ cos a = ω(

π

2
− b + z) − δ cos b

or

ω = δ
cos a − cos b

b − a
. (1.6)

Thus we have a representation of ω by the known parameters a and b.


