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Editorial Introduction

This book is a collection of original papers and state-of-the-art contributions writ-
ten by leading experts in the areas of differential equations, chaos and variational
problems in honour of Arrigo Cellina and James A. Yorke, whose remarkable sci-
entific carrier was a source of inspiration to many mathematicians, on the occasion
of their 65th birthday.

Arrigo Cellina and James A. Yorke were born on the same day: August 3,
1941. Both received their Ph.D. degrees from the University of Maryland, where
they met first in the late 1960s, at the Institute for Fluid Dynamics and Applied
Mathematics. They had offices next to each other and though they were of the
same age, Yorke was already Assistant Professor, while Cellina was a Graduate
Student. Each one of them had a small daughter, and this contributed to their
friendship.

Arrigo Cellina James A. Yorke
Yorke arrived at the office every day with a provision of cans of Coca Cola,

his daily ration, that he put in the air conditioning fan, to keep cool. Cellina says
that he was very impressed by Yorke’s way of doing mathematics; Yorke could
prove very interesting new results using almost elementary mathematical tools,
little more than second year Calculus.

From those years, he remembers for example the article Noncontinuable so-
lutions of differential-delay equations where Yorke shows, in an elementary way
but with a clever use of the extension theorem, that the basic theorem of continu-
ation of solutions to ordinary differential equations cannot be valid for functional
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equations (at that time very fashionable). In the article A continuous differen-
tial equation in Hilbert space without existence, Yorke gave the first example of
the nonexistence of solutions to Cauchy problems for an ordinary differential in a
Hilbert space. Furthermore, in a joint paper with one of his students, Saperstone,
he proved a controllability theorem without using the hypothesis that the origin
belongs to the interior of the set of controls. This is just a sample of important
problems to which Yorke made nontrivial contributions.

Yorke went around always carrying in his pocket a notebook where he anno-
tated the mathematical problems that seemed important for future investigation.
In those years Yorke’s collaboration with Andrezj Lasota began, which produced
outstanding results in the theory of “chaos”. Yorke became famous even in non-
mathematical circles for his mathematical model for the spread of gonorrhoea.
While traditional models were not in accord with experimental data, he proposed
a simple model based on the existence of two groups of people and proved that this
model fits well the experimental data. Later, in a 1975 paper entitled Period three
implies chaos with T.Y. Lee, Yorke introduced a rigorous mathematical definition
of the term “chaos” for the study of dynamical systems. From then on, he played a
leading role in the further research on chaos, including its control and applications.

Yorke’s goals to explore interdisciplinary mathematics were fully realized af-
ter he earned his Ph.D. and joined the faculty of the Institute for Physical Science
and Technology (IPST), an institute established in 1950 to foster excellence in
interdisciplinary research and education at the University of Maryland. He said:
All along the goal of myself and my fellow researchers here at Maryland has been
to find the concepts that the applied scientist needs. His chaos research group in-
troduced many basic concepts with exotic names like crises, the control of chaos,
fractal basin boundary, strange non-chaotic attractors, and the Kaplan–Yorke di-
mension. One remarkable application of Yorke’s theory of chaos has been the
weather prediction.

In 2003 Yorke shared with Benoit Mandelbrot of Yale University the prize for
Science and Technology of Complexity of the Science and Technology Foundation
of Japan for the Creation of Universal Concepts in Complex Systems-Chaos and
Fractals. With this prize, Jim Yorke was recognized for his outstanding achieve-
ments in nonlinear dynamics that have greatly advanced the frontiers of science
and technology.

Yorke’s research has been highly influential, with some of his papers receiving
hundreds of citations. He is the author of three books on chaos, of a monograph
on gonorrhoea epidemiology, and of more than 300 papers in the areas of ordinary
differential equations, dynamical systems, delay differential equations, applied and
random dynamical systems.

He believes that a Ph.D. in mathematics is a licence to investigate the uni-
verse, and he has supervised over 40 Ph.D. dissertations in the departments of
mathematics, physics and computer science.
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Currently, Jim Yorke is a Distinguished University Professor of Mathemat-
ics and Physics, and Chair of the Mathematics Department of the University of
Maryland.

Arrigo Cellina received a Ph.D. degree in mathematics in 1968 and went back
to Italy, where he was Assistant Professor and then Full Professor at the Univer-
sities of Perugia, Florence, and Padua, at the International School for Advanced
Studies (SISSA) in Trieste, and at the University of Milan. He was a member of
the scientific committee and then Director (1999–2001) of the International Math-
ematical Summer Centre (CIME) in Florence, Italy, and also a member of the
scientific council of CIM (International Centre for Mathematics) seated in Coim-
bra, Portugal. Presently he is Professor at the University of Milan “Bicocca” and
coordinator of the Doctoral Program of this university.

In Italy, the International School for Advanced Studies (SISSA) was estab-
lished in 1978, in Trieste, as a dedicated and autonomous scientific institute to
develop top-level research in mathematics, physics, astrophysics, biology and neu-
roscience, and to provide qualified graduate training to Italian and foreign laure-
ates, to train them for research and academic teaching.

SISSA was the first Italian school to set up post-laurea courses aimed at a
Ph. D. degree (Doctor Philosophiae). Cellina was one of the professors, founders
and, for several years, the Coordinator of the Sector of Functional Analysis and
Applications at SISSA, from 1978 until 1996.

I was lucky to have been initiated to mathematical research on Aubin–
Cellina’s book Differential inclusions in a research seminar at the University of
Bucharest. Three years later I began my Ph.D. studies on differential inclusions at
SISSA, under the supervision of Arrigo Cellina. I arrived at SISSA coming from
Florence where I spent a very rewarding and training period of one year as a Re-
search Fellow of GNAFA under the supervision of Roberto Conti, and I remember
that Arrigo welcomed me with a kindness equal to his erudition.

Always available to discuss and to help his students to overcome difficulties,
not only of mathematical orders, Arrigo taught me a lot more than differential
inclusions. I remember with great pleasure his beautiful lessons, the long hours of
reflection in front of the blackboard in his office, as well as the walks along the sea
or in the park of Miramare.

I remember SISSA of those days as a very exciting environment. A community
of researchers worked there, while several others were visiting SISSA and gave
short courses or seminars concerning their new results. The Sector of Functional
Analysis and Applications was located in a beautiful place, close to the Castle of
Miramare, and near the International Centre for Theoretical Physics (ICTP), with
an excellent library where we could spend much of our time. Without a doubt,
this has been a very fruitful and rewarding period of my life, both as a scientific
and as a life experience. Cellina’s contribution has been significant.

Cellina’s scientific work has always been highly original, introducing entirely
new techniques to attack the difficult problems he considered. He introduced the
notion of graph approximate selection for upper semicontinuous multifunctions,



xii Editorial Introduction

thus establishing a basic connection between ordinary differential inclusions and
differential inclusions. He also introduced the fixed-point approach to prove the ex-
istence of differential inclusions based on continuous selections from multifunctions
with decomposable values.

The Baire category method, for the analysis of differential inclusions without
convexity assumptions, has been developed starting from Cellina’s seminal paper
On the differential inclusion x′ ∈ [−1, 1], published in 1980 by the Rendiconti
dell’Academia dei Lincei. Eventually this method recently found applications to
problems of the Calculus of Variations, without convexity or quasi-convexity as-
sumptions, as well as to implicit differential equations. This year, it found even
more striking new applications to the construction of deep counterexamples in the
theory of multidimensional fluid flow.

More recently, Cellina’s research activity was devoted to the area of the Cal-
culus of Variations, where he obtained important results on the validity of the
Euler-Lagrange equation, on the regularity of minimizers, on necessary and suffi-
cient conditions for the existence of minima, and on uniqueness and comparison
of minima without strict convexity.

The book Differential Inclusions, co-authored by Cellina with J. P. Aubin and
published by Springer, as well as several of his eighty papers published in first-
class journals, are now classic references to their subject. Cellina also edited several
volumes with lectures and seminars of CIME sessions, published by Springer in
the subseries Fondazione C.I.M.E. of the Lecture Notes in Mathematics series.

Cellina mentored ten Ph.D. students: seven of them while at SISSA and
three others at the university of Milan. Among his former students, many are now
Professors in prestigious universities in Italy, Portugal, Chile or other countries.
Several more mathematicians continue to be inspired by his ground-breaking ideas.

Cellina and Yorke during the conference in Aveiro
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In June 2006, I had the privilege to organize in Aveiro (Portugal) with my
colleagues from the Functional Analysis and Applications research group, the con-
ference Views on ODEs, in celebration of the 65th birthday of Arrigo Cellina and
James A. Yorke. Several friends, former students and collaborators, presently lead-
ing experts in differential equations, chaos and variational problems, gathered in
Aveiro on this occasion to discuss their new results. The present volume collects
thirty-two original papers and state-of-the-art contributions of participants to this
conference and brings the reader to the frontier of research in these modern fields
of research.

I wish to thank Professor Haim Brezis for accepting to publish this book
as a volume of the series Progress in Nonlinear Differential Equations and Their
Applications. I also thank Thomas Hempfling for the professional and pleasant col-
laboration during the preparation of this volume. Finally, I gratefully acknowledge
partial financial support from the Portuguese Foundation for Science and Technol-
ogy (FCT) under the Project POCI/MAT/55524/2004 and from the Mathematics
and Applications research unit of the University of Aveiro.

Aveiro, October 2007 Vasile Staicu
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Abstract. We consider nonlinear elliptic equations driven by the p-Laplacian
with a nonsmooth potential (hemivariational inequalities). We obtain the ex-
istence of multiple nontrivial solutions and we determine their sign (one posi-
tive, one negative and the third nodal). Our approach uses nonsmooth critical
point theory coupled with the method of upper-lower solutions.
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1. Introduction

Let Z ⊆ RN be a bounded domain with a C2-boundary ∂Z. We consider the
following nonlinear elliptic problem with nonsmooth potential (hemivariational
inequality): {

−div
(
‖Dx(z)‖p−2Dx(z)

)
∈ ∂j

(
z, x(z)

)
a.e. on Z ,

x|∂Z = 0, 1 < p < ∞ .

}
(1.1)

Here j(z, x) is a measurable function on Z×R and x → j(z, x) is locally Lip-
schitz and in general nonsmooth. By ∂j(z, ·) we denote the generalized subdifferen-
tial of j(z, ·) in the sense of Clarke [3]. The aim of this lecture is to produce multiple
nontrivial solutions for problem (1.1) and also determine their sign (positive, neg-
ative or nodal (sign-changing) solutions). Recently this problem was studied for
equations driven by the p-Laplacian with a C1-potential function (single-valued

Researcher M. E. Filippakis supported by a grant of the National Scholarship Foundation of
Greece (I.K.Y.).
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right hand side), by Ambrosetti-Garcia Azorero-Peral Alonso [1], Carl-Perera [2],
Garcia Azorero-Peral Alonso [7], Garcia Azorero-Manfredi-Peral Alonso [8], Zhang-
Chen-Li [15] and Zhang-Li [16]. In [1], [7], [8], the authors consider certain nonlin-
ear eigenvalue problems and obtain the existence of two strictly positive solutions
for all small values of the parameter λ ∈ R (i.e., for all λ ∈ (0, λ∗)). In [2], [15], [16]
the emphasis is on the existence of nodal (sign changing) solutions. Carl-Perera [2]
extend to the p-Laplacian the method of Dancer-Du [6], by assuming the existence
of an ordered pair of upper-lower solutions. In contrast, Zhang-Chen-Li [15] and
Zhang-Li [16], base their approach on the invariance properties of certain carefully
constructed pseudogradient flow. Our approach here is closer to that of Dancer-
Du [6] and Carl-Perera [2], but in contrast to them, we do not assume the existence
of upper-lower solutions, but instead we construct them and we use a recent alter-
native variational characterization of the second eigenvalue λ2 of (−�p,W

1,p
0 (Z))

due to Cuesta-de Figueiredo-Gossez [5], together with a nonsmooth version of the
second deformation theorem due to Corvellec [4].

2. Mathematical background

Let X be a Banach space and X∗ its topological dual. By 〈, ·, ·〉 we denote the
duality brackets for the pair (X,X∗). Let ϕ : X → R be a locally Lipschitz. The
generalized directional derivative ϕ0(x;h) of ϕ at x ∈ X in the direction h ∈ X, is
given by

ϕ0(x;h) = lim sup
x′ → x
λ ↓ 0

ϕ(x′ + λh)− ϕ(x′)
λ

.

The function h → ϕ0(x;h) is sublinear continuous and so it is the support
function of a nonempty, convex and w∗-compact set ∂ϕ(x) ⊆ X∗ defined by

∂ϕ(x) =
{
x∗ ∈ X∗ : 〈x∗, h〉 ≤ ϕ0(x;h) for all h ∈ X

}
.

The multifunction x → ∂ϕ(x) is known as the generalized subdifferential
or subdifferential in the sense of Clarke. If ϕ is continuous convex, then ∂ϕ(x)
coincides with the subdifferential in the sense of convex analysis. If ϕ ∈ C1(X),
then ∂ϕ(x) = {ϕ′(x)}. We say that x ∈ X is a critical point of ϕ, if 0 ∈ ∂ϕ(x).
The main reference for this subdifferential, is the book of Clarke [3].

Given a locally Lipschitz function ϕ : X → R, we say that ϕ satisfies the
nonsmooth Palais-Smale condition at level c ∈ R (the nonsmooth PSc-condition
for short), if every sequence {xn}n≥1 ⊆ X such that ϕ(xn) → c and m(xn) =
inf{‖x‖ : x∗ ∈ ∂ϕ(xn)} → 0 as n →∞, has a strongly convergent subsequence. If
this is true at every level c ∈ R, then we say that ϕ satisfies the PS-condition.

Definition 2.1. Let Y be a Hausdorff topological space and E0, E,D nonempty,
closed subsets of Y with E0 ⊆ E. We say that {E0, E} is linking with D in Y , if
the following hold:
(a) E0 ∩D = ∅;
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(b) for any γ ∈ C(E, Y ) such that γ|E0 = id|E0 , we have γ(E) ∩D 
= ∅.
Using this geometric notion, we can have the following minimax characteri-

zation of critical values for nonsmooth, locally Lipschitz functions (see Gasinski-
Papageorgiou [9], p.139).

Theorem 2.2. If X is a Banach space, E0, E,D are nonempty, closed subsets of
X, {E0, E} are linking with D in X, ϕ : X → R is locally Lipschitz, sup

E0

< inf
D

ϕ,

Γ = {γ ∈ C(E,X) : γ|E0 = id|E0}, c = inf
γ∈Γ

sup
v∈E

ϕ(γ(v)) and ϕ satisfies the

nonsmooth PSc-condition, then c ≥ inf
D

ϕ and c is a critical value of ϕ.

Remark 2.3. By appropriate choices of the linking sets {E0, E,D}, from The-
orem 2.2, we obtain nonsmooth versions of the mountain pass theorem, saddle
point theorem, and generalized mountain pass theorem. For details, see Gasinksi-
Papageorgiou [9].

Given a locally Lipschitz function ϕ : X → R, we set

ϕ·c =
{
x ∈ X : ϕ(x) < c

}
(the strict sublevel set of ϕ at c ∈ R)

and Kc =
{
x ∈ X : 0 ∈ ∂ϕ(x), ϕ(x) = c

}
(the critical points of ϕ at the level c).

The next theorem is a nonsmooth version, of the so-called “second deforma-
tion theorem” (see Gasinski-Papageorgiou [10], p.628) and it is due to Corvellec [4].

Theorem 2.4. If X is a Banach space, ϕ : X → R is locally Lipschitz, it satisfies
the nonsmooth PS-condition, a ∈ R, b ∈ R ∪ {+∞}, ϕ has no critical points
in ϕ−1(a, b) and Ka is discrete nonempty and contains only local minimizers of ϕ,

then there exists a deformation h : [0, 1]× ϕ·b → ϕ·b such that
(a) h(t, ·)|Ka

= Id|Ka
for all t ∈ [0, 1];

(b) h(t, ϕ·b) ⊆ ϕ·a ∪Ka;
(c) ϕ(h(t, x)) ≤ ϕ(x) for all (t, x) ∈ [0, 1]× ϕ·b.

Remark 2.5. In particular then ϕ·b ∪Ka is a weak deformation retract of ϕ·b.

Let us mention a few basic things about the spectrum of (−�p,W
1,p
0 (Z)),

which we will need in the sequel. So let m ∈ L∞(Z)+, m 
= 0 and consider the
following weighted eigenvalue problem:{

−div
(
‖Dx(z)‖p−2Dx(z)

)
= λm(z)|x(z)|p−2x(z) a.e. on Z ,

x|∂Z = 0, 1 < p < ∞ .

}
(2.1)

Problem (2.1) has at least eigenvalue λ̂1(m) > 0, which is simple, isolated and
admits the following variational characterization in terms of the Rayleigh quotient:

λ̂1(m) = min

[
‖Dx‖p

p∫
Z

m|x|pdz
: x ∈ W 1,p

0 (Z) , x 
= 0

]
(2.2)

The minimum is attained on the corresponding one dimensional eigen-
space E(λ1). By u1 we denote the normalized eigenfunction, i.e.,

∫
Z

m|u1|pdz = 1
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(if m ≡ 1, then ‖u1‖p = 1). We have E(λ1) = Ru1 and u1 ∈ C1
0 (Z) (nonlinear

regularity theory, see Lieberman [13] and Gasinski-Papageorgiou [10], p.738). We
set

C+ =
{
x ∈ C1

0 (Z) : x(z) ≥ 0 for all z ∈ Z
}

and intC+ =
{

x ∈ C+ : x(z) > 0 for all z ∈ Z and
∂x

∂n
(z) < 0 for all z ∈ ∂Z

}
.

The nonlinear strong maximum principle of Vazquez [14], implies that u1 ∈
intC+.

Since λ̂1(m) is isolated, we can define the second eigenvalue of (−�p,
W 1,p

0 (Z),m) by

λ̂∗
2(m) = inf

[
λ̂ : λ̂ is an eigenvalue of (2.1), λ̂ 
= λ̂1(m)

]
> λ̂1(m) .

Also by virtue of the Liusternik-Schnirelmann theory, we can find an increas-
ing sequence of eigenvalues {λ̂k(m)}k≥1 such that λ̂k(m) → ∞. These are the
so-called LS-eigenvalues. We have

λ̂2

∗
(m) = λ̂2(m) ,

i.e., the second eigenvalue and the second LS-eigenvalue coincide. The eigen-
values λ̂1(m) and λ̂2(m) exhibit the following monotonicity properties with respect
to the weight function m ∈ L∞(Z)+ :

– If m1(z) ≤ m2(z) a.e. on Z, and m1 
= m2, then λ1(m2) < λ1(m1) (see (2.2)).
– If m1(z) < m2(z) a.e. on Z, then λ2(m2) < λ2(m1).

If m ≡ 1, then we write λ̂1(1) = λ1 and λ̂2(1) = λ2. Recently Cuesta-de
Figueiredo-Gossez [5], produced the following alternative variational characteriza-
tion of λ2 :

λ2 = inf
γ0∈Γ0

supx∈γ0([−1,1])‖Dx‖p
p (2.3)

with Γ0 = {γ0 ∈ C([−1, 1], S) : γ0(−1) = −u1, γ0(1) = u1}, S = W 1,p
0 (Z) ∩

∂B
Lp(Z)
1 and ∂B

Lp(Z)
1 = {x ∈ Lp(Z) : ‖x‖p = 1}.

Finally we recall the notions of upper and lower solution for problem (1.1).
Definition 2.6.

(a) A function x ∈ W 1,p(Z) is an upper solution of (1.1), if x|∂Z ≥ 0 and∫
Z

‖Dx‖p−2(Dx,Dv)RNdz ≥
∫

Z

uvdz

for all v ∈ W 1,p
0 (Z), v ≥ 0 and all u ∈ Lη(Z), u(t) ∈ ∂j(t, x(z)) a.e. on Z

for some 1 < η < p∗.
(b) A function x ∈ W 1,p(Z) is a lower solution of (1.1), if x|∂Z ≤ 0 and∫

Z

‖Dx‖p−2(Dx,Dv)RNdz ≤
∫

Z

uvdz
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for all v ∈ W 1,p
0 (Z), v ≥ 0 and all u ∈ Lη(Z), u(z) ∈ ∂j(z, x(z)) a.e. on Z

for some 1 < η < p∗.

3. Multiple constant sign solutions

In this section, we produce multiple solutions of constant sign. Our approach is
based on variational techniques, coupled with the method of upper lower solutions.
We need the following hypotheses on the nonsmooth potential j(z, x).

H(j)1: j : Z ×R → R is a function such that j(t, 0) = 0 and ∂j(z, 0) = {0} a.e. on
Z, and

(i) for all x ∈ R, z → j(z, x) is measurable;
(ii) for almost all z ∈ Z, x → j(z, x) is locally Lipschitz;
(iii) for a.a. z ∈ Z, all x ∈ R and all u ∈ ∂j(z, x), we have

|u| ≤ a(z) + c|x|p−1 with a ∈ L∞(Z)+, c > 0 ;

(iv) there exists θ ∈ L∞(Z)+, θ(z) ≤ λ1 a.e. on Z, θ 
= λ1 such that

lim sup
|x|→∞

u

|x|p−2x
≤ θ(z)

uniformly for a.a. z ∈ Z and all u ∈ ∂j(z, x) ;
(v) there exists η, η̂ ∈ L∞(Z)+ , λ1 ≤ η(z) ≤ η̂(z) a.e. on Z, λ1 
= η such

that

η(z) ≤ lim inf
x→0

u

|x|p−2x
≤ lim sup

x→0

u

|x|p−2x
≤ η̂(z)

uniformly for a.a. z ∈ Z and all u ∈ ∂j(z, x);
(vi) for a.a. z ∈ Z, all x ∈ R and all u ∈ ∂j(z, x), we have ux ≥ 0 (sign

condition).
Let ε > 0 and γε ∈ L∞(Z)+, γε 
= 0 and consider the following auxiliary

problem:{
−div

(
‖Dx(z)‖p−2Dx(z)

)
=
(
θ(z) + ε

)
|x(z)|p−2x(z) + γε(z) a.e. on Z ,

x|∂Z = 0 .

}
(3.1)

In what follows by 〈·, ·〉 we denote the duality brackets for the pair (W 1,p
0 (Z),

W−1,p′
(Z)) ( 1

p + 1
p′ = 1). Let A : W 1,p

0 (Z) → W−1,p′
(Z) be the nonlinear operator

defined by〈
A(x), y

〉
=
∫

Z

‖Dx‖p−2(Dx,Dy)RNdz for all x, y ∈ W 1,p
0 (Z) .

We can check that A is monotone, continuous, hence maximal monotone. In
particular then we can deduce that A is pseudomonotone and of type (S)+.

Also let Nε : Lp(Z) → Lp′
(Z) be the bounded, continuous map defined by

Nε(x)(·) =
(
θ(·) + ε

)
|x(·)|p−2x(·) .
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Evidently due to the compact embedding of W 1,p
0 (Z) into Lp(Z), we have that

Nε|W 1,p
0 (Z) is completely continuous. Hence x → A(x)−Nε(x) is pseudomonotone.

Moreover, from the hypothesis on θ (see H(j)1(iv)), we can show that there exists
ξ0 > 0 such that

‖Dx‖p
p −

∫
Z

θ|x|pdz ≥ ξ0‖Dx‖p
p for all x ∈ W 1,p

0 (Z) . (3.2)

Therefore for ε > 0 small the pseudomonotone operator x → A(x) − Nε(x)
is coercive. But a pseudomonotone coercive operator is surjective (see Gasinski-
Papageorgiou [10], p.336). Combining this fact with the nonlinear strong maximum
principle, we are led to the following existence result concerning problem (3.1).

Proposition 3.1. If θ ∈ L∞(Z)+ is as in hypothesis H(j)1(iv), then for ε > 0 small
problem (3.1) has a solution x ∈ intC+.

Because of hypothesis H(j)1(iv), we deduce easily the following fact:

Proposition 3.2. If hypotheses H(j)1 → (iv) hold and ε > 0 is small, then the
solution x ∈ intC+ obtained in Proposition 3.1 is a strict upper solution for (1.1)
(strict means that x is an upper solution which is not a solution).

Clearly x ≡ 0 is a lower solution for (1.1).
Let C = [0, x] = {x ∈ W 1,p

0 (Z) : 0 ≤ x(z) ≤ x(z) a.e. on Z}. We introduce
the truncation function τ+ : R → R defined by

τ+(x) =
{

0 if x ≤ 0
x if x > 0 .

We set j1(z, x) = j(z, τ+(x)). This is still a locally Lipschitz integrand. We
introduce ϕ+ : W 1,p

0 (Z) → R defined by

ϕ+(x) =
1
p
‖Dx‖p

p −
∫

Z

j+
(
z, x(z)

)
dz for all x ∈ W 1,p

0 (Z) .

The function ϕ+ is Lipschitz continuous on bounded sets, hence locally Lip-
schitz. Using hypothesis H(j)1(iv) and (3.2), we can show that ϕ+ is coercive.
Moreover, due to the compact embedding of W 1,p

0 (Z) into Lp(Z), ϕ+ is weakly
lower semicontinuous. Therefore by virtue of Weierstrass theorem, we can find
x0 ∈ C such that

ϕ+(x0) = inf
C

ϕ+ . (3.3)

Hypothesis H(j)1(v) implies that for μ > 0 small we have ϕ+(μu1) < 0 =
ϕ+(0). Since μu1 ∈ C, it follows that x0 
= 0. Moreover, from (3.3) we have

0 ≤
〈
A(x0), y − x0

〉
−
∫

Z

u0(z)(y − x0)(z)dz for all y ∈ C , (3.4)
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with u0 ∈ Lp′
(Z), u0(z) ∈ ∂j+(z, x0(z)) = ∂j(z, x0(z)) a.e. on Z. For h ∈ W 1,p

0 (Z)
and ε > 0, we define

y(z) =

⎧⎨⎩ 0 if z ∈ {x0 + εh ≤ 0}
x0(z) + εh(z) if z ∈ {0 < x0 + εh ≤ x}
x(z) if z ∈ {x ≤ x0 + εh}

.

Evidently y ∈ C and so we can use it as a test function in (3.4). Then we
obtain

0 ≤
〈
A(x0)− u0, h

〉
. (3.5)

Because h ∈ W 1,p
0 (Z) was arbitrary, from (3.5) we conclude that

A(x0) = u0 ⇒ x0 ∈ W 1,p
0 (Z) is a solution of (1.1) . (3.6)

Nonlinear regularity theory implies that x0 ∈ C1
0 (Z), while the nonlinear

strong maximum principle of Vazquez [14], tell us that x0 ∈ intC+.
Using the comparison principles of Guedda-Veron [11], we can show that

x− x0 ∈ intC+ .

Therefore x0 is a local C1
0 (Z)-minimizer of ϕ, hence x0 is a local

W 1,p
0 (Z)-minimizer of ϕ (see Gasinski-Papageorgiou [9], pp.655–656 and Kyritsi-

Papageorgiou [12]). Therefore we can state the following result:

Proposition 3.3. If hypotheses H(j)1 hold, then there exists x0 ∈ C which is a local
minimizer of ϕ+ and of ϕ.

If instead of (3.1), we consider the following auxiliary problem{
−div

(
‖Dv(z)‖p−2Dv(z)

)
=
(
θ(z) + ε

)
|v(z)|p−2v(z)− γε(z) a.e. on Z ,

v|∂Z = 0 .

}
(3.7)

then we obtain as before a solution v ∈ −intC+ of (3.7). We can check that
this v ∈ −intC+ is a strict lower solution for problem (1.1). Now we consider the
set

D =
{
x ∈ v ∈ W 1,p

0 (Z) : v(z) ≤ v(z) ≤ 0 a.e. on Z
}

.

We introduce the truncation function τ− : R → R−. defined by

τ−(x) =
{

x if x < 0
0 if x ≥ 0 .

Then j−(z, x) = j(z, τ(x)) and ϕ−(x) = 1
p‖Dx‖p

p −
∫

Z
j−(z, x(z))dz for all

x ∈ W 1,p
0 (Z). We consider the minimization problem inf

D
ϕ−. Reasoning as with ϕ+

on C, we obtain:

Proposition 3.4. If hypotheses H(j)1 hold, then there exists v0 ∈ D which is a local
minimizer of ϕ− and of ϕ.

Propositions 3.3 and 3.4, lead to the following multiplicity theorem for solu-
tions of constant sign for problem (1.1).
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Theorem 3.5. If hypotheses H(j)1 hold, then problem (1.1) has at least two con-
stant sign smooth solutions x0 ∈ intC+ and v0 ∈ −intC+.

Remark 3.6. Since x0, v0 are both local minimizers of ϕ, from the mountain pass
theorem, we obtain a third critical point y0 of ϕ, distinct from x0, v0. However, at
this point we can not guarantee that y0 
= 0, let alone that it is nodal. This will
be done in the next section under additional hypotheses.

4. Nodal solutions

In this section we produce a third nontrivial solution for problem (1.1) which is
nodal (i.e., sign-changing). Our approach was inspired by the work of Dancer-
Du [6]. Roughly speaking the strategy is the following: Continuing the argument
employed in Section 3, we produce a smallest positive solution y+ and a biggest
negative solution y−. In particular {y±} is an ordered pair of upper-lower solutions.
So, if we form the order interval [y−, y+] and we argue as in Section 3, we can show
that problem (1.1) has a solution y0 ∈ [y−, y+] distinct from y−, y+. If we can show
that y0 
= 0, then clearly y0 is a nodal solution of (1.1). To show the nontriviality
of y0, we use Theorem 2.4 and (2.3).

We start implementing the strategy, by proving that the set of upper (resp.
lower) solutions for problem (1.1), is downward (resp. upward) directed. The proof
relies on the use of the truncation function

ξε(s) =

⎧⎨⎩ −ε if s < ε
s if s ∈ [−ε, ε]
ε if s > ε

.

Note that
1
ε
ξε

(
(y1 − y1)−(z)

)
→ χ{y1<y2}(z) a.e. on Z as ε ↓ 0 .

So we have the following lemmata

Lemma 4.1. If y1, y2 ∈ W 1,p(Z) are two upper solutions for problem (1.1) and
y = min{y1, y2} ∈ W 1,p(Z), then y is also an upper solution for problem (1.1).

Lemma 4.2. If v1, v2 ∈ W 1,p(Z) are two lower solutions for problem (1.1) and
v = max{v1, v2} ∈ W 1,p(Z), then v is also a lower solution for problem (1.1).

In Section 3 we used zero as a lower solution for the “positive” problem and
as an upper solution for the “negative” problem. However, this is not good enough
for the purpose of generating a smallest positive and a biggest negative solution,
as described earlier. For this reason, we strengthen the hypotheses on j(z, x) as
follows:

H(j)2: j : Z × R → R is a function such that j(t, 0) = 0 a.e. on Z, ∂j(z, 0) = {0}
a.e. on Z, hypotheses H(j)2(i) → (iv) and (vi) are the same as hypotheses
H(j)1(i) → (iv) and (vi) and
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(iv) there exists η̂ ∈ L∞(Z)+, such that

λ1 < lim inf
x→0

u

|x|p−2x
≤ lim sup

x→0

u

|x|p−2x
≤ η̂(z)

uniformly for a.a. z ∈ Z and all u ∈ ∂j(z, x).
Using this stronger hypothesis near origin, we can find μ0 ∈ (0, 1) small such

that x = μ0u1 ∈ intC+ is a strict lower solution and v = μ0(−u1) ∈ −intC+ is a
strict upper solution for problem (1.1). So we can state the following lemma:

Lemma 4.3. If hypotheses H(j)2 hold, then problem (1.1) has a strict lower solution
x ∈ intC+ and a strict upper solution v ∈ −intC+.

We consider the order intervals

[x, x] =
{
x ∈ W 1,p

0 (Z) : x(z) ≤ x(z) ≤ x(z) a.e. on Z
}

and [v, v] =
{
v ∈ W 1,p

0 (Z) : v(z) ≤ v(z) ≤ v(z) a.e. on Z
}

.

Using Lemmata 4.1 and 4.2 and Zorn’s lemma, we prove the following result:

Proposition 4.4. If hypotheses H(j)2 hold, then problem (1.1) admits a smallest
solution in the order interval [x, x] and a biggest solution in the order interval [v, v].

Now let xn = εnu1 with εn ↓ 0 and let En
+ = [xn, x]. Proposition 4.4 implies

that problem (1.1) has a smallest solution xn
∗ in En

+. Clearly {xn
∗}n≥1 ⊆ W 1,p

0 (Z) is
bounded and so by passing to a suitable subsequence if necessary, we may assume
that

xn
∗

w→ y+ in W 1,p
0 (Z) and xn

∗ → y+ in Lp(Z) as n →∞ .

Arguing by contradiction and using hypothesis H(j)2(v), we can show that
y+ 
= 0 and of course y+ ≥ 0. Here we use the strict monotonicity of the principal
eigenvalue on the weight function (see Section 2). Moreover, by Vazquez [14], we
have y+ ∈ intC+ and using this fact it is not difficult to check that y+ is in fact
the smallest positive solution of problem (1.1).

Similarly, working on En
− = [v, vn] with vn = εn(−u1), εn ↓ 0, we obtain

y− ∈ −intC+ the biggest negative solution of (1.1). So we can state the following
proposition:

Proposition 4.5. If hypotheses H(j)2 hold, then problem (1.1) has a smallest pos-
itive solution y+ ∈ intC+ and a biggest negative solution y− ∈ −intC+.

According to the scheme outlined in the beginning of the section, using this
proposition, we can establish the existence of a nodal solution. As we already
mentioned, a basic tool to this end, is equation (2.3). But in order to be able to
use (2.3), we need to strengthen further our hypothesis near the origin. Also we
need to restrict the kind of locally Lispchitz functions j(z, x), we have. Namely,
let f : Z ×R → R be a measurable function such that for every r > 0 there exists
ar ∈ L∞(Z)+ such that

|f(z, x)| ≤ ar(z) for a.a. z ∈ Z and all |x| ≤ r .
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We introduce the following two limit functions:

f1(z, x) = lim inf
x′→x

f(z, x′) and f2(z, x) = lim sup
x′→x

f(z, x′) .

Both functions are R-valued for a.a. z ∈ Z. In addition we assume that they
are sup-measurable, meaning that for every x : Z → R measurable function, the
functions z → f1(z, x(z)) and z → f2(z, x(z)) are both measurable. We set

j(z, x) =
∫ x

0

f(z, s)ds . (4.1)

Evidently (z, x) → j(z, x) is jointly measurable and for a.a. z ∈ Z, x → j(z, x)
is locally Lipschitz. We have

∂j(z, x) =
[
f1(z, x), f2(z, x)

]
for a.a. z ∈ Z , for all x ∈ R .

Clearly j(z, 0) = 0 a.e. on Z and if for a.a. z ∈ Z, f(z, ·) is continuous at 0,
then ∂j(z, 0) = {0} for a.a. z ∈ Z. The hypotheses on this particular nonsmooth
potential function j(z, x) are the following:

H(j)3: j : Z × R → R is defined by (4.1) and
(i) (z, x) → f(z, x) is measurable with f1, f2 sup-measurable;
(ii) for a.a. z ∈ Z, x → f(z, x) is continuous at x = 0;
(iii) |f(z, x)| ≤ a(z) + c|x|p−1 a.e. on Z, for all x ∈ R,with a ∈ L∞(Z)+,

c > 0;
(iv) there exists θ ∈ L∞(Z)+ satisfying θ(z) ≤ λ1 a.e. on Z, θ 
= λ1 and

lim sup
|x|→∞

f2(z, x)
|x|p−2x

≤ θ(z)

uniformly for a.a. z ∈ Z;
(v) there exists η̂ ∈ L∞(Z)+ such that

λ2 < lim inf
x→0

f1(z, x)
|x|p−2x

lim sup
x→0

f2(z, x)
|x|p−2x

≤ η̂(z)

uniformly for a.a. z ∈ Z;
(vi) for a.a. z ∈ Z and all x ∈ R, we have f1(z, x)x ≥ 0 (sign condition).

From Proposition 4.5, we have a smallest positive solution y+ ∈ intC+ and a
biggest negative solution y− ∈ −intC+ for problem (1.1). We have

A(y±) = u± with u± ∈ Lp′
(Z), u±(z) ∈ ∂j

(
z, x±(z)

)
a.e. on Z .
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We introduce the following truncations of the functions f(z, x) :

f̂+(z, x) =

⎧⎨⎩ 0 if x < 0
f(z, x) if 0 ≤ x ≤ y+(z)
u+(z) if y+(z) < x

,

f̂−(z, x) =

⎧⎨⎩ u−(z) if x < y−(z)
f(z, x) if y−(z) ≤ x ≤ 0
0 if 0 < x

,

f̂(z, x) =

⎧⎨⎩ u−(z) if x < y−(z)
f(z, x) if y−(z) ≤ x ≤ y+(z)
u+(z) if y+(z) < x

,

Using them, we define the corresponding locally Lipschitz potential func-
tions, namely ĵ+(z, x) =

∫ x

0
f̂+(z, s)ds, ĵ−(z, x) =

∫ x

0
f̂−(z, s)ds and ĵ(z, x) =∫ x

0
f̂(z, s)ds for all (z, x) ∈ Z × R.

Also, we introduce the corresponding locally Lipschitz Euler functionals de-
fined on W 1,p

0 (Z). So we have

ϕ̂+(x) =
1
p
‖Dx||pp −

∫
Z

ĵ+
(
z, x(z)

)
dz, ϕ̂−(x) =

1
p
‖Dx‖p

p −
∫

Z

ĵ−
(
z, x(z)

)
dz

and ϕ̂(x) =
1
p
‖Dx||pp −

∫
Z

ĵ
(
z, x(z)

)
dz for all x ∈ W 1,p

0 (Z) .

Finally, we set

T+ = [0, y+], T− = [y−, 0] and T = [y−, y+] .

We can show that the critical points of ϕ+ (resp. of ϕ−, ϕ) are in T+ (resp. in
T−,T ). So the critical points of ϕ̂+ (resp. ϕ̂−) are {0, y+} (resp. {0, y−}). Moreover,

ϕ̂+(y+) = inf ϕ̂+ < 0 = ϕ̂+(0) and ϕ̂−(y−) = inf ϕ̂− < 0 = ϕ̂−(0) .

Clearly y+, y− are local C1
0 (Z)-minimizers of ϕ̂ and so they are also local

W 1,p
0 (Z)-minimizers. Without any loss of generality, we may assume that they are

isolated critical points of ϕ̂. So we can find δ > 0 small such that

ϕ̂(y−) < inf
[
ϕ̂(x) : x ∈ ∂Bδ(y−)

]
≤ 0 ,

ϕ̂(y+) < inf
[
ϕ̂(x) : x ∈ ∂Bδ(y+)

]
≤ 0 ,

where ∂Bδ(y±) = {x ∈ W 1,p
0 (Z) : ‖x − y±‖ = δ}. Assume without loss of

generality that ϕ̂(y−) ≤ ϕ̂(y+).
If we set S = ∂Bδ(y+), T0 = {y−, y+} and T = [y−, y+], then we can check

that the pair {T0, T} is linking with S in W 1,p
0 (Z). So by virtue of Theorem 2.2,

we can find y0 ∈ W 1,p
0 (Z) a critical point of ϕ̂ such that

ϕ̂(y±) < ϕ̂(y0) = inf
γ∈Γ

max
t∈[−1,1]

ϕ̂
(
γ(t)

)
(4.2)

where Γ = {γ ∈ C([−1, 1],W 1,p
0 (Z)) : γ(−1) = y−, γ(1) = y+}. Note that

from (4.2) we infer that y0 
= y±.
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We will show that ϕ̂(y0) < ϕ̂(0) = 0 and so y0 
= 0. Hence y0 is the desired
nodal solution. To establish the nontriviality of y0, it suffices to construct a path
γ0 ∈ Γ such that

ϕ̂(γ0(t)) < 0 for all t ∈ [0, 1] (see (4.2)) .

Using (2.3), we can produce a continuous path γ0 joining−εu1 and εu1 for
ε > 0 small. Note that if Sc = C1

0 (Z) ∩ ∂B
Lp(Z)
1 and S = W 1,p

0 (Z) ∩ ∂B
Lp(Z)
1 are

equipped with the relative C1
0 (Z) and W 1,p

0 (Z) topologies respectively, then

C
(
[−1, 1], Sc

)
is dense in C

(
[−1, 1], S

)
.

Also we have
ϕ̂|γ0 < 0 . (4.3)

Using Theorem 2.4, we can generate the continuous path

γ+(t) = h(t, εu1) , t ∈ [0, 1] ,

with h(t, x) the deformation of Theorem 2.4. This path joins εu1 and y+.
Moreover, we have

ϕ̂|γ+ < 0 . (4.4)

In a similar fashion we produce a continuous path γ− joining y− with −εu1

such that
ϕ̂|γ− < 0 . (4.5)

Concatinating γ−, γ0 and γ+, we produce a path γ0 ∈ Γ such that

ϕ̂|γ0
< 0 (see (4.3),(4.4) and (4.5)) .

This proves that y0 
= 0 and so y0 is a nodal solution. Nonlinear regularity
theory implies that y0 ∈ C1

0 (Z).
Therefore we can state the following theorem on the existence of nodal solu-

tions

Theorem 4.6. If hypotheses H(j)3 hold, then problem (1.1) has a nodal solution
y0 ∈ C1

0 (Z).

Combining Theorems 3.5 and 4.6, we can state the following multiplicity
result for problem (1.1).

Theorem 4.7. If hypotheses H(j)3 hold, then problem (1.1) has at least three non-
trivial solutions, one positive x0 ∈ intC+, one negative v0 ∈ −intC+ and the third
y0 ∈ C1

0 (Z) nodal.
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A Young Measures Approach to Averaging

Zvi Artstein

Dedicated to Arrigo Cellina and James Yorke

Abstract. Employing a fast time scale in the Averaging Method results in
a limit dynamics driven by a Young measure. The rate of convergence to
the limit induces quantitative estimates for the averaging. Advantages that
can be drawn from the Young measures approach, in particular, allowing
time-varying averages, are displayed along with a connection to singularly
perturbed systems.

1. Introduction

The Averaging Method suggests that a time-varying yet small perturbation on a
long time interval, can be approximated by a time-invariant perturbation obtained
by “averaging” the original one. The method has been introduced in the 19th
Century as a practical device helping computations of stellar motions. Its rigorous
grounds have been affirmed in the middle of the 20th Century. Many applications,
including to fields beyond computations, make the field very attractive today.
For a historical account and many applications consult Lochak and Meunier [10],
Sanders and Verhulst [14], Verhulst [17], and references therein.

In this paper we make a connection between the averaging method and an-
other useful tool, namely, probability measure-valued maps, called Young mea-
sures. These were introduced by L.C. Young as generalized curves in the calculus
of variations; other usages are as relaxed controls, worked out by J. Warga, limits
of solutions of partial differential equations, and many more. For an account of
some of the possible applications consult the monographs and surveys Young [19],
Warga [18], Valadier, [16], Pedregal [12, 13], Balder [6], and references therein.
For a connection to singular perturbations extending, in particular, the Levinson-
Tikhonov scope, see Artstein [3].

Incumbent of the Hettie H. Heineman Professorial Chair in Mathematics. Research supported
by the Israel Science Foundation.



16 Z. Artstein

The qualitative consequences of the averaging method played a role in all
the aforementioned applications of Young measures. The purpose of this note is
to show that the Young measures approach can contribute to the considerations
of averaging, including to the quantitative estimates the theory offers.

In the next section we explain how Young measures arise in the averaging
considerations. A general estimate based on the distance in the sense of Young
measures is displayed in Section 3. Applications to the classical averaging, along
with some examples, are given in Section 4. Averaging considerations relative to
subsequences, resulting, in particular, in time-varying averages, is a feature Young
measures help to clarify; it is displayed in Section 5 along with a comment on the
connection to singularly perturbed systems.

2. The connection

In this section we provide the basic definitions of Young measures and explain
how they arise in considerations of averaging. We start actually with the latter,
namely, provide the motivation first.

Averaging of ordinary differential equations is concerned with an equation
which depends on a small positive parameter ε and given by

dx

dt
= εf(t, x, ε) , x(0) = x0 . (2.1)

We assume, throughout, continuity of f(t, x, ε) in x and measurability in t (con-
tinuity in ε is not needed in general; it is explicitly assumed below when used).
In many applications one has to carry out a change of variables in order to arrive
to the form (2.1); in fact, the form (2.1) already depicts the small perturbation;
see Verhulst [17] for an elaborate discussion. Of interest is the limit behaviour of
solutions of (2.1) as ε → 0. A typical result assures, under appropriate conditions,
that the solution, say x(·), of (2.1) (it depends on ε) is close to the solution, say
x0(·), of the averaged equation, namely, the equation

dx

dt
= εf0(x) , x(0) = x0 ; (2.2)

here the time-invariant right hand side of (2.2) is the limit average of the original
equation, namely,

f0(x) = lim
T→∞, ε→0

1
T

∫ T

0

f(t, x, ε)dt , (2.3)

assuming, of course, that the limit exists. (The order of convergence between T
and ε in (2.3) may play a role; we do not address this issue in this general dis-
cussion.) Furthermore, the theory assures that the two solutions, x(·) and x0(·),
are uniformly close on an interval of length of order ε−1, say uniformly on [0, ε−1].
Estimating the order of approximation is a prime goal of the theory. Discussions
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and examples can be found in Arnold [1], Bogoliubov and Mitropolsky [8], Guck-
enheimer and Holmes [9], Lochak and Meunier [10], Sanders and Verhulst [14],
Verhulst [17]. We provide some concrete examples later on.

A standard approach to verifying the approximation and establishing the
order of approximation is via differential or integral inequalities, e.g., Gronwall
inequalities, carefully executed so to produce the appropriate estimates. We offer
another approach which starts with a change of time scales, namely, s = εt. In the
“fast” time variable s equations (2.1) and (2.2) take the form

dx

ds
= f(s/ε, x, ε), x(0) = x0 (2.4)

and, respectively,
dx

ds
= f0(x), x(0) = x0 . (2.5)

Verifying an approximation estimate for solutions of (2.1) and (2.2) uniformly on
[0, ε−1] amounts to verifying the same estimate for solutions of (2.4) and (2.5)
uniformly on [0, 1].

When attempting to apply limit considerations to the right hand side of
(2.4) a difficulty arises, namely, to determine the limit, as ε → 0, of the function
f( s

ε , x, ε), as a function of s for a fixed x. Indeed, the point-wise limit may not
exist, while weak limits, although resulting in the desired average, are not easy to
manipulate when quantitative estimates are sought. What we suggest is to employ
the Young measures limit, as follows.

The best way to explain the idea is via a concrete example. Suppose that the
right hand side in (2.4) is the function sin(s

ε ). As ε → 0 the function oscillates more
and more rapidly. What the Young measure limit captures is the distribution of
the values of the function. Indeed, on any fixed small interval, say [s1, s2] in [0, 1],
when ε is small the values of sin( s

ε ) are distributed very closely to the distribution of
the values of the sin function over one period; namely, the distribution is μ0(dξ) =
π−1(1 − ξ2)−

1
2 dξ which is a probability measure over the space of values of the

mapping sin(·). A way to depict the limit is to identify it with the probability
measure-valued map, say μ(·)(dξ) which assigns to each s ∈ [0, 1] the probability
distribution μ0(dξ) just defined. In the example, the same probability distribution
is assigned to all s in the interval. The general definition of a Young measure allows
probability measure-valued maps which may not be constant over the interval.
Later we take advantage of this possibility when allowing time-varying averages.

A probability measure on Rn is a σ-additive mapping, say μ, from the Borel
subsets of Rn into [0, 1] such that μ(Rn) = 1. The space of probability measures
is endowed with the weak convergence of measures, namely, μi converge to μ0 if∫

h(ξ)μi(dξ) converge to
∫

h(ξ)μ0(dξ) for every bounded and continuous mapping
h(·) : Rn → R. Here ξ is an element of Rn. The space of probability measures on
Rn is denoted P(Rn). In the next section we recall the Prohorov metric; it makes
the space P(Rn) with the weak convergence of measures a complete metric space.
On this space see Billingsley [7].
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A measurable mapping μ(·) : [0, 1] → P(Rn) is called a Young measure, the
measurability being with respect to the weak convergence. A Young measure, say
μ(·), is associated with a measure, marked in this paper in bold face font, say μ,
on [0, 1] × Rn defined on rectangles E × B by μ(E × B) =

∫
E

μ(s)(B)ds. The
resulting measure is also a probability measure (since the base space has Lebesgue
measure one, otherwise we get a probability measure multiplied by the Lebesgue
measure of that base). The convergence in the space of Young measures is now
derived from the convergence on P([0, 1]×Rn), and likewise the Prohorov metric.
A useful consequence is that the space of Young measures with values supported
on a compact subset of Rn is a compact set in the space of Young measures.

An Rn-valued function, say f(s), is identified with the Young measure whose
values are the Dirac measures supported on the singletons {f(s)}. The convergence
of functions in the sense of Young measures, say of {fi(·)}, is taken to be the
convergence of the associated Young measures. More on the basic theory of Young
measures and their convergence see Balder [6], Valadier [16].

The application of the Young measure convergence to the averaging prob-
lem is via the convergence, as ε → 0, in the sense of Young measures of the
functions f( s

ε , x, ε). We shall also consider convergence of f( s
εj

, x, εj) for a subse-
quence εj → 0. The limit in the general case is a Young measure, say μ0(s, x)(dξ)
(here x is the parameter carried over from the function f( s

ε , x, ε), and dξ is an
infinitesimal element in Rn). The resulting limit differential equation is defined by

dx

ds
= E

(
μ0(s, x)(dξ)

)
, x(0) = x0 , (2.6)

where E(μ0(s, x)(dξ)) is the expectation with respect to ξ of the measure, namely,
it is equal to

∫
Rn ξμ0(s, x)(dξ). Thus, the differential equation (2.6) is an ordinary

differential equation whose right hand side is determined via an average of values.
When the measure μ0(s, x)(dξ) is a Dirac measure, namely a function, the equation
reduces to the form in (2.4). We abuse rigorous terminology and refer to μ0(s, x)
as the right hand side of the differential equation (2.6). It is easy to see that when
the convergence holds when ε → 0 (rather than for a subsequence εj → 0), the
limit Young measure is constant-valued, see Remark 5.3.

It should be pointed out that, throughout the derivations, it is the expecta-
tion of the Young measure which plays a role, and not the Young measure itself.
Considering the entire Young measure does not, however, restrict the scope of the
applications and, in turn, helps in the analysis.

It has been known for a long time that, under appropriate conditions, if
the right hand side, say fi(s, x), of a differential equation converges in the sense
of Young measures to, say, μ0(s, x), then the corresponding solutions converge
uniformly on bounded intervals. This may be considered a qualitative aspect of
averaging. It was exploited in many frameworks. One such application is to relaxed
controls, see Warga [18], Young [19]. Applications more related to the averaging
principle were to systems with oscillating parameter and to singularly perturbed
systems, see Artstein [2, 3], Artstein and Vigodner [5]. In the present paper the


