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THIS BOOK IS DEDICATED TO C. OLECH
AND POLISH MATHEMATICIANS!

who contributed so much to set-valued analysis.

14t was a common belief that cultivation of science and the growth of its
potential would somehow guarantee the maintenance of the nation” wrote Kura-
towski about the situation of Poland before 1918.



I will share all [my results] with you when-
ever you wish and do so without any ambi-
tion, from which I am more exempt and more
distant than any man in the world.

Pierre de Fermat?®

Fermat was one of the most important inno-
vators in the history of mathematics. Newton
himself recognized explicitly that he got the
hint of the differential calculus from Fermat’s
method of building tangents devised half a
century earlier.

This same method is used in our book to build
a differential calculus for set-valued maps.
Fermat was also the one who discovered that
the derivative of a (polynomial) function van-
ishes when it reaches an extremum. (This is
Fermat’s Rule, which remains the main strat-
egy for obtaining necessary conditions of op-
timality, from mathematical programming to
calculus of variations to optimal control). Fer-
mat also was the first to discover the “princi-
ple of least time” in optics, the prototype of
the variational principles governing so many
physical and mechanical laws. He shared inde-
pendently with Descartes the invention of an-
alytic geometry and with Pascal the creation
of the mathematical theory of probability. His
achievements in number theory overshadowed
his other contributions, and the Last Fermat
Theorem remains a challenge. He was on top
of that a poet, a linguist, ... and made his
living as a lawyer!

%in his answer to a first letter from Mersenne invit-
ing him to share his findings with the Parisian math-
ematicians, which put an end to Fermat’s isolation in
Toulouse, in 1636.
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Who needs set-valued analysis?

Everyone, we are tempted to say, and we shall state our case.

This strong conviction — born out of accumulated experience
in using it in control theory and differential games, mathematical
economics and game theory, biomathematics, qualitative physics and
viability theory — led us to devote time and effort to share some basic
material which is used over and over.

One can no longer afford the luxury of studying only well posed
problems in Hadamard’s sense: Ill posed problems, inverse problems
and many other unorthodox problems under other names are pop-
ping up in every domain of activity, whenever the existence of a
solution may fail for some data, whenever uniqueness of the solution
is at stake. Requiring that maps should be always single-valued, and
even bijective, is too costly an attitude, above all in many applied
fields, where we are not free to make such assumptions. This was in-
deed recognized during the three first decades of this century by the
founders of “Functional Calculus”: Painlevé, Hausdorff, Bouligand,
Kuratowski to quote only a few. In his important book TOPOLOGIE,
Kuratowski gave set-valued maps their proper status.

Set-valued maps were abandoned by the authors of Bourbaki’s
volume TOPOLOGIE GENERALE, who chose to restrict their study to
single-valued maps, regarding set-valued maps as single-valued maps
from a set to the power set of another set, or factorizing single-valued
maps to make them bijective.

This is not always the solution, for, by so doing, many important
structural properties may be unfortunately lost; others are useless
artifacts, making life more difficult rather than more simple. These
points of view, which were widely disseminated all over the world



after World War II, misled many of us into unnecessary detours (often
towards culs de sac), encouraging the perception that direct routes
were too arduous, or worse, that they did not exist.

Hence, set-valued analysis inherited the undeserved image of be-
ing something difficult and mysterious and, consequently, was re-
garded as a mathematical curiosity, to be left in the hands of mathe-
maticians who like to generalize for the sake of generalizing, without
proper motivations.

In contrast, as it turned out, the need for set-valued analysis
in solving problems arising in other fields of knowledge — control
theory, economics and management, biology and systems sciences,

artificial intelligence, etc. — was pressing enough to help mathe-
maticians overcome the kind of recalcitrance felt towards set-valued
analysis.

In view of such a wide variety of motivating applications, it is for-
tunate that most of the basic results of the chapters of “single-valued”
analysis can be adapted to the set-valued realm. These include:

e Limits and Continuity
e Linear Functional Analysis

e Nonlinear Functional Analysis (existence and approximation of
solutions to equations and inclusions)

e Tangents and Normals

o Differentiation of Maps

e Gradients of Functions and the Fermat Rule
e Convergence of Maps

e Measures and Integration

e Differential Equations

The set-valued version of this list is nothing other than the outline
of this book.

Our account of set-valued analysis is by no means exhaustive: it
is just an introduction. The choice of the material has been dictated



by our experience in applying these results in control and viability
theory. However, we tried very hard to make this presentation as
clear as possible, to help the reader become familiar with the main
tools.

We did not restrict our exposition to the framework of finite di-
mensional vector-spaces, since set-valued analysis is also useful for
solving problems involving partial differential equations or inclu-
sions. But whenever the proofs of the finite-dimensional and infinite-
dimensional statements are quite different, two proofs are provided.

This book presents only the tools, without mentioning applica-
tions. Some applications (to control theory and viability theory in
particular) are presented in companion texts?.

Jean-Pierre Aubin

Héléne Frankowska

Paris
September 21, 1989

2VIABILITY THEORY [50] by Aubin, and the forthcoming books SET-VALUED
ANALYSIS AND CONTROL THEORY [195] by Frankowska and SET-VALUED ANAL-
YSIS AND SUBDIFFERENTIAL CALCULUS [355] by Rockafellar and Wets.
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Introduction

It is a fact that in mathematical sciences there has been a reluc-
tance to deal with sequences of sets and set-valued maps. Despite
the emergence of exciting new vistas for the applications of mathe-
matics, our long familiarity with sequences (of elements) and with
(single-valued) maps has perhaps been so deeply rooted in tradi-
tional mathematical conceptualizations that it has appeared easier
to sacrifice the breadth of some problems or some simple underlying
structure in order to avoid set-valued maps.

For this reason, we begin by providing examples of natural and/or
general problems involving set-valued maps before giving a rough
description of the results presented in the pages that follow.

Examples of Set-Valued Maps

1. First, we encounter set-valued maps each time we face ill-posed
problems or inverse problems, i.e., problems for which either
the existence of a solution or its uniqueness is not guaranteed
for some data: Set-valued maps allow us to get away from the
restriction that a map is bijective when we want to solve an
equation.

Indeed, the first natural instance when set-valued maps occur
is the inverse f~1 of a single-valued map f from X to Y. We
always can define f~! as a set-valued map which associates
with any data y the (possibly empty) set of solutions

iy = {z e X | f(z) =y}

to the equation f(x) =y.

Of the three commandments of Hadamard’s tablets, existence,
uniqueness and stability, we shall only retain the stability re-
quirements, which can be encapsulated in adequate definitions
of continuity of f~1: This is one of the topics of the first chap-
ter.
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. Taking into account uncertainties, disturbances, modeling er-
rors, etc., leads naturally to set-valued maps and inclusions.
They also arise when we wish to treat a problem qualitatively,
by looking for solutions common to a set of data, sharing the
same (qualitative) properties. Set-valued analysis should play
an important role in the new field of qualitative physics, a
rapidly growing branch of Artificial Intelligence.

. Problems with constraints also yield specific set-valued maps:
Solving the equation f(z) = y, where the solution z is re-
quired to belong to a subset K, amounts to solving the in-
clusion f|g(z) = y where f|k, the restriction of f to K, is
regarded as the set-valued map associating with x the point
f(z) when z € K and the empty set when z is not in K.

. Unilateral problems in mechanics were formulated in the frame-
work of variational inequalities (also called “generalized equa-
tions” by some authors), which are again inclusions in disguise.
Their solution by Stampacchia and J.-L. Lions in the sixties
gave a new impetus to set-valued maps, with a different vocab-
ulary.

. Set-valued maps provide a useful framework for control theory,
since the early contributions of Wazewski and Filippov in the
beginning of the sixties.

Such set-valued maps, called parametrized maps, are associated
with a family of maps z — f(z,u) from X to Y when u ranges
over a set U(x) of parameters.

The (single-valued) map f describes the dynamics of the sys-
tem: It associates with the state x of the system and the control
u the velocity f(z,u) of the system. The set-valued map U de-
scribes a feedback map assigning to the state x the subset U(z)
of admissible controls.

Hence the map F' which associates with each state x the subset
F(z) of feasible velocities is defined by:

F(z) = f(z,U(x)) = {f(z u)}uev(a)
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So, the control system governed by the family of parametrized
differential equations

z'(t) = f(x(t),u(t)) where u(t) € U(z(t))
is actually governed by the differential inclusion

z'(t) € F(z(t))

6. Optimization provides examples of problems where uniqueness
of the solution is naturally lacking:

Let W be a function from X x Y to R. We consider the family
of minimization problems

VyeY, V(y) := inf W(z,y)

parametrized by parameters y.

The function V is called the marginal (or performance or value)
function. For every y € Y, let

Gy) = {ze X |W(z,y) =V(y)}
be the subset of solutions to our minimization problem.

One of the main issues of optimization theory is to study the
set-valued map G (nonvacuity, continuity and differentiability
in a suitable sense, and so on.) We shall call G the marginal
map. It is no wonder that game theory and mathematical
economics use set-valued maps in a natural way.

7. Another source of strong motivations came from optimization
and mathematical programming, when necessary conditions
(the Fermat rule!, stating that the derivative of a function van-
ishes at points where it achieves an extremum) were needed to
replace optimization problems by the resolution of equations.

1«Je désire seulement qu’il [Descartes] sache que nos questions de Mazimis et
Minimis et de Tangentibus linearum curvarum sont parfaites depuis huit ou dix
ans et que plusieurs personnes qui les ont vues depuis cing ou six ans le peuvent
témoigner”, Fermat wrote in 1638 when Descartes accused that the Methodus de
Mazima et Minima was just due to luck and trial and error! (“a tatons et par
rencontre”.)
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The Fermat rule is indeed one idea which was revisited and
enhanced again and again under different names:

— The Euler-Lagrange equations, when dealing with prob-
lems of the calculus of variations;

— Lagrange and Kuhn-Tucker multipliers, when state con-
straints were added to optimization problems;

—  The Pontriagin principle when dealing with optimal
control problems.

After the advances of Functional Analysis, it was time to un-
cover the common fact behind all these results. It is still and
always the Fermat rule, provided we are able to “differenti-
ate” larger and larger classes of functions beyond differentiable
functions.

The crucial revolution in the history of the concept of gradients
happened in the sixties when J.- J. Moreau and R. T. Rock-
afellar proposed in the framework of convex analysis the notion
of subdifferential of a convex function, which is no longer an
element, but a set of “subgradients”.

. The use of set-valued maps in mathematical economics and
game theory started when von Neumann asked for an exten-
sion of the Brouwer Fixed Point Theorem to set-valued maps,
which was needed for finding noncooperative equilibria for n-
person games, for instance. This was achieved with the famous
Kakutani Fixed-Point Theorem, in the forties. It has been
used by Arrow and Debreu in the early fifties to provide the
long-expected proof of the existence of a Walrasian equilibrium
price.

While this achievement made set-valued maps popular among
mathematical economists, it was not until the challenges raised
by optimization, control theory and unilateral problems in me-
chanics at the beginning of the sixties that renewed motivations
arose to study set-valued maps, as an important subject in its
own rite.

This was the time when Zarantonello introduced monotone
maps, which cover many important nonlinear single-valued or
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set-valued maps of the Calculus of Variations.
Properties of Set-Valued Maps

Having briefly indicated the importance of set-valued maps in a
wide spectrum of applications and of fundamental mathematics, we
paint a broad picture of their properties. We follow, in doing so, the
outline of the book.

e LiMiTS AND CONTINUITY

Limits of sets were introduced by Painlevé in the first years of
this century, just after Fréchet axiomatized in 1906 the concept
of L-spaces (on which a notion of limit is defined?.) Studying
limits of sets together with limits of elements may have been
very natural in this context.

The topological ideas are, indeed, quite simple and straight-
forward. In the same way that topological concepts are based
on the notions of limits and cluster points of sequences of el-
ements, their set-valued analogues are rooted in the concepts
of lower and upper limits of sequences of sets, which are, so to
speak, “thick” limits and cluster points respectively: The lower
limit of a sequence of subsets K, is the set of limits of sequences
of elements z,, € K,,, and the upper limit is the set of cluster
points of such sequences.

We mentioned already that stability is the only requirement
that we retain to study ill posed or inverse problems. Stability
is a catch word which means that the set of solutions depends
continuously upon the data.

How can we proceed to define continuity of set-valued maps?

If we try to adapt to the set-valued case the two equivalent
definitions of continuity of single-valued maps, we obtain two
notions which are no longer equivalent!

In his famous thesis, judged at the time far too much abstract; it was pub-
lished in the Rendiconti Cir. Mat. di Palermo!

¢

Lebesgue wrote: “....set theory was placed outside the pale of mathematics
by the high priests of analytic functions... Set theory, which developed from the
theory of analytical functions, could prove useful to its elder sister and could show
people of good will its qualities and richness”.
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This unfortunate situation led to two concepts of semiconti-
nuity of set-valued maps, introduced at the beginning of the
thirties by Bouligand and Kuratowski: Lower and upper semi-
continuity. These issues were developed in the monographs of
Hausdorff and Kuratowski and thoroughly investigated at this
time by many (but not exclusively) Polish and French mathe-
maticians.

For some reason, just a while later, set-valued maps yielded
the way to single-valued maps: A set-valued map was viewed
at the time as a single-valued map from a set to the power
set of another set. However, as it turned out, the structures
exported to power sets were too poor, and specific information
was indeed wasted by doing so.

For instance, when we regard a set-valued map as a single-
valued map from one set to the power set of the other (sup-
plied with any one of the topologies we can think of), we arrive
at continuity concepts which are stronger than both lower and
upper semicontinuity, introducing parasitic artifacts. For ex-
ample, using such topologies to differentiate set-valued maps,
leads to such strong requirements, that most set-valued maps
would become nondifferentiable.

This is the reason why we shall start this book with the study
of limits and leave aside the examination of topologies on power
sets.

Furthermore, we shall renew history, by regarding a map not

. as a map, but as a graph (a subset of the product of the
departure and the arrival sets), reestablishing some symmetry
by putting these two sets on the same footing. This brings us
back to the source of analytical geometry, at the time of F.
Viéte, P. de Fermat and R. Descartes, before the concept of
function and map evolved from the one of curves and graphs.

To regard a map as a graph is our constant and basic point of
view throughout this book (which has been called the graphical
approach.)

For instance, closed maps, that is maps with closed graph, shall
play a starring role in this book. It is a weaker property than
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continuity or even, upper semicontinuity, very familiar and thus
easy to check, common to both set-valued maps and their in-
verses.

e LINEAR FUNCTIONAL ANALYSIS
What is the set-valued version of a continuous linear operator?

Remembering that the graph of a continuous linear operator
is a closed vector subspace, we are tempted to single out the
maps whose graphs are closed linear subspaces (called linear
processes.)

This generalization is not bold enough, since dealing exclusively
with closed vector subspaces is still too restrictive: We need to
use the notion of closed convex cone, which is a kind of vector
subspace in which it is forbidden to use subtraction. These
cones enjoy many properties of the vector subspaces.

For this reason, we select the closed convex processes, i.e., the
maps whose graphs are closed convex cones, as the candidates
to play the part of set-valued linear maps.

We shall see later that derivatives of some set-valued maps
are closed convex processes, which is a desirable property for
a derivative®. Indeed, the two basic theorems on continuous
linear operators due to Banach, the Closed Graph Theorem
(equivalent to the Open Mapping Principle) and the Banach-
Steinhaus Theorem, can be adapted to closed convex processes.
The first one states that a closed convex process defined on the
whole space is continuous, and the second states that pointwise
bounded families of closed convex processes are bounded —
a prerequisite for studying the convergence of closed convex
processes. But most important of all, one can transpose closed
convex processes and use the benefits of duality theory, based
on the Bipolar Theorem.

Closed convex processes also possess eigenvectors and invariant
spaces and cones. They truly deserve the status of linear set-
valued maps.

3keeping us in line with Hadamard’s linearity bill enforced by Fréchet that a
derivative should be linear with respect to the increment.
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e NONLINEAR FUNCTIONAL ANALYSIS

We are convinced that many problems can be regarded as in-
clusions

given F: X~ Y and y € Y, find 2 € X such that F(z) >y

Most theorems on existence of solutions to nonlinear equations
can be extended to the case of inclusions.

For example, this is the case for the Brouwer Fixed Point The-
orem, whose generalization to set-valued maps is the famous
Kakutani Fixed-Point Theorem. We shall prove an equivalent
statement, called the Fquilibrium Theorem, which provides the
existence of an equilibrium of a set-valued map, a solution to
the inclusion F(z) 3 0.

Of course, for applications, we need not only to solve such a
problem, but also to approximate its solutions by solutions to
approximate problems:

given Fy, : Xp ~ Y, yn € Yy, find z, € X, with Fy,(zy,) 3 yn
where X, and Y,, are subspaces of X and Y.

The famous Lax’s principle of numerical analysis states that
convergence of the data y, to y, consistency of F, to F and
stability of the F,’s imply the convergence of approximate solu-
tions. As an important special case, when the spaces X,, = X,
Y, =Y and the maps F,, = F are constant, this principle boils
down to the statement of the Inverse-Function Theorem.

Convergence, consistency and stability, which were originally
defined in the framework of linear equations, can be extended
to this general case by introducing adequate notions of con-
vergence and derivatives of set-valued maps. For instance, the
concept of consistency is nothing other than the fact that the
graph of F' is the lower limit of the graphs of the approximate
maps F,,, while stability is the boundedness of the inverses of
the derivatives of the maps F,.

This provides a first motivation for devising a set-valued dif-
ferential calculus. For that purpose, we need to begin with the
study of tangents.
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e TANGENTS AND NORMALS

The concept of tangency has been overshadowed in some sense
by the requirement that the space of tangent vectors must be a
vector space, so that the original idea became concealed after
its formal implementation in differential geometry.

If we come back to the idea underlying the notion of tangency
to a subset K at some point x € K, we are tempted to form
“thick” differential quotients

K—=z
h

and to take (in various ways) their limits when h > 0 goes to
0.

We obtain in this way a variety of closed cones made of what we
call tangent vectors. The most popular of these tangent cones
is for the time the contingent cone introduced in the thirties by
Bouligand, (which is the upper limit of these differential quo-
tients.) Some of these tangent cones are closed convex cones,
and they enjoy a property which is the natural extension of
linearity (without subtraction.)

These tangent cones possess a rich calculus which justifies their
use in many questions, mainly in problems with state con-
straints: They are involved in the sufficient conditions for the
existence of an equilibrium and for the stability of solutions
to equations with constraints. They also appear in the formu-
lation of necessary conditions in optimization problems with
constraints and play a key role in viability theory.

In order to define space of normals, which in differential geom-
etry consists of vectors othogonal to the tangent vector space,
we are led to introduce the dual concept of normal cones to
any subset.

e DIFFERENTIATION OF MAPS

We already mentioned that the concept of stability in the In-
verse-Function Theorem requires the notion of derivative of a
set-valued map, leading to the question: How do we formulate
this concept?
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The idea is very simple and goes back to the prehistory of the
differential calculus, when Pierre de Fermat introduced in the
first half of the seventeenth century the concept of tangent to
the graph of a function: The tangent space to the graph of a
function f at a point (z,y) of its graph is the line of slope f'(x),
i.e., the graph of the linear function u — f'(x)u.

It is possible to implement this idea for any set-valued map F,
since we have introduced a way to implement the tangency for
any subset of a normed space. Therefore, in the framework of
a given problem, we can regard a tangent cone to the graph of
the set-valued map F at some point (z,y) of its graph as the
graph of the associated “derivative” of F' at this point (z,y).

Derivatives built in this way from the various choices of tan-
gent cones are called graphical derivatives and the calculus of
tangent cones can be transferred to a set-valued differential
calculus, including chain rules.

With such derivatives of set-valued maps in our hands, we can
linearize set-valued problems for approximating them by lin-
earized ones. The latter involving closed convex processes, this
strategy provides ways for transferring some properties of linear
set-valued maps to nonlinear maps.

GRADIENTS OF FUNCTIONS AND THE FERMAT RULE

The particular case of real-valued functions deserves a study
by itself for taking into account the order relation of real num-
bers. We are led to do so whenever we look for a minimizer
of a function or when we study the monotone behavior of a
function along a solution to a differential equation or inclusion
(Lyapunov property.)

The set-valued approach indicates the route: We associate with
a function V the set-valued map V; defined by
Vi) = [V(z), +oo|

whose graph is the epigraph of V.

The graphs of the derivatives of such set-valued maps V; are
the epigraphs of functions which are called epiderivatives. We
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discover that they are close relatives of the directional deriva-
tives introduced by Dini, who was among the first to revolt
against the rigidity imposed by the heirs of Cauchy?*.

As far as optimization is concerned, the Fermat Rule can be
extended to any function by using these epiderivatives. Since
they enjoy a rich calculus, we obtain in this way many necessary
conditions for a minimum. This can be done by transferring
the set-valued differential calculus to what can be called an
epidifferential calculus.

By duality, we associate with each of the epiderivatives a con-
cept of generalized gradient: It is in general a subset of ele-
ments, reduced to the usual gradient whenever the function is
differentiable in the usual way. In this framework, the Fermat
Rule becomes: If a point achieves the minimum of a function,
then it is an equilibrium of the generalized gradient, i.e., the
generalized gradient at an optimal point contains 0.

e CONVERGENCE OF MAPS

What about the convergence of a sequence of set-valued maps
E,?
The first idea which comes to mind is to extend the various

notions of uniform convergence of single-valued maps, regarded
as a map from one space to another.

Since we know how to deal with limits of sets, it is again natural
to use the graphical approach and to study the upper and lower
limits of graphs.

We follow this hint and study graphical upper and lower limits
of a sequence of set-valued maps as the maps whose graphs are
the upper and lower limits of the graphs.

4Cauchy, however, had the merit to formalize the concept of limits, continuity
and differentiability. His definitions have been canonized ever since: A function
was allowed to be differentiated only if the differential quotients were converging
to the derivative for the pointwise convergence topology. The need to use nondif-
ferentiable functions has been felt several times. By Bouligand, with the notions
of contingent and paratingent, by Dini who also broke Hadamard’s linearity law,
by L. Schwartz and S. Sobolev, with the discovery of weak derivatives of functions
and distributions. But each of these extensions was devised for specific purposes
(solving partial differential equations, for instance.)
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When we deal with real-valued functions, we are led to use
the set-valued maps V,; associated with functions V,,, whose
graphs are epigraphs of the functions V,,. The graphical limits
of the set-valued maps V,1 induce what we call epigraphical
limits of the functions V,,. This concept is closely related to G-
convergence introduced by de Giorgi and has been extensively
used in the study of stability of optimization problemsS.

An interesting question arises: What are the connections be-
tween the (epigraphical) convergence of a sequence of functions
and the (graphical) convergence of their gradients? We shall
answer such questions.

MEASURES AND INTEGRATION

We encounter measurable maps whenever we deal with models
of systems having measurable data, and in particular when we
deal with random set-valued variables (an issue we shall not
address in this book.)

Another important instance where measurable set-valued maps
do arise is in the linearization of a control system (or a differ-
ential inclusion) along a solution.

Hence, we cannot escape the burden of studying measurable
maps, which are the maps whose graphs are measurable, and
checking in particular that all the standard operations preserve
measurability.

We also need measurability for defining integrals of set-valued
maps. Integrals of set-valued maps are involved in many con-
vexification (also called relaxation) problems, since roughly
speaking the integral of a measurable set-valued map is always
convez.

This property was in fact the original motivation to introduce
the integral of set-valued maps in mathematical economics and
game theory (with a continuum of players.)

We shall also address the basic questions of ergodic theory, ex-
tending to set-valued maps the Poincaré Recurrence Theorem

5See the forthcoming book SET-VALUED ANALYSIS AND SUBDIFFERENTIAL

CaLcuLus [355] by Rockafellar and Wets.



