To the memory of my wonderful mother Anne Marie

C. Lavini

To my wife Susan and my daughters Kate Leticia and Elisa Jean

C.A. Moran

To the young surgeons

U. Morandi

To my patients, friends and colleagues from Modena

R. Schoenhuber
The thymus is a gland that over the last two centuries has generated great awareness not only from the anatomical perspective but also for the physiological and pathological roles it plays in many disease processes. Prior to the early studies on its anatomy and physiology in the 18th century, the thymus was believed to perform unusual and curious functions such as purification of the nervous system, providing a protective cushion for the vasculature of the superior mediastinum, fetal nourishment, or more spiritual roles such as being the seat of the soul, among others. During the 19th century important anatomical/physiological studies took place focusing on the role of the thymus in pathological conditions. However, it was not until the middle of the 19th century that a more comprehensive analysis of the role of the thymic gland and its role in pathogenesis began to emerge.

Currently, while the knowledge gained on the diverse aspects of the thymic gland has furthered our understanding of its role in a gamut of processes, more knowledge is still being sought, and by no means is a full understanding of the gland’s physiology and pathology complete. Different aspects, including its purported endocrine function, its association with other autoimmune diseases like multiple sclerosis, rheumatoid arthritis, and lupus erythematosus, among others, are under evaluation and research. In addition, surgical modalities in the treatment of pathological conditions affecting the thymus gland are also under evaluation and scrutiny in order to provide the best methodology. Therefore, our daily practice regarding diseases involving the thymic gland has become a multidisciplinary approach in which experts, including radiologists, neurologists, immunologists, pathologists, oncologists, and surgeons, participate in the evaluation of patients.

Analysis of past and the present developments has afforded us the opportunity to bring you an updated version of the thymic gland – its diagnosis and treatment. This volume encompasses authors from four different continents and attempts to highlight clinical, diagnostic, and therapeutic modalities. New pathological and oncological classifications are carefully presented and discussed; the role of thymopathies with special interest on myasthenia gravis is clearly addressed; and the role of the different diagnostic imaging modalities, including PET and the different surgical techniques, is carefully reviewed. Special emphasis is given to the surgery of the thymus: the different approaches including open conventional, open video-assisted, totally endoscopic, and robotic techniques, and the types of interventions including the complex techniques in superior vena cava syndrome, and the re-interventions. As would be expected, an accurate analysis of the anesthesiological and intensive care problems is also presented. From the oncological point of view, the role of radiation, chemotherapy, and complementary treatments (steroids, octreotide) is highlighted. In the section of myasthenia gravis, the effectiveness of modern therapeutic protocols, the use of multimodal therapy, and the follow-up of patients are carefully discussed. And finally, a chapter dedicated to one of the most recent treatment modalities – thymic transplantation in the setting of some congenital thymic diseases – provides important insight to this text.
In short, we hope that the current text will provide valuable information for those involved in the diagnosis and treatment of patients with thymic pathology, and will add significantly to the understanding of this complex gland.

July 2008

Corrado Lavini
Cesar A. Moran
Uliano Morandi
Rudolf Schoenhuber
Contents

Contributors ... XIII

CHAPTER 1 The Thymus from Antiquity to the Present Day: the History of a Mysterious Gland .. 1
C. Lavini

CHAPTER 2 Embriology and Anatomy of the Thymus Gland 13
C. Palumbo

CHAPTER 3 Physiology and Immunology of the Thymus Gland 19
M. Nasi, M. Pinti, L. Troiano, A. Cossarizza

CHAPTER 4 Congenital Pathology of the Thymus 31
W. Diehl-Jones, D.F. Askin

CHAPTER 5 Hyperplastic and Inflammatory Pathology of the Thymus 39
A. Maiorana, L. Reggiani-Bonetti

CHAPTER 6 Benign and Malignant Tumors 55
C.A. Moran

CHAPTER 7 Clinical Features of Thymus Pathology 69
G. Khaleeq, H.A. Ali, A.I. Musani

CHAPTER 8 Thymus and Myasthenia Gravis. Pathophysiological and Clinical Features .. 89
L. Capone, R. Gentile, R. Schoenhuber

CHAPTER 9 Radiologic Diagnosis: X-ray, CT and MRI 99
M. Zanichelli, M. Gozzi, M. Bertolani

CHAPTER 10 PET Features .. 111
B. Bagni, A. Franceschetto, A. Casolo, M. Cucca

CHAPTER 11 Minimally Invasive and Surgical Diagnosis 121
C. Ruggiero, C. Lavini, Y. Mehd, D. Paioli, M. Patelli, M. De Santis, A. Affinita

CHAPTER 12 Surgical Anatomy of the Thymus Gland 133
J.B. Shrager

CHAPTER 13 Anesthesiological Problems in Thymus Gland Surgery 137
V.L. Indrizzi, F. Gazzotti, M.A. Fanigliulo, A. Tassi

CHAPTER 14 Conventional Techniques: Cervicotomy 149
P. Borasio, F. Ardissone
CHAPTER 15 Conventional Techniques: Median Sternotomy 157
A. Mussi, M. Lucchi

CHAPTER 16 Conventional Techniques: Transthoracic Approach 161
U. Morandi, C. Casali

CHAPTER 17 Open Videoassisted Techniques: Transcervical Approach 167
M. De Perrot, S. Keshavjee

CHAPTER 18 Open Videoassisted Techniques: Subxiphoid Approach with Bilateral Thoracoscopy .. 173
C.-P. Hsu, C.-Y. Chuang

CHAPTER 19 Open Videoassisted Techniques: Transcervical-Subxiphoid - Videothoracoscopic Maximal Thymectomy 181
M. Zieliński, Ł. Hauer, J. Kuźdżal, W. Sośnicki, M. Harazda, J. Pankowski, T. Nabiälek, A. Szlubowski

CHAPTER 20 Open Videoassisted Techniques: Thoracoscopic Extended Thymectomy with Bilateral Approach and Anterior Chest Wall Lifting ... 187
H. Shiono, M. Ohta, M. Okumura

CHAPTER 21 Totally Endoscopic Techniques: Left-Sided Thoracoscopic Thymectomy ... 193
K. Gellert, S. Köther

CHAPTER 22 Totally Endoscopic Techniques: Right-Sided Thoracoscopic Thymectomy ... 201
G.M. Wright, C. Keating

CHAPTER 23 Robotic Techniques ... 207
F. Rea, G. Marulli

CHAPTER 24 Complex Surgical Interventions in Superior Vena Cava Syndrome ... 213
Z.-D. Gu, K.-N. Chen

CHAPTER 25 Reinterventions for Thymoma Recurrences 217
P. Zannini, G. Negri, M. Casiraghi, L. Ferla, P. Ciriac

CHAPTER 26 Chemotherapy in Thymic Neoplasms 225
P.F. Conte, F. Barbieri

CHAPTER 27 Radiotherapy in Thymic Neoplasms 229
T.Y. Eng, A.Z. Diaz, J.Y. Luh

CHAPTER 28 Complementary Treatments in Thymic Neoplasms:
Steroids and Octreotide ... 241
L. Montella, G. Palmieri
CHAPTER 29 Thymus-related Myasthenia Gravis. Multimodal Therapy and Follow-up
R. Gentile, L. Capone, R. Schoenhuber
247

CHAPTER 30 Thymus Transplantation
M.L. Markert, B.H. Devlin, E.A. McCarthy, I.K. Chinn, L.P. Hale
255

Subject Index
269
Contributors

ANTONIO AFFINITA
Department of Diagnostic Imaging
Division of Radiology
University of Modena and Reggio Emilia
General Hospital
Modena, Italy

HAKIM A. ALI
Department of Pulmonary Diseases and
Critical Care Medicine
Albert Einstein Medical Center
Philadelphia, PA, USA

FRANCESCO ARDISSONE
Department of Clinical & Biological Sciences
University of Turin
Thoracic Surgery Unit
San Luigi Hospital
Orbassano, TO, Italy

DEBBIE F. ASKIN
Department of Pediatrics
Faculty of Medicine
University of Manitoba
Winnipeg, MB, Canada

BRUNO BAGNI
Department of Nuclear Medicine
University of Modena and Reggio Emilia
General Hospital
Modena, Italy

FAUSTO BARBIERI
Department of Oncology and Hemathology
University of Modena and Reggio Emilia
Modena, Italy

MARIO BERTOLANI
Department of Radiology
New “S. Agostino-Estense” Hospital
Modena, Italy

PIERO BORASIO
Department of Clinical & Biological Sciences
University of Turin
Thoracic Surgery Unit
San Luigi Hospital
Orbassano, TO, Italy

LOREDANA CAPONE
Department of Neurology
Bolzano Hospital
Bolzano, Italy

CHRISTIAN CASALI
Department of General Surgery and
Surgical Specialities
Division of Thoracic Surgery
University of Modena and Reggio Emilia
General Hospital
Modena, Italy

MONICA CASIRAGHI
General Thoracic Surgery Unit
University “Vita-Salute”
Scientific Institute San Raffaele Hospital
Milan, Italy

ALESSANDRA CASOLO
Department of Nuclear Medicine
University of Modena and Reggio Emilia
General Hospital
Modena, Italy

KE-NENG CHEN
Department of Thoracic Surgery I
Peking University School of Oncology
Beijing Cancer Hospital
Beijing, China

IVAN K. CHINN
Department of Pediatrics
Duke University Medical Center
Durham, NC, USA

CHENG-YEN CHUANG
School of Medicine
National Yang-Ming University
Taipei, Taiwan, ROC

PAOLA CIRIACO
General Thoracic Surgery Unit
University “Vita-Salute”
Scientific Institute San Raffaele Hospital
Milan, Italy
Contributors

PIER FRANCO CONTE
Department of Oncology and Hematology
University of Modena and Reggio Emilia
Modena, Italy

ANDREA COSSARIZZA
Department of Biomedical Sciences
University of Modena and Reggio Emilia
Modena, Italy

MARINA CUCCA
Department of Nuclear Medicine
University of Modena and Reggio Emilia
General Hospital
Modena, Italy

MARC DE PERRROT
Division of Thoracic Surgery
Toronto General Hospital
Toronto, ON, Canada

MARIO DE SANTIS
Department of Diagnostic Imaging
Division of Radiology
University of Modena and Reggio Emilia
General Hospital
Modena, Italy

BLYTHE H. DEVLIN
Department of Pediatrics
Duke University Medical Center
Durham, NC, USA

AIDNAG Z. DIAZ
Department of Radiation Oncology
Health Science Center San Antonio and
Cancer Therapy and Research Center
University of Texas
San Antonio, TX, USA

WILLIAM DIEHL-JONES
Faculty of Nursing
University of Manitoba and
Department of Biological Sciences
Faculty of Science
University of Manitoba
Winnipeg, MB, Canada

TONY Y. ENG
Department of Radiation Oncology
Health Science Center San Antonio and
Cancer Therapy and Research Center
University of Texas
San Antonio, TX, USA

MARIA A. FANIGLIULO
2nd Anesthesia and Resuscitation Service
University of Modena and Reggio Emilia
General Hospital
Modena, Italy

LUCA FERLA
General Thoracic Surgery Unit
University “Vita-Salute”
Scientific Institute San Raffaele Hospital
Milan, Italy

antonella franceschetto
Department of Nuclear Medicine
University of Modena and Reggio Emilia
General Hospital
Modena, Italy

FABIO GAZZOTTI
2nd Anesthesia and Resuscitation Service
University of Modena and Reggio Emilia
General Hospital
Modena, Italy

KLAUS GELLERT
Department of General and Visceral Surgery
SANA Klinikum Berlin-Lichtenberg
Oskar-Ziethen-Hospital
Berlin, Germany

Riccarda Gentile
Department of Neurology
Bolzano Hospital
Bolzano, Italy

Manuela Gozzi
Department of Radiology
New “S. Agostino-Estense” Hospital
Modena, Italy

ZHEN-DONG GU
Department of Thoracic Surgery I
Peking University School of Oncology
Beijing Cancer Hospital
Beijing, China

Laura P. Hale
Department of Pathology
Duke University Medical Center
Durham, NC, USA

Maria Harazda
Department of Pathology
Pulmonary Hospital
Zakopane, Poland

Łukasz Hauer
Department of Thoracic Surgery
Pulmonary Hospital
Zakopane, Poland

Chung-Ping Hsu
Department of Surgery
Division of Thoracic Surgery
Taichung Veterans General Hospital
Taichung, Taiwan, ROC
VINCENZO L. INDRIZZI
2nd Anesthesia and Resuscitation Service
University of Modena and Reggio Emilia
General Hospital
Modena, Italy

CAMERON KEATING
Cardiothoracic Care Centre
St. Vincent’s Hospital
Melbourne, Australia

SHAF KESHA VJEE
Division of Thoracic Surgery
Toronto General Hospital
Toronto, ON, Canada

GHULAM KHALEEQ
Department of Pulmonary Diseases
and Critical Care Medicine
Albert Einstein Medical Center
Philadelphia, PA, USA

SVEN KÖTHER
Department of General and Visceral Surgery
SANA Klinikum Berlin-Lichtenberg
Oskar-Zieithen-Hospital
Berlin, Germany

JAROSŁAW KUŻDŻAŁ
Department of Thoracic Surgery
Pulmonary Hospital
Zakopane, Poland

CORRADO LA VINI
Department of General Surgery and
Surgical Specialties
Division of Thoracic Surgery
University of Modena and Reggio Emilia
General Hospital
Modena, Italy

MARCO LUCCHI
Cardiac and Thoracic Department
Division of Thoracic Surgery
University of Pisa
Pisa, Italy

JOIN Y. LUH
Department of Radiation Oncology
Health Science Center San Antonio and
Cancer Therapy and Research Center
University of Texas
San Antonio, TX, USA

ANTONIO MAIORANA
Department of Laboratories
Pathologic Anatomy and Law Medicine
Section of Pathologic Anatomy
University of Modena and Reggio Emilia
Modena, Italy

M. LOUISE MARKERT
Department of Pediatrics and
Department of Immunology
Duke University Medical Center
Durham, NC, USA

GIUSEPPE MARULLI
Department of Cardiologic, Thoracic and
Vascular Sciences
Division of Thoracic Surgery
University of Padova
Padova, Italy

ELIZABETH A. MCCARTHY
Department of Pediatrics
Duke University Medical Center
Durham, NC, USA

YOUNES MEHD
Department of General Surgery and
Surgical Specialties
Division of Thoracic Surgery
University of Modena and Reggio Emilia
General Hospital
Modena, Italy

LILIANA MONTELLA
Medical Oncology Unit
“San Giovanni di Dio” Hospital
Naples, Italy

CESAR A. MORAN
Institute of Thoracic Pathology
University of Texas
Anderson Cancer Centre
Houston, TX, USA

ULIANO MORANDI
Department of General Surgery and
Surgical Specialties
Division of Thoracic Surgery
University of Modena and Reggio Emilia
General Hospital
Modena, Italy

ALI I. MUSANI
Pulmonary Allergy and
Critical Care Medicine
Interventional Pulmonology Program
Hospital of the University of Pennsylvania
Philadelphia, PA, USA

ALFREDO MUSSI
Cardiac and Thoracic Department
Division of Thoracic Surgery
University of Pisa
Pisa, Italy
TOMASZ NABIAŁEK
Department of Anesthesiology and
Intensive Care Medicine
Pulmonary Hospital
Zakopane, Poland

MILENA NASI
Department of Biomedical Sciences
University of Modena and Reggio Emilia
Modena, Italy

GIAMPIERO NEGRI
General Thoracic Surgery Unit
University “Vita-Salute”
Scientific Institute San Raffaele Hospital
Milan, Italy

MITSUNORI OHTA
Department of General Thoracic Surgery
Osaka University Graduate School
of Medicine
Osaka, Japan

MEINOSHIN OKUMURA
Department of General Thoracic Surgery
Osaka University Graduate School
of Medicine
Osaka, Japan

DANIELA PAIOLI
Unit of Thoracic Endoscopy and Pneumology
Maggiore-Bellaria Hospital
Bologna, Italy

GIOVANNELLA PALMIERI
Molecular and Clinical Endocrinology
and Oncology Department
University “Federico II”
Naples, Italy

CARLA PALUMBO
Department of Anatomy and Histology
Section of Human Anatomy
University of Modena and Reggio Emilia
Modena, Italy

JULIUSZ PANKOWSKI
Department of Pathology
Pulmonary Hospital
Zakopane, Poland

MARCO PATELLI
Unit of Thoracic Endoscopy and Pneumology
Maggiore-Bellaria Hospital
Bologna, Italy

MARCELLO PINTI
Department of Biomedical Sciences
University of Modena and Reggio Emilia
Modena, Italy

FEDERICO REA
Department of Cardiologic, Thoracic
and Vascular Sciences
Division of Thoracic Surgery
University of Padova
Padova, Italy

LUCA REGGIANI-BONETTI
Department of Laboratories
Pathologic Anatomy and Law Medicine
Section of Pathologic Anatomy
University of Modena and Reggio Emilia
Modena, Italy

CIRO RUGGERO
Department of General Surgery and
Surgical Specialties
Division of Thoracic Surgery
University of Modena and Reggio Emilia
General Hospital
Modena, Italy

RUDOLF SCHOENHUBER
Department of Neurology
Bolzano Hospital
Bolzano, Italy

HIROYUKI SHIONO
Department of General Thoracic Surgery
Osaka University Graduate School
of Medicine
Osaka, Japan

JOSEPH B. SHRAGER
School of Medicine
Thoracic Surgery
University of Pennsylvania
Hospital of the University of Pennsylvania
and Pennsylvania Hospital
Philadelphia Veterans Affairs Medical Center
Philadelphia, PA, USA

WITOLD SOŚNICKI
Department of Thoracic Surgery
Pulmonary Hospital
Zakopane, Poland

ARTUR SZLUBOWSKI
Department of Anesthesiology and
Intensive Care Medicine
Pulmonary Hospital
Zakopane, Poland

ALBERTO TASSI
2nd Anesthesia and Resuscitation Service
University of Modena and Reggio Emilia
General Hospital
Modena, Italy
LEONARDA TROIANO
Department of Biomedical Sciences
University of Modena and Reggio Emilia
Modena, Italy

GAVIN M. WRIGHT
Surgical Oncology
St Vincent’s Hospital
Melbourne, Australia

MATTEO ZANICHELLI
Department of Radiology
New “S. Agostino-Estense” Hospital
Modena, Italy

PIERO ZANNINI
General Thoracic Surgery Unit
University “Vita-Salute”
Scientific Institute San Raffaele Hospital
Milan, Italy

MARcin ZIELIŃSKI
Department of Thoracic Surgery
Pulmonary Hospital
Zakopane, Poland
The thymus is a lymphatic organ situated in the thorax, known since the 1st century AD. The officinal plant of the same name had been known for several centuries, since the time of the ancient Egyptians who, as it seems, appreciated its therapeutical properties. The name of the gland seems to come from the thyme plant, possibly due to the resemblance – fairly vague, to tell the truth – of the lobes of the gland to the plant leaves (Fig. 1.1).

According to another hypothesis, the name comes from the Greek θυμός, which means smoke, spirit and hence also soul, valor, courage: indeed, Greek physicians believed that the thymus was the seat of the soul due to the halo of mystery that surrounded it as well as due to its close proximity to the heart [1, 2].

From this fanciful interpretation there comes the culinary term of Latin origin still used today for the gland in Italy, most especially if it refers to cows and horses, animella (i.e., small soul) equivalent to sweetbread.

The name and the first description of the thymus probably date back to Rufus of Ephesus (98-117 AD), a Greek physician, known to have lived in Alexandria and for some time in Rome under the Emperor Trajan [3] (Fig. 1.2).

In particular, he studied the anatomy of the inner organs and their nomenclature, writing as many as twelve treatises of which only some fragments have come down to us through Greek and Arab authors. Most especially, he devoted himself to the study of the heart, the pancreas, and the thymus. Regarding the latter, in his treatise “De corporis humani partium appellationibus,” Rufus wrote “Di ghiandole ce ne sono molte, alcune nel collo, altre sotto le ascelle, altre nel-

Fig. 1.1 Thymus vulgaris. Etching from the German edition of “Discorsi sopra Dioscoride” by Pietro Andrea Mattioli, Prague, 1563

Fig. 1.2 Rufus of Ephesus. Wellcome Library, London (UK)
There are many glands, some of which are in the neck, others under the axillae, others in the groins, others in the mesenteric ganglion; they are a sort of fairly fat and friable flesh. Amongst these glands there is the one called thymus, situated under the head of the heart, oriented towards the seventh vertebra of the neck and towards the end of the trachea that touches the lung; it is not to be found in all animals).

Galen of Pergamum (130-200 AD) was, together with Hippocrates, the most famous physician of antiquity. A follower of the Hippocratic theory of humours, he was the initiator of the experimental method applied to the study of anatomy and pathology and wrote over 400 texts: his propositions have dominated Western medicine for over a thousand years.

Galen only briefly dealt with the thymus in his work “De usu partium corporis humani,” writing “La vena cava si appoggia nella parete inferiore su una ghiandola assai voluminosa e molle chiamata timo” (“The inferior wall of the vena cava rests upon a quite bulky and soft gland called thymus”) [5] (Fig. 1.3).

Galen also highlighted that this organ plays an important role in the purification of the nervous system and, most importantly, that the gland “è di dimensioni tutt’altra che trascurabili, ma anzi cospicue specialmente nei cuccioli di animali, mentre diviene progressivamente più piccola con la crescita” (“is far from being small, instead large, most especially in young animals, and gradually dwindles with growth”) [6, 7].

During the Early and Late Middle Ages, the thymus seems to have been completely forgotten by scholars: indeed, there are no descriptions of it in Western and Arab treatises until the 15th century.

It was the Italian Jacopo Barigazzi, better known as Berengario da Carpi (1466-1530) who rediscovered the gland, which he discussed in “Commentaria super Anatomia Mundini” (Fig. 1.4).

A most serious anatomist and surgeon – certainly the greatest one before Andrea Vesalio – Berengario became lecturer of Anatomy and Surgery at the University of Bologna.

Eustachius and Phallopius referred to him as the “refounder of Anatomy” [8].

He understood the great didactic value of anatomical plates in the teaching of medicine: as a matter of fact, his main treatises enclose detailed illustrative drawings.

Drawing inspiration from Mondino de’ Liuzzi, he made several surgical dissections describing in detail the heart, the brain, the chyliferous vessels, the vermiform appendix, and the thymus.

Indeed, Berengario wrote. “… Il mediastino è rappresentato da un pannicolo non nervoso ma legamento//ha la funzione di dividere il polmone ed il petto e di delimitare in tal modo eventuali danni ad un lato solo e non ad entrambi//La sua natura è fredda e secca… è situato a metà del petto e collegato posteriormente alle vertebre dorsali ed anteriorelmente ad una ghiandola detta mora disposta come una coperta davanti alle grandi vene ed arterie ascendenti…” (“The mediastinum is represented by
a ligamentous – rather than nervous – tissue... its function is that of separating the lung from the chest thus confining any possible damage to one of the two sides only... Its nature is cold and dry... it is situated in the middle of the chest and connected posteriorly to the dorsal vertebrae and anteriorly to a gland called *mora* placed like a blanket in front of the large ascending veins and arteries*) [9].

Berengario also made a curious culinary digression on the thymus in “*Isagogae breves in Anatomiam humani corporis*” when he wrote “…*Vicino alla vena ascendente e verso la sua parte alta, sta un organo ghiandolare che la copre a guisa di mantello. Questo organo risulta di dimensioni cospicue e viene chiamato mora o timo. Dal volgo viene denominato animella ed è tra i cibi di gusto molto soporito, soprattutto quello del vitello e dell’agnello da latte*…” (“Close to the ascending vein and towards its upper portion, there lies a glandular organ that covers it like a cloak. This organ is quite large and is called “mora” or thymus. Common people refer to it as “animella” and as food it is very tasty, most especially that from young calves and lambs”) [10].

The Belgian André Vésale, better known as *Andrea Vesalio* (1514-1564), was the greatest anatomist of his time in that he laid the groundwork for modern anatomy (Fig. 1.5).

He was a lecturer of surgery in Padua and teacher in Bologna and Pisa and ended his career in Spain where he was the personal physician of Charles V and Philip II.

Vesalio discussed the thymus in his main work “*De humani corporis fabrica librorum epitome*” and, in particular, in Chapter III he described the protective function of the organ acting as a cushion for the vasculature of the superior mediastinum: “*La vena cava, salendo verso il giugulo, trova un organo molle e ghiandolare che i greci denominarono timo*...
mentre i latini lo chiamarono molto più comune-mente animella. Questa stessa ghiandola viene altresì assai nobilmente collocata per proteggere da qualsivoglia danno la fitta rete di vasi che in que-sta sede sono sospesi…” (“The vena cava, ascending toward the jugulum, finds a soft, glandular organ that the Greeks called thymus and the Latins called, more simply, ‘animella’. This same gland is also very nobly placed to protect from whatsoever damage the thick network of vessels suspended in this area…”). In Chapter VI of this work Vesalio was the first to reproduce the thymus in an anatomic table. The gland appears to be small, multilobulated in shape and lying under the sternal manubrium [11, 12] (Fig. 1.6).

The Italian Bartolomeo Eustachio (1500-1574) was a most distinguished anatomist, chief physician of the Pope and professor of Anatomy in Rome (Fig. 1.7). He undertook important studies on the anatomy of the inner ear, the kidney, and the teeth.

He was unable, for economic reasons, to publish his valuable “Tabulae anatomicae”, which are said to have been drawn by Titian; these were published posthumously in 1714 thanks to another notable physician and anatomist, Giovanni Maria Lancisi.

Eustachio did not discuss the thymus; rather, he produced an anatomical drawing that was even more precise than that by Vesalio: the gland appears to be well defined, with an oval-shaped morphology and situated in front of the trachea (Fig. 1.8).

Fig. 1.6 Andrea Vesalio, De humani corporis fabrica, Representation of endothoracic organs with the thymic gland (marked by letter F). Courtesy of Archiginnasio Library, Bologna (Italy)

Fig. 1.7 Bartolomeo Eustachio. Courtesy of Wynn White Photographies

Fig. 1.8 Bartolomeo Eustachio, Tabulae anatomicae. Representation of the endothoracic organs and of the thymus (modified). Courtesy of NLM, Bethesda MD (USA)
The Frenchman Ambroise Paré (1510-1590) was a great surgeon and served even five kings (Fig. 1.9). He earned fame and prestige from the vast experience he had gained on battlefields as army surgeon. He devoted himself not only to surgery but also to anatomy, introducing the work of Vesalius to his contemporaries.

The title of his main treatise is “Les oeuvres d’Ambroise Paré, Conseiller et Premier Chirurgien du Roy”: in book III he wrote “La Phagoue est une glande de substance fort molle, rare et spongieuse de quantité assez notable située sur les parties supérieures du thorax, entre les divisions des veines et artères sousclavières ou jugulaires… elle servist de defense tant’à la veine qu’à l’artère, à l’encontre de l’os du thorax… On la trouve fort notable et apparante aux bestes et ieunes gens, mais à l’homme qui est parvenu à son age, elle n’appert plus ou peu” (“The thymus is a gland the substance of which is strong and soft, rare and spongy. It is sizable and situated in the upper part of the thorax among the subclavian and jugular arteriosus and venous branches… it protects them like a cushion from the thorax bone… The gland attains a remarkable size in the young or in animals, whereas in the elderly it is hardly visible”) [13].

The Swiss anatomist and physician Felix Plater (1536-1614), professor in Basel, devoted himself to the study of psychiatric diseases and is considered by many to be the founder of modern psychiatry. He was the first to discuss the thymus in a clinical context in 1614, in relation to the sudden death of a 5-month-old infant “from suffocation from a hidden internal struma about the throat” – bearing in mind that the term “struma” at that time referred to any type of tumor rather than solely to thyroid disease as is the case nowadays.

At autopsy, Plater reported: “We found the gland in the region of the throat as a large protruding tumor, one ounce in weight, spongy fleshing and pendent, replete with veins, adhering by membrane to the largest vessels adjacent to the throat; these being filled with blood and flowing into the struma, dilated it to such an extent that it compressed the blood vessels in the locality; in which manner I concluded that the child was thus suffocated” [3, 14].

Francis Glisson (1597-1677) was a famous English anatomist (Fig. 1.10). He taught at Cambridge and devoted himself to the study of the anatomy and physiology of the digestive system and of the muscles. He wrote a fundamental treatise on the anatomy of the liver and one on children’s rickets. When briefly discussing the thymus, he identified its function as that of producing a fluid for fetal nourishment and growth.

The great anatomists of the 15th, 16th, and 17th centuries had not significantly advanced the knowl-
edge of the thymus: from antiquity to the Baroque Age, the notions about thymus remained substantially unaltered.

This organ was still viewed as having a protective function, acting as a cushion for endothoracic vascular structures and it was confirmed, as Galen had said, that it could be sizable at birth and gradually dwindled with age: allegedly, this explanation was not enough to clarify its morphological and functional aspects.

More than a century away, the anatomy and physiology of this enigmatic organ started to be studied with scientific method and rigor.

For some time in the 18th century the prevalent theory was that the thymus was someway involved in regulating the fetal and neonatal pulmonary function and was defined as the “organ of vicarious respiration” [1].

Another hypothesis was that the thymus merely had the function to fill the endothoracic space that would be later on occupied by the lungs of the growing neonate [1].

Knowledge of the thymus gathered momentum with the advent of the optical microscope. It was invented by the Dutchman Antoine van Leeuwenhoek (1632-1723) who was the first to study the capillary network; later on, it was used by the great Italian anatomist Marcello Malpighi (1628-1694) and enabled him to discover human cells.

The systematic use of the optical microscope soon allowed the acquisition of new important knowledge in terms of normal anatomy, physiology, and pathological anatomy.

The English surgeon, anatomist, and physiologist William Hewson (1739-1774) was rightfully defined as the father of hematology (Fig. 1.11).

Using the optical microscope, he gained fundamental insights into blood cells and on the physiology of coagulation. He studied the lymphatic system, the spleen, and the thymus.

In 1774 he published the first scientific treatise on the thymus, describing its change in size with aging and identifying for the first time its lymphatic nature [15]. Indeed, he noted that the gland was disseminated with “particles” similar to those found in peripheral blood and in the lymph and thought that the thymus worked in the early months of life when the organism most needed these “particles” [16]. As a matter of fact, he wrote “The thymus gland we consider an appendage to the lymphatic glands, for the more perfectly and expeditiously forming the central particles of the blood of the foetus, and in the early part of life. We have proved that vast numbers of central particles made by the thymus and the lymphatic glands are poured into the blood vessels through the thoracic duct and if we examine the blood attentively we see them floating in it. Nature surely would not make so many particles to answer no purpose! What then becomes of these particles after they are mixed with the circulation blood? … They are, we believe, carried with the blood to the spleen… and the spleen has the power of separating them from other parts of the blood” [17].

Hewson correctly sensed that the lymphatic system was a unitary one. He pointed out that “By the lymphatic system and its appendages we mean the lymphatic vessels, the lymphatic glands (nodes), the thymus and the spleen. At first view it may seem extraordinary that nature should have given so many and so complicated organs to form only part of the blood, when she effects other secretions by organs apparently more simple; but our surprise must cease when we reflect that upon a due formation of these particles, not only the various functions of the body but the very existence of the animal, in a great measure, depends” [17].

Finally, he confirmed that the thymus becomes smaller with aging and assumed that some other tissue could take on its functions during mature age but he also found that the size of the organ can be rapidly reduced in the course of acute and chronic diseases [17].

The Englishman Sir Astley Paston Cooper (1768-1841), who was the personal physician of three kings, was the first surgeon to be appointed Baronet (Fig. 1.12).
He was lecturer of Anatomy in London and extensively devoted himself to the surgical practice. He wrote valuable treatises, all with elaborate illustrations, on abdominal herniations, the pathology of the breast and of the testicle, and on bone fractures. In 1832 he published “The Anatomy of the Thymus Gland”, which was a summary of its vast experience with animal dissections. The treatise comprised, besides accurate descriptions and illustrations of the thymus, also three pages focusing on the pathology of the gland, including the first description of malignant thymoma [1, 3].

Cooper confirmed the significant volumetric and structural variability of the gland over the years and disagreed with those theories that saw the thymus as an organ the mere function of which was to fill, in the fetal age, the space destined to be occupied by the lungs: “That an important function must be performed by an organ… so large… and secreting abundantly, no one who duly considers the subject can for a moment hesitate to acknowledge… I cannot subscribe to the opinion… [that] this gland is designed merely to fill a space which the lungs… may be destined to occupy” [18]. Still, he did not disagree with Glisson’s old theory on the role of the gland in the growth of the foetus.

Twelve years after the publication of Astley Cooper’s essay, the London surgeon Sir John Simon (1816-1904) published a new treatise on the thymus, entitled “An Essay on the Physiology of the Thymus Gland” [19] (Fig. 1.13).

The work of John Simon represented for years a hallmark for the anatomy and physiology of the thymus, even though the author concluded, thus proving that he was still relying on outdated notions, that the thymus is “the sinking fund in the service of respiration” [1].

Arthur Hill Hassall (1817-1894), an Englishman, was a physician and a chemist (Fig. 1.14).

He was interested in anatomy, physiology, pathological anatomy, chemistry, botany, and public hygiene.

In 1846 he published the first text in English on microscopic anatomy: “The Microscopic Anatomy of the Human Body in Health and Disease”. Hassall, using the latest and most advanced models of optical microscope, described with H. Vanarsdale the histological differences between the thymus and the other lymphatic organs [1, 20].

In 1849 he discovered, in the medullary portion, the spherical corpuscles of epithelioid cells in corneal transformation thus named [21].

On the verge of the 20th century, the anatomical and histological knowledge relating to the thymus could be said to be well established: there were no doubts on the lymphatic nature of this organ and on the fact that it was somehow of fundamental importance, most especially during fetal life and the paediatric age when it could attain a very large size.

For sure, it is peculiar that it took two millennia for the history of medicine to throw light on just two
anatomical and descriptive aspects of the gland, which had been considered as the organ of mystery for centuries.

There still lacked objective and definite data on what could be the actual role of the thymus in physiology and pathology. In particular, hypertrophic-hyperplastic and neoplastic conditions had not been clarified: for these reasons, the organ remained for years a sort of scapegoat and a victim of the scientific approximation that lingered on, and the gland was seen as the cause for a diverse range of pediatric diseases [1].

The great German pathologist Rudolf Virchow (1821-1902) was interested in cellular pathology and significantly contributed to the study of leukemias and thrombosis (Fig. 1.15).

He took a minor interest in the thymus and reinstated the validity of the notion of “thymic asthma” (first coined by J.H. Klopp in 1830) from compression by a hypertrophic thymus of the large airways and in particular of the trachea [22].

The notion of “thymic asthma” was for decades associated to that of “thymic death”: indeed, it was thought that the thymus could be involved in seemingly unexplained sudden deaths, most especially at the pediatric age. The anatomical pathologists of the early 20th century already insisted on the danger of death caused mechanically by hypertrophy and hyperplasia of the gland, either during a paroxystic fit of asphyxia or sudden syncope or during surgery. As a matter of fact, the notion of “thymic death” resulted from finding at autopsy a large thymus that was thought to cause compression of vital mediastinal structures like the large vessels and the trachea [23].

The Austrian medical examiner Arnold Peltauf (1860-1893) was the first to introduce the term “status thymolymphaticus” in 1889 to indicate a constitutional disorder said to entail widespread hypertrophy of the entire lymphoid tissue, including the thymus, which, thus enlarged, could cause infant sudden death [24, 25].

The notions of “thymic asthma”, “thymic death” and “status thymolymphaticus”, persisted for almost one century, leading to completely misleading conclusions in terms of diagnosis and therapy.
In 1896 the German surgeon Ludwig Rehn (1849-1930) did the first surgery ever done on thymus in humans on a patient suffering from respiratory distress: he did transcervical thymopexy and delivered the enlarged gland upwards fixating it to the posterior lamina of the sternal manubrium. Some time later, in light of the poor outcome of the previous thymopexy, in another, similar case, the same surgeon decided to perform a partial thymectomy [3, 26].

In the early 20th century, thymectomy in infants/children with thymic hypertrophy and respiratory distress became widely accepted [27] (Fig. 1.16).

A renowned US radiologist, Henry K. Pancoast, well-known for his investigations into lung cancer, at the beginning of the last century reaffirmed the notion that a large thymus could cause a range of diseases (bronchitis, bronchopneumonia, tubercular and non-tubercular adenitis, sinusitis) and suggested that prolonged preoperative fluoroscopy and significant exposure to radiation were necessary in infants/children to find enlarged thymus [28].

In 1907 the Cincinnati (USA) pediatrician Alfred Friedländer reported the first case of thymic hypertonphy successfully treated with irradiation of the gland. It was a 2-month-old infant with paroxystic dyspnea attacks. The author enthusiastically reported that “the procedure is of course infinitely simpler than removal of the thymus by surgical means, and it would seem justifiable to hope that in the X-ray we have a valuable therapeutic resource for the treatment of what has heretofore been considered an almost desperate condition” [3, 29].

Since then, thousands of children and adolescents received radiation to prevent or treat “status thymolymphaticus”; some pediatricians even advocated prophylactic irradiation of all neonates [3, 30-32]. Only some years later did they start to throw light on the risk for these irradiated patients to develop neoplasms, most especially of the thyroid and of the breast.

At last, in 1945, in the first edition of “Paediatric X-Ray Diagnosis,” the American radiologist John Caffey confirmed that “… a causal relationship between hyperplasia of the thymus and sudden unexplained death has been completely refuted… Irradiation of the thymus… is an irrational procedure at all ages” [1, 33].

In 1899 the German neurologist Hermann Hoppenheim was the first to point out a possible association between myasthenia gravis and diseases of the thymus, reporting the case of a myasthenic patient with a thymoma found at autopsy [34].

The study of physiology continued in parallel with the gaining of clinical knowledge on the thymus.

The Scottish hematologist John Beard (1857-1924) understood, like Hewson, that the gland was part of the lymphatic system; still, he went further to say that the role of the thymus was that of parent source of all of the lymphocytes of the body. Indeed, he wrote, at the beginning of the 20th century, that “The thymus must be regarded as the parent source of all the lymphoid structures of the body. It does not cease to exist in later life no more than would the Anglo-Saxon race disappear were the British Isles to sink beneath the waves. For just the Anglo-Saxon stock has made its way from its original home into all parts of the world, and has there set up colonies for itself and for its increase, so the original leukocytes, starting from their birth place in the thymus, have penetrated into almost every part of the body, and have there created new centres for growth, for increase, and for useful work for themselves and for the body” [35].

It was not until the second half of the 20th century that scholars gained an insight into the central function of the organ as part of the immunocompetent system [2].
Since the beginning of the last century the treatment of thymus-related diseases mainly involved surgical treatment.

The Swiss Ernst Ferdinand Sauerbruch (1875-1951), regarded as the father of thoracic surgery, was professor of surgery at the Universities of Zurich, Munich, and Berlin (Fig. 1.17).

He did the first cervicotomy total thymectomy in 1911 on a 19-year-old girl with myasthenia gravis and hyperthyroidism, and in 1930 he did the first thymectomy with thoracotomic approach on a patient with malignant thymoma [3].

The US surgeon Alfred Blalock (1899-1964) was the pioneer of heart and thoracic surgery (Fig. 1.18).

In 1936 Blalock did the first thymectomy via median sternotomy. Furthermore, he had a fortunate insight: he successfully suggested thymectomy for myasthenic patients, including those without accompanying thymoma; since then this indication was followed throughout the world [3, 36-38].

Douglas R. Gracey and co-workers, surgeons at the Mayo Clinic (Minnesota, USA), in 1982 suggested manubriotomy as a sparing procedure compared to total median sternotomy during thymectomy in patients with myasthenia gravis [39].

The advent of video-assisted thoracoscopy brought with it the first video-assisted minimally invasive surgery of the thymus: the US surgeons Rodney J. Landreneau and David J. Sugarbaker were the first to do, in 1992 and 1993 respectively, thymectomy with thoracoscopic access [40, 41].

In 2001, the Japanese Ichiro Yoshino did the first robotic thymectomy on a patient with a Masaoke-I thymoma [42].

The discovery of serious forms of congenital immunodeficiency from aplasia or hypoplasia of the thymus (DiGeorge’s syndrome, Nezelof’s syndrome) provided a stimulus, starting from the end of the 1960s, for investigations into thymus transplantation.

The US pediatricians Charles S. August, William W. Cleveland and co-workers in 1968 and Richard Hong in 1976 were the pioneers of this type of research.

Today, using appropriately prepared cultures of postnatal thymus to be implanted in the thigh or the omentum, very encouraging results can be obtained, especially in the DiGeorge’s syndrome [43-45].

The last decades of the 1900s were devoted to further clarify the complex functions of the thymus, thus finally doing justice to a gland that had been so ill-treated in the past. Light was thrown on the neuroendocrine regulation of the gland and on its role in the maturation of immunocompetent T-cells, in the
development of immune tolerance, in the prevention of auto-immune diseases and the supposed secretion of hormones or peptides such as thymolin, thymopoietin and thymosin alpha-1 [46].

To conclude this brief overview of over 20 centuries, it can undoubtedly be said that the thymus has had an unusual – to say the least – history: presented as the seat of the soul by the Ancients; disrespected or forgotten altogether in the Middle Ages, the Renaissance and the Baroque Age; gradually revalued starting from the Age of Enlightenment and finally given its correct and fundamental role during the last century.

Today we know everything, or almost everything, about the thymus. Its vital function as precursor and coordinator of immunity (acting like a sort of control room of the defense systems of the organism) is widely acknowledged; likewise, we have gained well-established knowledge on the diseases of the gland and on the relationships with other autoimmune diseases, most especially myasthenia gravis.

Can we say, as a result of the foregoing, that we have come to the end of the journey that has led to knowledge of this organ?

Well, not quite, perhaps. Indeed, we believe that such a complex gland, that has remained a mystery for such a long period of time, is going to amaze us further and that in the coming years it might keep surprising us.

References

10. Jacopo Berengario da Carpi (1535) Isagogae breves per lucludae ac uberrime in anatomiam humani corporis. Venezia
29. Friedländer A (1907) Status lymphaticus and enlargement of the thymus gland; with report of a case successfully treated by the X-ray. Arch Pediatr 24:490-501
31. Moncrieff A (1937) Enlargement of the thymus in infants with special reference to clinical evidence of so-
Introduction

The thymus is a lymphoepithelial organ, whose function was long obscure. It is now well established that it is one of the primary central lymphoid organs, the other being the red bone marrow, from which it receives T-lymphocyte precursors. The thymus gland, while providing thymus-processed T-lymphocytes to the entire body, also produces some special humoral secretions and may thus also be regarded as an endocrine organ. Though it undergoes a drastic diminution in size with age (vide infra), it is now well established that it remains active even into old age. Certain diseases significantly accelerate its physiological involution.

Embryology

According to the classical view, the thymus derives from the endoderm of the 3rd pharyngeal pouch on both sides. The 3rd pharyngeal pouch gives origin ventrally to the thymus and dorsally to the 3rd parathyroid gland, whereas the 4th pharyngeal pouch gives origin to the 4th parathyroid and the ultimobranchial body. In recent years, however, most embryologists have tended to support the hypothesis that the thymic epithelium (thymic epitheliocytes) derives from both ectoderm and endoderm of the 3rd and often 4th pharyngeal pouches; these components are thought to interact with the associated mesenchyme, which derives from the neural crest at the stage of 10 somites (23 days) [1, 2], to trigger thymus development.

During the earlier stages of thymus descent, the related 3rd parathyroid moves down with the whole 3rd pouch thus explaining, in later stages, the normal lower position of this parathyroid as compared with the 4th parathyroid. In embryos of about 20 mm, the 3rd parathyroid separates from the corresponding pouch, thus freeing completely the ipsilateral thymic bud. Prior to this separation the thymus rudiments cannot be recognized. The two thymic buds meet ventrally to the aortic sack and are subsequently joined by connective tissue only. The connection with the 3rd pouch is then lost, but sometimes a solid cellular cord (or stalk) may persist. After the separation from the 3rd parathyroid, the cells of the thymus form a densely packed epithelial mass, endodermal in origin. Later, they are more loosely arranged to form an epithelial reticulum (cytoreticulum), in which lymphoid stem cells soon appear; these have migrated from the bone marrow. The vascular mesenchymal tissue, accompanied by vagal nerve fibers, invades the gland in such a way as to produce its lobulated appearance. The differentiation of thymic medulla and cortex takes place in embryos of about 40 mm in length. The medulla arises in the central portion of the thymus and the deep portions of the lobules by hypertrophy of the cytoreticulum, accompanied by degeneration or migration of thymocytes. Later Hassall’s corpuscles appear as involutive clusters of the cytoreticulum. As of the 10th week, more than 95% of cells belong to T-lineage with few erythroblasts and B-lymphocytes. Cells of the macrophage lineage enter the medulla starting from the 14th week. The thymus appears to be completely differentiated by the 17th week, and thereafter the main type of thymocytes, the so-called TdT+, will be produced throughout the whole life.

Gross Anatomy

The size of the thymus undergoes considerable changes with age. At birth it weighs 10-15 g; it grows until puberty when it reaches its maximum weight of 30-40 g. Thereafter, it undergoes a physiological involution and transforms into the retrosternal adipose body. After middle age it may weigh 10 g, but in certain cases it remains large, weighing up to 50 g [3].

The appearance of the thymus also changes with age. At birth it is pinkish; it becomes gray during in-
fancy and yellow in adulthood. It is classically described as a single median organ with two lobes, but each lobe develops from the pharyngeal pouch of the corresponding side; thus there are, strictly speaking, a right and left thymus.

The thymus has a pyramidal shape with a lower base and two upper horns. It lies in the anterior mediastinum, extending above into the neck, where its horns may reach the lower poles of the thyroid gland; strands of connective tissue usually connect the two organs. Below it extends to the 4th-5th costal cartilages. The anterior surface is related to the sternum, the four upper costal cartilage and the insertions of the sternohyoid and sternothyroid muscles. In the front of the neck, the thymus is anteriorly in relation with the infrahyoid muscles ensheathed by the middle and superficial cervical fasciae. The posterior surface is connected to the upper pericardium, the aortic arch with its branches, the left brachiocephalic vein and the front and sides of the trachea. Laterally the thymus is related to the mediastinal pleurae, lungs and phrenic nerves, particularly the left one.

Small accessory thymic nodules may be present in the neck, as a result of their detachment from the main organ during its early descent.

Microscopic Structure

The microscopic components of the mature thymus derive from several sources: epithelial derivates from the pharyngeal wall, mesenchyme, hemolymphoid cells, and vascular tissue. These components form a network in which they interact functionally to provide the thymus with its unique immunological properties.

Thymus microarchitecture includes two distinct parts: an outer cortex and an inner medulla. Septa of loose connective tissue extend from the capsule inside the cortex, thus dividing it into lobules of various sizes, their diameter ranging between 0.5 and 2.0 μm (Fig. 2.1). Both cortex and medulla are permeated by a framework of reticular fibers and by a peculiar network of epithelial cells joined by both simple contacts and specialized junctions. As regards the lymphoid tissue, it mostly pertains to cells of T-lymphocyte lineage, known as thymocytes; these are numerous and closely packed in the cortex. The medulla contains few lymphoid cells and the characteristic Hassall’s corpuscles (vide infra). The connective septa separating adjacent lobules contain blood vessels, nerves, and efferent lymphatics.

Epithelial Framework

A distinct feature of the thymus with respect to other lymphoid organs, whose stroma is only composed of a reticular collagenous framework, is that it is further supported by a network of finely-branched epithelial reticular cells (thymic epitheliocytes) forming a three-dimensional network of meshes in which lymphoid cells are entrapped. These epitheliocytes are interconnected with each other by cell-to-cell contacts and perform a pivotal role in determining a microenvironment containing soluble factors and cytokines essential for the development of thymocytes.

Thymic epitheliocytes are present throughout the cortex and medulla; histologically, however, they are more easily identifiable in the cortex.

Six different types of thymic epitheliocytes may be distinguished (Fig. 2.2): type-1 epitheliocytes have a subcapsular and perivascular location, types 2-4 are located in the cortex and types 5-6 are present in the medulla. Type-1 epitheliocytes carpet the internal outline of the thymus as well as the perivascular spaces, passing through the cortico-medullary boundary. They are flat, with a well-defined basal lamina, and display a few, short cisternae of granular endoplasmic reticulum and tubular complex of unknown function. A feature of type-1 epitheliocytes is to secrete hormones [4] and factors attracting stem cells [5]; cortical epitheliocytes are often branched and separated by wide intercellular spaces. Type-2 epitheliocytes extend from the cortex towards the medulla; their size is larger than type-1 ep-