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Preface

In the last ten years the area of scan statistics has risen to prominence in the
field of applied probability and statistics. A recent search with Google Scholar
lists 1780 references to scan statistics, 988 of which are from the last five years.
It is quite impressive that about 200 articles on scan statistics are published
each year. About 60 percent of the articles focus on spatial scan statistics and
their applications. In addition to challenging theoretical problems, the area
of scan statistics has exciting applications in many areas of science and tech-
nology, including: archaeology, astronomy, bioinformatics, biosurveillance, com-
puter science, electrical engineering, epidemiology, food sciences, genetics, geog-
raphy, material sciences, molecular biology, physics, reconnaissance, reliability
and quality control, and telecommunication.

This volume has been edited in honor of Joseph Naus’s seventieth birthday.
The leading chapter, “Joseph Naus: Father of the Scan Statistic,” by Sylvan
Wallenstein, provides a comprehensive and interesting historical account of the
early stages of research in the area of scan statistics, initiated by Joseph Naus
almost half a century ago. The rest of the chapters have been arranged in
alphabetical order of surnames of their leading authors.

In this volume, we have gathered a group of experts in the field of probabil-
ity and statistics that have made significant contributions to the area of scan
statistics, to review major developments in this area over the last ten years
and to present recent or new results as well as point out new directions for
future research. The contents of this volume illustrate the depth and the di-
versity of the methods and applications of the area. We hope that this volume
will provide a comprehensive survey of the major recent developments in this
area of research and will serve as a valuable reference and source for researchers
in applied probability and statistics and in many other areas of science and
technology. Graduate students interested in this area of research will find this
volume to be of great value, as it points out many interesting and challenging
research directions that they could pursue. This volume is suitable for use in
teaching a graduate-level seminar course in applied probability and statistics.

Our sincere thanks go to all the authors, who showed great enthusiasm
and support for this project. We appreciate their cooperation throughout the
course of the project in submitting their articles on time and their help in
reviewing the manuscripts. Additional thanks go to Mrs. Debbie Iscoe for her
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and encouragement throughout the preparation of this volume.

Joseph Glaz thanks his wife, Sarah, and his son, Ron, for their continual
loving support and encouragement. Vladimir Pozdnyakov thanks his mother,
Valentina, and his late father, Ivan Ivanovich, as many called him, for nurturing
Vladimir’s interest in mathematics. Sylvan Wallenstein thanks his wife, Helene,
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Joseph Naus: Father of the Scan Statistic

Sylvan Wallenstein

Department of Community and Preventive Medicine, Mount Sinai School
of Medicine, New York, NY, USA

Abstract: Currently, the literature on the scan statistic is vast, growing ex-
ponentially in diverse directions, with contributions by many researchers and
groups. As time goes on, the early history of the problem bears telling. Joseph
Naus, the father of the scan statistic, originated the modern work on the topic.
The process took almost twenty years to reach maturity; I have chosen Naus
(1982) as the definition of this maturity. The very name “scan statistic” does
not appear to have become attached to the problem for fifteen years, and the
interconnections to what is now one problem, in both statement of the problem
and common methods of solution, was far from obvious originally. This chapter
will not attempt a full review of all of Naus’s statistical contributions, or even a
full review of his contributions as they concern the scan statistic. Instead, it will
focus on a few themes that had already originated in Naus’s first twenty years
of written research (1962–1982), and briefly continue with those threads to the
present. Since these early themes include such general issues as applications
of the scan statistic, mentoring graduate students, and specific methodological
issues, the review will encompass a significant portion of Dr. Naus’s research,
without making claim to being exhaustive regarding either his research or the
much broader topic of research he influenced on the scan statistic.

This chapter is divided into five parts:

1. Naus (1963), Naus’s Ph.D. thesis, and the state of the art prior to 1965.

2. Naus’s six singly authored first papers, covering all aspects of the problem,
and focusing on exact solutions.

3. The first jointly published papers with Naus and his first five Ph.D. students
working on the scan, focusing on exact values.

4. Two key publications in 1979–1982 that brought various strands together.

5. A shorter description of “later” work focusing on themes previously
introduced.

Keywords and phrases: Scan statistic
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2 S. Wallenstein

1.1 Naus (1963): Ph.D. Thesis

Joseph Naus graduated from the City College of New York in 1959 with a BBA
in Economics. He began graduate study in Economics at Harvard the following
year, where his advisor was Robert Dorfman. He was advised, as preparation
for his graduate studies in economics, to broaden his knowledge in several areas
— one of them being statistics. One of his first courses was taught by Arthur
Dempster. The field intrigued him and seemed (and perhaps was, at the time)
appreciably more manageable than the seemingly broader field of economics.
At some point within his first year, he switched to the Statistics Department.

In his third year of graduate study (his second in statistics), Naus was
spending an appreciable portion of the time in the Applied Science Division of
the Operations Evaluation Group (OEG), which was funded through a contract
awarded to MIT from the Navy. Naus notes in the preface to his thesis that on
April 10, 1961, Jacinto Steinhardt outlined “Two Probability Problem Areas of
Immediate Concern” to the OEG group. The first problem is stated as arising
from “naval needs,” which was probably motivated with the Navy wanting to
know something about future buildup of naval forces in one region of the ocean.
Nevertheless, from what Joe remembers, the problem was stated in general
terms, though apparently with some emphasis on the two-dimensional problem.
Naus, as a member of the OEG, began work on the problem in the fall of 1961
and on June 29, 1962 wrote up his results, Naus (1962), in ASD (Applied Science
Division) Paper 8. This technical report, written before the thesis, is referenced
in a footnote in Ederer, Myers, and Mantel (1964), which is apparently the first
citation of Naus’s work.

This line of research continued in a later contract with the Navy and cul-
minated in a thesis approved in October 1963, under the direction of Frederick
Mosteller in the Department of Statistics at Harvard, titled “Clustering of Ran-
dom Points in the Line and Plane.” The thesis acknowledged appreciation to
Jerome Klotz, who had an appointment in the Business School.

The one-dimensional aspect of the problem, as stated in the thesis, con-
cerns N points independently drawn from a random variable X on [0, 1), with
cumulative distribution F (x). P (k; N, w|F (x)) is the probability that as some
subinterval of length w scans the interval [0, 1), it contains at least k of the N
points on that larger interval. (Naus (1963) used the notation n instead of k, and
sometimes referred to the problem as the “big N/little n” problem, but in keep-
ing with later literature, this paper will use k for the size of the cluster.) When
no argument is given for F (x), X is assumed to follow a uniform distribution, so
that P (k; N, w) is the probability that given N points uniformly distributed on
[0, 1), there exists a subinterval of width w containing k or more points. As will
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be pointed out below, this problem was but one of four parts of the “general”
(one-dimensional) problem that would eventually emerge. The four subdivisions
of the problem are formed by (i) conditioning, or not, on the total number of
points in the interval, and (ii) considering discrete or continuous events. Vari-
ous aspects of the problem would be studied for two decades, with some of the
problems addressed in their own papers giving exact solutions. It was not until
Naus (1982) that all four problems were put in the same framework and a single
generic approximation was given for all four cases. Perhaps twenty years seems
like a long time, but it should be noted that in addition to Naus’s students
and readers, giants of the field such as Mosteller and Karlin who dealt with
various aspects of the four-fold problem also “missed” the global connection.
In addition, it took considerable time and effort to lay the foundation to find
exact values for the probabilities.

Some special cases of the problem had been previously considered. For k =
N , the problem was one of finding the distribution of the range with the solution
given by Burnside (1928, p. 22); for k = 2, the problem relates to the smallest
distance between N points with the solution given by Parzen (1960, p. 304).
Naus (1963) cites Feller (1958), who had noted the problem but stated that it
involves complicated sample spaces, and thus implicitly did not have a simple
solution.

The other papers most directly related to Naus’s thesis project were
Silberstein (1945), Berg (1945), and Mack (1948, 1950). These investigators
were apparently the first to address the clustering problem beyond the special
cases. They focused on the expected number of clusters, a topic that was ap-
parently not to be addressed again for over thirty years when Glaz and Naus
(1983) addressed the issue.

Mosteller, Naus’s advisor, had worked on the discrete problem, which a
decade or so later would be linked to the yet unnamed scan statistic, but for
the first decade the link would remain unexplored. In the early 1960s, the two
natural extensions to previous work were to k = 3 and to k = N −1, with k = 3
being the more promising. Naus recalls that another student of Mosteller, Tom
Lehrer, who would later achieve fame as a well-known musical satirist, worked
on the problem for k = 3. Apparently unbeknownst to Naus, and to this author
ten years later, was a paper by Elteren and Gerrits (1961) that “nibbled” on
the k = 3 problem by using a direct integration approach for N = 6, 7, 8.

One approach of Silberstein and Mack that Naus apparently used was the
polynomial approach. Silberstein (1945) had noted that P (k, N, w) is a polyno-
mial in w of order N . Mack (1948) notes that the polynomial expression may
change in different regions of [0, 1). Naus exploits this observation in his the-
sis, as a lemma that helps move from a derivation for a particular value of w
(typically w = 1/L, L an integer) to all w.
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Naus’s ground-breaking approach, which perhaps appears obvious in ret-
rospect (but is not really, for one must know its limitations), was to phrase
the problem in terms of paths, particularly what he termed 2-paths and L-
paths, and then use combinatoric techniques, particularly the reflection prin-
ciple, which allowed an exact solution to be computed. Whether an event of
interest occurred, depended on whether the move of a path down preceded, or
followed, a move up. This involved an analogy between points dropping in and
out of an interval, and a cluster of points. Two different parts of the distribution
were thus tackled: w = 1/2, and k > N/2. But it is perhaps even harder to
realize the situation in which the argument fell apart, and why the condition
k > N/2 is so critical. This is summarized as a footnote in both Naus (1963)
and Naus (1965a).

Chapter 2 of the thesis found P (k; N, w|F (x)) for k > N/2, and Chapter 3
found limiting distributions. Chapter 4 explored two-dimensional generaliza-
tions, while the last chapter gave applications. It is probably the topic in the
second chapter that sparked the greatest progress in subsequent papers and in
research in the field up to about 1990. Already in the thesis, Naus showed an
interest in a wide range of applications, for example, relating his work to work
of Daniel Bernoulli concerning the “mutual inclinations of the planets.”

In the thesis and in a later paper, Naus contrasts this “scan” approach
with that based on a “fixed grid.” The contrast can best be illustrated when
w = 1/L, L an integer, in which case the fixed grid approach is based on the
maximum number of events in any of the L intervals, while the “scan approach”
is based on the maximum number of cases as the interval of length w scans the
[0, 1) interval. Naus seems to have used “scan” in this restricted context, more
than in an attempt to label the statistic.

The beginning of Joe’s work on the scan coincided with the start of his
married life. During this period, he married Sarah Rosen who was originally
from New Jersey. They had met after Joe’s first year of graduate study. Their
first daughter, Alisa, was born in 1962 while Joe was at Harvard, and their
second daughter, Laura, was born in 1965 while Joe was at Rutgers. At Harvard,
Joe remembers living in a small apartment with minimal extras, and commuting
to Harvard by bicycle.

Joseph Irwin Naus’s thesis was approved in September 1963, and the Ph.D.
degree was awarded officially in January of the following year. In the 1963–1964
academic year, he continued his work full time as an operations research analyst
at the Institute of Naval Studies.
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1.2 The Early Papers Touching All Aspects
of the Problem: 1965–1968

This section covers Naus’s first five papers. In addition to the references previ-
ously cited, Naus was by this time aware of the asymptotic distribution for a
scan-like statistic in Menon (1964). He found that this asymptotic approxima-
tion was not adequate. This problem would continue to plague approximations
of the scan based on asymptotic theory and continue to provide justification for
the search for exact values. Later, approximations, as opposed to asymptotic
values, would be used with some measure of success.

Naus’s first position after Harvard was as an assistant professor of statistics
at Rutgers, joining the department in 1964 and having an appointment there
in 1964–1966. As will be noted in this section, the professional collaborations
and informal discussions between Naus and fellow faculty members were to be
productive.

1.2.1 Maximum cluster of points on a line, Naus (1965a)

Interestingly, this first paper of Naus cites only Berg (1945), Mack (1948),
Silberstein (1945), and Naus (1963). Since, as noted above, the contribution
of the cited articles involved at most integration methods, the ideas in the
paper were generated entirely by Naus, with possible help from his mentors at
Harvard, and possibly later, Rutgers.

To understand the context of Naus’s work, we introduce only a little nota-
tion, almost all in this paragraph. As noted above, derivations are simplified
by considering the case w = 1/L, L an integer, so that the [0, 1) interval can
be viewed as divided into L parts. The event A denotes that one of these L
intervals has k or more points, i.e. that at least one of the L cell occupancy
numbers is at least k. The event Bi denotes the event that (i) Ac, all the L
subintervals contain fewer than k points, and that (ii) there exists an interval
of length w that overlaps the ith and i + 1st disjoint intervals that contains k
or more points. Setting B = ∪ Bi, P (k, N, w) = P (A)+P (B). As Naus implic-
itly realizes, calculation of P (B) becomes more complicated to the extent that
more intersections of the Bi’s have to be considered. The probabilities of inter-
sections become rapidly more complicated, as the number of events increase,
particularly for consecutive i’s. By keeping k large relative to N , (i) the number
of possible intersections of Bi is limited, and (ii) simpler methods can be used
to calculate the probabilities needed. Specifically, for k > N/2, the only events
possible are Bi and Bi ∩ Bi+1. As would not be noted until much later, under
this restriction, the probability for the latter event is the sum of two, rather
than six, terms.


