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Preface

A large international conference on Advances in Machine Learning and Data
Analysis was held in UC Berkeley, CA, USA, October 22–24, 2008, under the
auspices of the World Congress on Engineering and Computer Science (WCECS
2008). The WCECS is organized by the International Association of Engineers
(IAENG). IAENG is a non-profit international association for the engineers and the
computer scientists, which was founded in 1968 and has been undergoing rapid ex-
pansions in recent years. The WCECS conferences have served as excellent venues
for the engineering community to meet with each other and to exchange ideas.
Moreover, WCECS continues to strike a balance between theoretical and appli-
cation development. The conference committees have been formed with over two
hundred members who are mainly research center heads, deans, department heads
(chairs), professors, and research scientists from over thirty countries. The confer-
ence participants are also truly international with a high level of representation from
many countries. The responses for the congress have been excellent. In 2008, we re-
ceived more than six hundred manuscripts, and after a thorough peer review process
56.71% of the papers were accepted.

This volume contains sixteen revised and extended research articles written
by prominent researchers participating in the conference. Topics covered include
Expert system, Intelligent decision making, Knowledge-based systems, Knowledge
extraction, Data analysis tools, Computational biology, Optimization algorithms,
Experiment designs, Complex system identification, Computational modeling, and
industrial applications. The book offers the state of the art of tremendous advances in
machine learning and data analysis and also serves as an excellent reference text for
researchers and graduate students, working on machine learning and data analysis.

Harvard University, USA Sio-Iong Ao
University of Trier, Germany Burghard B. Rieger
California State University, Long Beach, USA Mahyar Amouzegar
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Chapter 1
2D/3D Image Data Analysis for Object
Tracking and Classification

Seyed Eghbal Ghobadi, Omar Edmond Loepprich, Oliver Lottner,
Klaus Hartmann, Wolfgang Weihs, and Otmar Loffeld

Abstract Object tracking and classification is of utmost importance for different
kinds of applications in computer vision. In this chapter, we analyze 2D/3D image
data to address solutions to some aspects of object tracking and classification. We
conclude our work with a real time hand based robot control with promising results
in a real time application, even under challenging varying lighting conditions.

Keywords 2D/3D image data � Registration � Fusion � Feature extraction � Tracking
� Classification � Hand-based robot control

1.1 Introduction

Object tracking and classification are the main tasks in different kinds of appli-
cations such as safety, surveillance, man–machine interaction, driving assistance
system and traffic monitoring. In each of these applications, the aim is to detect and
find the position of the desired object at each point in time. While in the safety ap-
plication, the personnel as the desired objects should be tracked in the hazardous
environments to keep them safe from the machinery, in the surveillance application
they are tracked to analyze their motion behavior for conformity to a desired norm
for social control and security. Man-Machine-Interaction, on the other hand has be-
come an important topic for the robotic community. A powerful intuitive interaction
between man and machine requires the robot to detect the presence of the user and
interpret his gesture motion. A driving assistance system detects and tracks the ob-
stacles, vehicles and pedestrians in order to avoid any collision in the moving path.
The goal of traffic monitoring in an intelligent transportation system is to improve
the efficiency and reliability of the transport system to make it safe and convenient

S.E. Ghobadi (�), O.E. Loepprich, O. Lottner, K. Hartmann, W. Weihs, and O. Loffeld
Center for Sensor Systems (ZESS), University of Siegen, Paul-Bonatz-Str.9-11,
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2 S.E. Ghobadi et al.

for the people. There are still so many significant applications in our daily life in
which object tracking and classification plays an important role. Nowadays, the 3D
vision systems based on Time of Flight (TOF) which deliver range information have
the main advantage to observe the objects three-dimensionally and therefore they
have become very attractive to be used in the aforementioned applications. However,
the current TOF sensors have low lateral resolution which makes them inefficient
for accurate processing tasks in the real world problems. In this work, we first pro-
pose a solution to this problem by introducing our novel monocular 2D/3D camera
system and then we will study some aspects of object tracking and classification
using 2D/3D image data.

1.2 2D/3D Vision System

Although the current optical TOF sensors [13–16] can provide intensity images in
addition to the range data, they suffer from a low lateral resolution. This drawback
can be obviated by combining a TOF camera with a conventional one. This com-
bination is a tendency in the recent research works because even with regard to the
emerging new generation of TOF sensors with high resolution,1 an additional 2D
sensor still results in a higher resolution and provides additional color information.
With regard to the measurement range, however, the problem of parallax does not
allow to simply position two cameras next to each other and overlay the generated
images.

The multimodal data acquisition device used in this work is a recently devel-
oped monocular 2D/3D imaging system, named MultiCam. This camera, which
is depicted in Fig. 1.1, consists of two imaging sensors: A conventional 10-bit
CMOS gray scale sensor with VGA resolution and a Photonic Mixer Device (PMD)
with a resolution of 64 � 48 pixels. The PMD is an implementation of an optical
Time of Flight (TOF) sensor, able to deliver range data at quite high frame rates.

Camera Body Infrared Lighting

F-Mount Camera Lens
(Rear Aperture)

Sensor Window
AR Ctd. for NIR

IR Cut @ 730nm
(optional)

2D CMOS Sensor
for VIS

glass

NIR Edge Filter
@ 1000nm

Sensor Window
AR Ctd. for NIR

IR Cut @ 730nm
(optional)

2D CMOS Sensor
for VIS

NIR Edge Filter
@ 1000nm

VIS -NIR beam splitter
@ 760nm,

AR Ctd. for NIR
3D PMD Sensor for

modulated NIR
glass

C-Mount Camera Lens
(Rear Aperture)

3D PMD Sensor for
modulated NIR

VIS-NIR Beamsplitter
@ 760nm,

AR Ctd. for NIR
Lens

Fig. 1.1 Left: 2D/3D vision system (MultiCam) developed at ZESS. Middle: F-mount optical
setup. Right: C-mount optical setup

1 For example PMD-40K (200 � 200 pixels), Swissranger 4000 (176 � 144 pixels) and ZCam-
prototype (320 � 480 pixels).
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The principles of this sensor will be presented briefly in the next subsection. In ad-
dition, a beam splitter (see again Fig. 1.1), a near-infrared lighting system, a FPGA
based processing unit as well as an USB 2.0 communication interface represent the
remaining main components of this camera. It should be mentioned that the dichroic
beam splitter behind the camera lens is used in order to divide the incident light into
two spectral ranges: The visible part, which is forwarded to the CMOS chip and the
near-infrared part to the TOF sensor [6]. Thus, the MultiCam is actually a multi-
spectral device.

In fact, through the use of the MultiCam, one is able not just to achieve distance
data at high frame rates (100 FPS and above) but also high resolution color images
provided by the CMOS sensor. The novelty hereby is that a monocular setup is
used which avoids parallax effects and makes the camera calibration a lot simpler
along with the possibility to synchronize the 2D and 3D images down to several
microseconds.

1.2.1 3D-Time of Flight Camera

Basically, the principle of the range measurement in a TOF camera relies upon the
time difference�t that the light needs to travel a distance d as follows

�t D d

c
(1.1)

where c represents the speed of light.
As a lighting source, we use a modulated light signal (fmod D 20MHz), which is

generated using a MOSFET based driver and a bank of high speed infrared emitting
diodes. The illuminated scene then is observed by an intelligent pixel array (the
PMD chip), where each pixel samples the amount of modulated light. To determine
the distance d , we measure the phase delay �' in each pixel. Recall that �' D
2� � fmod ��t which in turn leads us to

d D c ��'
2� � fmod : (1.2)

Since the maximal phase difference of�' can be 2� , the unambiguous distance
interval for range measurement at a modulation frequency of 20 MHz is equal to
15 m. This leads to the maximal (unambiguous) target distance of 7.5 m since the
light has to travel the distance twice. In order to be able to use (1.2) for the distance
computation in the TOF camera we have to multiply the equation by a factor of 0.5.

To calculate the phase delay�', the autocorrelation function of the electrical an
optical signal is analyzed by a phase-shift algorithm. Using four samplesA1; A2; A3
and A4, each shifted by �=2, the phase delay can be calculated using [1]

�' D arctan

�
A1 � A3

A2 � A4

�
: (1.3)
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In addition, the strength a of the signal, which in fact can be seen as its quality,
along with the gray scale b can be formulated as follows [5]

a D 1

2
�
p
.A1 � A3/2 C .A2 � A4/2; (1.4)

b D 1

4
�
4X
iD1

Ai : (1.5)

The environment lighting conditions in the background should be considered in
all optical TOF sensors. There are various techniques dealing with this issue like us-
ing optical filters which only pass the band interested in, or applying some algorithm
techniques that remove the noise artifacts of ambient light [8]. In our case, the PMD
chip used has an in-pixel so-called SBI-circuitry (Suppression of Background Illu-
mination) which increases the sensor dynamics under strong light conditions [1,13].

1.2.2 2D/3D Image Registration and Synchronization

As a prerequisite to profit from the 2D/3D multi-modality, the temporal and spatial
relation of the individual sensors’ images must be determined.

1.2.2.1 Temporal Synchronization

The detailed disquisition on the temporal synchronization of the individual sensors
of the MultiCam points out that the camera’s internal control unit (FPGA) can syn-
chronize the 2D and the 3D sensor in the temporal domain within the limits of the
clock resolution and minimal jitter due to the signal run times in the electronics. The
synchronization can either refer to the beginning or to the end of the integration time
of a 2D image and a single phase image. While the most common configuration is
the acquisition of one 2D image per four phase images such that a new 2D image
is available along with a new range image, it is also possible to acquire a new 2D
image per phase image if necessary. Figure 1.2 gives an overview of the different
possibilities.

If the synchronization of the 2D image relates to the first phase image, the tem-
poral distance between the individual phase images is not equal, as the second phase
image is captured only after the end of the 2D sensor’s integration time. In contrast
to that, synchronizing to the fourth phase image has the advantage of temporally
equidistant phase images. In both configurations, it can occur that a change of the
scene is represented only by one of both sensors if this change is outside of the
actual integration time. With regard to the total time needed for the acquisition of
a complete 2D/3D image, these two configurations do not differ from each other.
However, the synchronization to the range image rather than to any of the phase
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Fig. 1.2 Different possibilities of synchronizing of the 2D image to the 3D data

images is advantageous in that the total acquisition time is kept to a minimum, and
in that the temporal equidistance of the phase images is maintained. The discus-
sion on the motion artifacts in [10] gives details on the impacts of the individual
configurations.

Binocular setups taking two complete cameras are evidently not as flexible and
as precise as the very neatly controlled approach of the MultiCam.

1.2.2.2 Spatial Registration

In a 2D/3D vision system, regardless of the kind of setup, a 3D scene is im-
aged by two two-dimensional matrices of pixels with a degree of overlap which
is a-priori unknown but qualitatively assumed to be high without loss of generality.
Both sensors operate in a different spectrum (NIR vs. VIS) and have a different
modality, i.e., the grey values of the scene represent different physical proper-
ties. Due to the operation principle, the sensors operate with different illumination
sources meaning that the effects of the illumination must be taken into consideration
(corresponding features may be dissimilar due to different lighting conditions). Both
sensors have a different resolution with the 2D sensor’s resolution being higher. The
TOF sensor acquires the distance to an observed point with an accuracy and repro-
ducibility in the range of a centimeter. The relative arrangement of both sensors is
not a function of the time but is known in advance with only an insufficient accuracy,
meaning that the configuration needs to be calibrated initially.

The aim of the image registration is to establish a spatial transform that maps
points from one image to homologous points in a target image as follows

Œx1; y1; z1�
T D f

�
Œx2; y2; z2�

T
�
: (1.6)
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The actual transform model depends on the individual configuration. In the
following the monocular setup is going to be presented. Considering the special
case of the MultiCam, the sensors share a common lens, a common extrinsic cal-
ibration and the same scene is imaged with the same scale. First, the uncorrected
view after sensor alignment is described. This analysis is useful for detecting an-
gle errors which can occur if the angle of 45ı (90ı respectively) between the beam
splitter and the 2D sensor (the PMD sensor respectively) is not exactly adjusted. For
this purpose, a test pattern is put in front of the camera and is recorded with both
sensors. This test pattern consists of a grid of circles. It is assumed that the reflec-
tivity of this test pattern in the visible spectrum does not differ significantly from
the reflectivity in the near-infrared spectrum. In that case, the circles’ middle points
can be detected reliably with both sensors which results in two sets of matching
control points PPMD and P2D . Figure 1.3 shows the average of the displacement
between these two sets in units of 2D pixels as a function of the distance between
the camera and the pattern for a constant focal length. The average and the stan-
dard deviation are computed out of all the circles’ middle points in the image. It can
be observed that the displacement averages are stable over distance, which means
that there is virtually no angle error in the sensor alignment in the observed range.
By examining the displacement distribution over the whole image, it can be further
concluded that the displacement arrangement does not reveal significant local de-
viations. Consequently a global rigid transformation model can be used which is
independent of the location in the image. Additionally, the uncorrected view shows
that the pixel-to-pixel mapping is fixed with a negligible rotational component and
which, in particular, is independent from the depth. What remains is a transforma-
tion composed only of a two-dimensional translational displacement. Consequently,
an iterative closest point algorithm2 is used to find an optimal solution.

Fig. 1.3 Uncorrected
dislocation of PMD and 2D
sensor in the MultiCam
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2 Levenberg-Marquardt algorithm; the optimization criterion is the sum of squared distances of the
individual points.
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1.3 Multimodal Data Fusion and Segmentation

The TOF camera delivers three data items for each pixel at each time step: intensity,
range and amplitude of the received modulated light. The intensity image of the
TOF camera comparable to the intensity images in CCD or CMOS cameras relies
on the environment lighting conditions, whereas the range image and the amplitude
of the received modulated light are mutually dependent.

None of these individual data can be used solely to make a robust segmentation
under variant lighting conditions. Fusing these data provides a new feature informa-
tion which is used to improve the performance of the segmentation technique.

In this paper we have used the basic technique for the fusing of the range and
intensity data which has already been used in other fields like SAR imaging. We
observed that the range data in our TOF sensor is dependent on the reflection factor
of the object surface (how much light is reflected back from the object). Therefore,
there is a correlation between the intensity and range vector sets in a TOF image.
These two vector sets are fused to derive a new data set, so-called “phase”, which
indicates the angle between two intensity and range vector sets. The details of this
technique is presented in our previous works [12]. Another type of fusion which
has also been used in our work is to weight the value of the range for each pixel
using the modulation amplitude which adjusts the range level in the regions where
the range data might get wrong.

However, using MultiCam, we can acquire low resolution TOF images with their
corresponding features derived from fusion; and high resolution 2D Images. For seg-
mentation, same as in [12], first we apply the unsupervised clustering technique to
segment the low resolution TOF images. Next, we map the 3D segmented image
to 2D image. Due to the monocular setup of MultiCam, mapping the 3D range image
to the 2D image is a trivial and fast task which consequently makes the segmentation
of high resolution 2D image computationally cheap. This kind of segmentation has
two main advantages over 2D segmentation. On the one hand 3D range segmenta-
tion is more reliable and robust in the natural environment where lighting conditions
might change and on the other hand due to the low resolution of 3D image, segmen-
tation is faster. An example of such a segmentation is shown in Fig. 1.4.

1.4 Object Tracking and Classification

One of the approach for object identification in tracking process is to use a classifier
directly to distinguish between different detected objects. In fact, if the classification
method is fast enough to operate at image acquisition frame rate, it can be used
directly for tracking as well. For example, supervised learning techniques such as
Support Vector Machines (SVM) and AdaBoost can be directly employed to classify
the objects in each frame because they are fast techniques which can work at real
time rate for many applications.
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Fig. 1.4 Segmentation in 2D/3D images. Top Left: low resolution range image from TOF sensor.
Top Middle: high resolution 2D image. Top Right: modulation amplitude image. Bottom Left: 3D
rescaled segmented image. Bottom Middle: rescaled segmented image using fusion of range and
modulation amplitude data. Bottom Right: 2D segmented image result from mapping

In this section, we describe tracking with classifier more in detail by applying
a supervised classifier based on AdaBoost to 2D/3D videos in order to detect and
track the desired object. After segmentation of the image which was described in the
previous section, in the next step the Haar-Like features are extracted and used as
the input data for the AdaBoost classifier. Haar-like features which have been used
successfully in face tracking and classification problems encode some information
about the object to be detected. For a much more in depth understanding the reader
is referred to [11].

However, there are two main issues in real time object detection based on Haar-
Like features and using AdaBoost technique. The first issue is that background noise
in the training images degrades detection accuracy significantly, esp. when it is a
cluttered background with varying lighting condition which is the case in many real
world problems. The second issue is that computation of all sub-windows (search
windows) in an image for every scale is too costly if the real time constraints are to
be met. The fundamental idea of our algorithm is to address the solution to these
problems using fusion of 3D range data with 2D images. In order to extinguish the
background issue from object recognition problem, the procedure of object detec-
tion is divided into two levels. In the low level we use range data in order to: (i)
Define a 3D volume where the object of interest is appearing (Volume of Interest)
and eliminate the background to achieve robustness against cluttered backgrounds
and (ii) Segment the foreground image into different clusters. In the high level we
map the 3D segmented image to its corresponding 2D color image and apply Viola-
Jones method [11] (searching with Haar-Like features) to find the desired object in
the image. Figure 1.5 shows some examples of this procedure for hand detection
and tracking.
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Fig. 1.5 Solution to the background issue in object detection using Viola-Jones method. Us-
ing range data the cluttered background is removed and the foreground image is segmented and
mapped to 2D image. Viola-Jones technique is applied to 2D segmented image to find the object
of interest

Fig. 1.6 Selection of search windows using range information for hand detection. Left: Hand is
far from the camera and therefore the image is searched with small search windows. Right: Hand
is close to the camera and therefore the image is scanned with large search windows to find the
hand in the image

The second issue (Computation of all search windows in an image for every
scale is too costly.) can be addressed by using the range information directly. After
segmentation, the distance of the segmented object from the camera can be easily
derived from 3D range image. By having the information about the distance of ob-
ject from the camera, its size can be roughly estimated and a set of search windows
which could fit to the size of the object is selected and therefore there is no need
to use all possible size of search windows to find the object. This reduces the com-
putational cost of the Viola-Jones technique to a great extent which is a significant
point in real time applications. An example of selecting search windows for hand
detection is illustrated in Fig. 1.6.
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1.5 Real Time Hand Based Robot Control Using 2D/3D Images

Nowadays, robots are used in the different domains ranging from search and res-
cue in the dangerous environments to the interactive entertainments. The more the
robots are employed in our daily life, the more a natural communication with the
robot is required. Current communication devices, like keyboard, mouse, joystick
and electronic pen are not intuitive and natural enough. On the other hand, hand
gesture, as a natural interface means, has been attracting so much attention for
interactive communication with robots in the recent years [2–4, 9]. In this con-
text, vision based hand detection and tracking techniques are used to provide an
efficient real time interface with the robot. However, the problem of visual hand
recognition and tracking is quite challenging. Many early approaches used position
markers or colored gloves to make the problem of hand recognition easier, but due
to their inconvenience, they can not be considered as a natural interface for the
robot control. Thanks to the latest advances in the computer vision field, the recent
vision based approaches do not need any extra hardware except a camera. These
techniques can be categorized as: model based and appearance based methods [7].
While model based techniques can recognize the hand motion and its shape exactly,
they are computationally expensive and therefore they are infeasible for a real time
control application. The appearance based techniques on the other hand are faster
but they still deal with some issues such as: complex nature of the hand with more
than 20 DOF, cluttered and variant background, variation in lighting conditions and
real time computational demand. In this section we present the results of our work
in a real time hand based tracking system as an innovative natural commanding
system for a Human Robot Interaction (HRI).

1.5.1 Set-Up

Set-up mainly consists of three parts: (1) A six axis, harmonic driven robot from
Kuka of type KR 3 with attached magnetic grabber. The robot itself has been
mounted onto an aluminium rack along with the second system component. (2) A
dedicated robot control unit, responsible for robot operation and communication by
running proprietary software from Kuka c� company. (3) The main PC responsible
for data acquisition from 2D/3D imaging system (MultiCam) and running the al-
gorithms. Communication between the robot control unit and the application PC is
done by exchanging XML-wrapped messages via TCP/IP. The network architecture
follows a strict client server model, with the control unit as the client connecting to
the main PC, running a server thread, during startup.
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1.5.2 Control Application

In order to make the communication system more convenient for the user, all the
necessary commands to control the robot, such as moving the robot in 6 directions
.xC; x�; yC; y�; zC; z�/ or (de)activating the grabber (palm-to-fist or vice versa)
are done by using a self developed GUI based application illustrated in Fig. 1.7.
As a first step, we track the user’s hand movement in a predefined volume covered
by the MultiCam, followed by mapping its real world position into a virtual space
which is represented by a cuboid of defined size and correlates with the MultiCam’s
view frustum. Hand movement is visualized by placing a 3D hand-model in the
according location within the cuboid. Depending on the hand’s distance from the
cuboid’s center, a velocity vector is generated, along with some other state informa-
tion, and sent to the robot’s control unit which is in charge of sending the appropriate
information to the robot itself. By placing the virtual hand in the cuboid’s center, the
system can be put in a susceptible mode for special commands. For that matter, a
rudimentary gesture classification algorithm has been implemented which is able
to distinguish between a fist and a palm. We use defined fist to palm transition se-
quences (e.g., a palm-fist-palm transition) in order to perform a robot reset, put the
system in predefined modes and to (de)activate the magnetic grabber which in turn
enables the whole system to handle ferric objects (Fig. 1.8).

Fig. 1.7 Left: Hand based robot control using MultiCam, Hannover Fair 2008, Right: Graphical
User Interface (GUI)

Fig. 1.8 Some results, left: example of correctly detected images (True Positive), right: example
of wrongly detected images (First row: missed hand, Second row: misclassified)
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Table 1.1 Confusion table
for hand detection system

Hand Non-hand

Hand 2,633 87
Non-hand 224 2,630
Sum 2,857 2,717

1.5.3 Experimental Results

For the Hannover Fair 2008, a simple task had been defined to be performed by the
visitors and to put the system’s performance under the test as follows: Commanding
the robot to move in six directions using moving the hand with any kind of posture
in the corresponding directions, picking up a metal object with the magnet grabber
using palm to fist gesture, moving the object using the motion of the hand and finally
dropping it in the defined areas with palm to fist gesture. It turned out that the system
handling has been quite intuitive, since different people have been able to operate
the robot instantly. In terms of reliability the whole system worked flawlessly during
the complete time exposed at the fair. For training of the classifier we took 1037
positive hand images from seven people, and 1,269 negative images from non-hand
objects in our lab environment. Using OpenCV we trained our classifier with 20
stages and window size of 32 � 32. Although the classifier was trained under the
lab conditions, it worked quite well under the extreme lighting conditions at the fair.

In order to analyze the performance of the system, we recorded the results of hand
detection from our GUI in the video format while different users were commanding
the robot. Likewise, we moved the camera and took the videos from the environ-
ment. These videos are labeled as “Positive” and “Negative” data. While positive
stands for the hand, the negative represents the non-hand objects. The data were ac-
quired using a PC with dual core 2.4 GHz CPU. The exposure time for 3D sensor
was set at 2ms while for 2D sensor it was about 10 ms. Under these conditions,
we had about 15 detected images (including all algorithms computational time) per
second. The confusion matrix derived from these videos with 2857 hand images and
2717 non-hand images is shown in Table 1.1. As it can be calculated from this table,
the system has a Hit Rate of 0.921, False Positive Rate of 0.032 and the recognition
accuracy of 94.4%.

1.6 Conclusion

In this work we study some aspects of object detection and tracking using 2D/3D
Images. These images are provided by a monocular 2D/3D vision system, so-called
MultiCam. The principle of this camera system as well as the registration and fusion
of 2D/3D data are discussed. This work is concluded with some results of a real time
hand based robot control application which was demonstrated at Hannover fair in
Germany in 2008.
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Chapter 2
Robot Competence Development
by Constructive Learning

Q. Meng, M.H. Lee, and C.J. Hinde

Abstract This paper presents a constructive learning approach for developing
sensor-motor mapping in autonomous systems. The system’s adaptation to environ-
ment changes is discussed and three methods are proposed to deal with long term
and short term changes. The proposed constructive learning allows autonomous sys-
tems to develop network topology and adjust network parameters. The approach is
supported by findings from psychology and neuroscience especially during infants
cognitive development at early stages. A growing radial basis function network is
introduced as a computational substrate for sensory-motor mapping learning. Exper-
iments are conducted on a robot eye/hand coordination testbed and results show the
incremental development of sensory-motor mapping and its adaptation to changes
such as in tool-use.

Keywords Developmental robotics � Biologically inspired systems � Constructive
learning � Adaptation

2.1 Introduction

In many situations such as home services for elderly and disabled people, ar-
tificial autonomous systems (e.g., robots) need to work for various tasks in an
unstructured environment, system designers cannot anticipate every situation and
program the system to cope with them. This is different from the traditional in-
dustrial robots which mostly work in structured environments and are programmed
each time for a specific task. Autonomy, self-learning and organizing, and adapt-
ing toenvironment changes are crucial for these artificial systems to successfully
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fulfil various challenging tasks. Traditional controllers for intelligent systems are
designed by hand, and they do not have such flexibility and adaptivity. General cog-
nitivist approach for cognition is based on symbolic information processing and
representation, and does not need to be embodied and physically interact with the
environment. Most cognitivist-based artificial cognitive systems rely on the experi-
ence from human designers.

Human beings [1] and animals face similar problems during their develop-
ment of sensor-motor coordination, however we can tackle these problems without
too much effort. During human cognitive development, especially at the early
stages, each individual undergoes changes both physically and mentally through
interaction with environments. These cognitive developments are usually staged,
exhibited as behavioural changes and supported by neuron growth and shrinking
in the brain. Two kinds of developments in the brain support the sensory-motor
coordination: quantitative adjustments and qualitative growth [19]. Quantitative
adjustments refer to the adjustments of the synapse connection weights in the
network and qualitative growth refers to the changes of the topology of the net-
work. Inspired by developmental psychology especially Piaget’s sensory-motor
development theory of infants [12], developmental robotics focuses on mecha-
nisms, algorithms and architectures for robots to incrementally and automatically
build their skills through interaction with their environment [21]. The key features
of developmental robotics share similar mechanisms with human cognitive de-
velopment which include learning through sensory-motor interaction; scaffolding
by constraints; staged, incremental and self-organizing learning; intrinsic moti-
vation driven exploration and active learning; neural plasticity, task transfer and
adaptation. In this paper, we examine robot sensory-motor coordination devel-
opment process at early stages through a constructive learning algorithm. Con-
structive learning which is inspired by psychological constructivism, allows both
quantitative adjustments and qualitative network growth to support the develop-
mental learning process. Most static neural networks need to predefine the net-
work structure and learning can only affect the connection weights, and they
are not consistent with developmental psychology. Constructive learning is sup-
ported by recent neuroscience findings of synaptogenesis and neurogenesis oc-
curring under pressures to learn [16, 20]. In this paper, a self-growing radial ba-
sis function network (RBF) is introduced as the computational substrate, and a
constructive learning algorithm is utilized to build the sensory-motor coordina-
tion development. We investigate the plasticity of the network in terms of self-
growing in network topology (growing and shrinking) and adjustments of the
parameters of each neuron: neuron position, the size of receptive field of each
neuron, and connection weights. The networks adaptation to systems changes is
further investigated and demonstrated by eye/hand coordination test scenario in
tool-use.
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2.2 Sensory-Motor Mapping Development
Via Constructive Learning

In order to support the development of sensor-motor coordination, a self-growing
RBF network is introduced due to its biological plausibility. There exists very
strong evidence that humans use basis functions to perform sensorimotor transfor-
mations [15], Poggio proposed that the brain uses modules as basis components for
several of its information processing subsystems and these modules can be realized
by generalized RBF networks [13, 14].

There are three layers in the RBF network: input layer, hidden layer and output
layer. The hidden layer consists of radial basis function units (neurons), the size of
receptive field of each neuron varies and the overlaps between fields are different.
Each neuron has its own centre and coverage. The output is the linear combination
of the hidden neurons.

A RBF network is expressed as:

f.x/ D a0 C
NX
kD1

ak�k.x/ (2.1)

�k.x/ D exp

 
� 1

�2
k

kx � µkk2
!

(2.2)

where f.x/ D .f1.x/; f2.x/; � � �; fNo
.x//T is the vector of system outputs, No is the

number of outputs and X is the system input. ak is the weight vector from the hidden
unit �k.x/ to the output,N is the number of radial basis function units, and µk and
�k are the kth hidden unit’s center and width, respectively.

2.2.1 Why Constructive Learning?

According to Shultz [19, 20], in addition to that constructive learning is supported
by biological and psychological findings, there are several advantages of construc-
tive learning over static learning: first, constructive-network algorithms learn fast (in
polynomial time) compared with static learning (exponential time), and static learn-
ing maybe never solve some problems as the designer of a static network must first
find a suitable network topology. Second, constructive learning may find optimal
solutions to the bias/variance tradeoff by reducing bias via incrementally adding hid-
den units to expand the network and the hypothesis space, and by reducing variance
via adjusting connection weights to approach the correct hypothesis. Third, static
learning cannot learn a particular hypothesis if it has not been correctly represented,
a network may be too weak to learn or too powerful to generalize. Constructive
learning avoids this problem because its network growth enables it to represent a
hypothesis that could not be represented previously with limited network power.
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2.2.2 Topological Development of the Sensory-Motor
Mapping Network

During the development of sensory-motor mapping network, two mechanisms exist:
topological changes of the mapping network and network parameter adjustments.
The qualitative growth of the sensory-motor mapping network depends on the
novelty of the sensory-motor information which the system obtained during its
interaction with the environment in development, the growth is incremental and
self-organizing. The sensory-motor mapping network starts with no hidden units,
and with each development step, i.e., after the system observes the consequence
of an action, the network grows or shrinks when necessary or adjusts the network
parameters accordingly. The network growth criteria are based on the novelty of the
observations, which are: whether the current network prediction error for the current
learning observation is bigger than a threshold, and whether the node to be added is
far enough from the existing nodes in the network: ke.t/k D ky.t/ � f.x.t//k > e1,
kx.t/ � µr .t/k > e3. In order to ensure smooth growth of the network the predic-

tion error is checked within a sliding window:

s
tP

jDt�.m�1/
ke.j /k2

m
> e2, where,

.x.t/; y.t// is the learning data at t th step, and µr.t/ is the centre vector of the near-
est node to the current input x.t/. m is the length of the observation window. If the
above three conditions are met, then a new node is inserted into the network with the
following parameters: aNC1 D e.t/; µNC1 D x.t/; �NC1 D k kx.t/ � µr.t/k,
where, k is the overlap factor between hidden units.

The above network growth strategy does not include any network pruning, which
means the network size will become large, some of the hidden nodes may not
contribute much to the outputs and the network may become overfit. In order to
overcome this problem, we use a pruning strategy as in [8], over a period of
learning steps, to remove those hidden units with insignificant contribution to the
network outputs.

Let onj be the j th output component of the nth hidden neuron, onj D
anj exp.� kx.t/�µnk2

�2
n

/; rnj D onj

max.o1j ;o2j ;��� ;oNj /
:

If rnj < ı forM consecutive learning steps, then the nth node is removed. ı is a
threshold.

2.2.3 Parameter Adjustments of the Sensory-Motor
Mapping Network

There are two types of parameters in the network, the first type of parameter is
the connection weights; the second is parameters of each neuron in the network:
the position and the size of receptive field of each neuron. A simplified node-
decoupled EKF (ND-EKF) algorithm was proposed to update the parameters of
each node independently in order to speed up the process. The parameters of the


