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Preface

Open channel hydraulics has always been a very interesting domain of scientific
and engineering activity because of the great importance of water for human liv-
ing. The free surface flow, which takes place in the oceans, seas and rivers, can be
still regarded as one of the most complex physical processes in the environment.
The first source of difficulties is the proper recognition of physical flow processes
and their mathematical description. The second one is related to the solution of
the derived equations. The equations arising in hydrodynamics are rather compli-
cated and, except some much idealized cases, their solution requires application
of the numerical methods. For this reason the great progress in open channel flow
modeling that took place during last 40 years paralleled the progress in computer
technique, informatics and numerical methods. It is well known that even typi-
cal hydraulic engineering problems need applications of computer codes. Thus,
we witness a rapid development of ready-made packages, which are widely dis-
seminated and offered for engineers. However, it seems necessary for their users
to be familiar with some fundamentals of numerical methods and computational
techniques applied for solving the problems of interest. This is helpful for many rea-
sons. The ready-made packages can be effectively and safely applied on condition
that the users know their possibilities and limitations. For instance, such knowledge
is indispensable to distinguish in the obtained solutions the effects coming from
the considered physical processes and those caused by numerical artifacts. This
is particularly important in the case of hyperbolic equations, like the Saint-Venant
equations or the advection equation.

In principle, numerical open channel hydraulics can be regarded as a sub-domain
of Computational Fluid Dynamics (CFD) and the general methods and experiences
of CFD are applicable in open channel flow modeling. Moreover, the open channel
flow can be often treated as one-dimensional, which makes it relatively easy to solve
compared to multidimensional flows considered in geophysics and industrial engi-
neering. On the other hand, due to a range of specific issues, numerical open channel
hydraulics developed into a branch of its own as early as in the years 1960s and
1970s. There exist a number of very good books on the subject, written at that time
and later. A non-exhaustive list includes “Unsteady flow in open channel” edited
by K. Mahmood and V. Yevjevich and containing the papers written by recognized
experts, “Practical aspects of computational river hydraulics” by J.A. Cunge, F.M.
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Holly and A. Verwey, “Computational hydraulics-Elements of the theory of free sur-
face flow” by M.B. Abbott, “Dynamic hydrology” by P.S. Eagleson, “Open channel
hydraulics” by V.T. Chow, “Open channel flow” by F.M. Henderson, “Kinematic
wave modeling in water resources: surface water hydrology” by V.P. Singh, “The
hydraulics of open channel flow: An introduction” by H. Chanson. These books
cover most of the theoretical and practical issues related to open channel flow
modeling and can be recommended for any engineer working in this field.

As far as the computational techniques are considered, one can recommend
the following books: “Incompressible flow and the finite-element method” by
P.M. Gresho and R.L. Sani, “Computational fluid dynamics” by M.B. Abbott
and D.R. Basco, “Numerical head transfer and fluid flow” by S.V. Patankar,
“Computational physics” by D. Potter, “Computational techniques for fluid dynam-
ics” by C.A.J. Fletcher, “Finite volume methods for hyperbolic problems” by
R.J. LeVeque, “The finite element method in engineering science” by O. C.
Zienkiewicz. These books covering large area of the fluid dynamics and other
engineering sciences are useful for open channel flow modeling as well.

In view of the continuous advance in numerical techniques, the present book is
an attempt to complement the existing works with a more detailed and up-to-date
discussion of selected numerical aspects of open channel hydraulics. It is largely
based on author’s own research and focuses on one-dimensional models of steady
and unsteady flow and transport in open channels and their networks.

The book is organized in nine chapters. Chapter 1 presents the background infor-
mation on the open channel hydraulics and the derivation of the governing equations
for both steady and unsteady flow, as well as for the transport of the constituents
dissolved in the flowing water including the transport of thermal energy.

The next two chapters cover the basic numerical methods applicable for solving
nonlinear equations and systems of linear and nonlinear equations (Chapter 2) and
ordinary differential equations and their systems (Chapter 3). Implementation of the
presented methods for solution the steady gradually varied flow in a single channel
and in channel network is given in Chapter 4. These methods are also the basic
building blocks for more complex numerical algorithms described in the following
chapters.

Chapter 5 is an introduction to the partial differential equations of hyperbolic and
parabolic types, frequently occurring in open channel hydraulic. It covers the classi-
fication of equations, formulation of solution problem, and introduction to the finite
difference and element methods. This chapter ends by discussion of convergence,
consistency and stability of the numerical methods.

In Chapters 6 and 7 the advection and advection-diffusion equations are con-
sidered. Basing on the solution using the finite difference box scheme, the main
problems of numerical integration of the hyperbolic equations are discussed. The
modified equation approach for the accuracy analysis of the numerical solution of
hyperbolic equations is described. Besides the standard methods of solution, the
splitting technique for the advection-diffusion transport equation is presented.

Chapter 8 is entirely devoted to the unsteady flow. Solution of the system of Saint
Venant equations using both finite difference and element methods is described.
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Solution of unsteady flow with moveable bed and the problem of propagation of
steep waves are briefly described.

Chapter 9 covers the simplified models and theirs application for flood routing.
Particular attention is focused on the close relation between the spatially lumped
models and the discrete forms of distributed models. The conservative properties of
the non-linear and linear simplified models are discussed.

The book includes numerous computational examples and step-by-step descrip-
tions of numerical algorithms. It is the hope of the author that the reader will find it
useful and easy to follow.

I am grateful to Springer and to the members of the Editorial Advisory Board
of series Water Science and Technology Library for the possibility of publish-
ing my work. My thanks are to Prof. Witold Strupczewski, for initiating the idea
of this book, to the Editor-in-Chief Prof. Vijay. P. Singh for his valuable sug-
gestions on its contents, and to Ms. Petra van Steenbergen and Ms. Cynthia de
Jonge for their kind assistance in submitting the manuscript. I would also like to
acknowledge the support received from Prof. Ireneusz Kreja, Dean of the Faculty
of Civil and Environmental Engineering of the Gdańsk University of Technology.
I owe a lot to the persons who assisted me in the work on the manuscript: Dr.
Dariusz Gąsiorowski, who prepared many numerical examples, Ms. Katarzyna
Olszonowicz, who prepared all the figures and my son Dr. Adam Szymkiewicz,
whose remarks and suggestions helped to improve the text. Finally, I highly appre-
ciate the effort of all members of staff involved at all stages of the editorial process
of my book.

Gdansk, Poland Romuald Szymkiewicz
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Chapter 1
Open Channel Flow Equations

1.1 Basic Definitions

Open channel is a conduit in which a part of the cross-section of the flowing stream,
taken perpendicularly to the flow velocity vector, is exposed atmosphere. Open
channels can be divided into natural and artificial ones. Natural channels, like rivers
or creeks, result from the geophysical processes acting at the Earth surface, without
essential participation of human activity. Conversely, artificial channels are built by
men and comprise, among others, navigable, energetic and irrigation channels.

Another possible division of open channels is between prismatic and non-
prismatic ones. A prismatic channel has constant cross-sectional shape and constant
longitudinal bottom slope. Of course, such properties can be possessed only by arti-
ficial channels. All natural channels are non-prismatic. A schematic representation
of a non-prismatic channel is shown in Fig. 1.1.

In natural channels the sections can be either compacted (Fig. 1.1a) or composite
(Fig. 1.1b). In composite cross-section distinct parts exist (1, 2 and 3 in Fig. 1.1b),
characterized by different bed elevations and possibly different bed roughness.
This case is representative, for instance, of a river flowing over flooded terrace
and calculation of the flow parameters requires appropriate treatment. Figure 1.1a
also shows some basic variables used in open channel hydraulics. They are listed
below.

Water stage, denoted by h, is the elevation of the free surface of water at a spe-
cific cross-section of the channel, measured with respect to the assumed datum. The
elevation of the bottom measured with respect to the same datum is denoted by Z.

The depth of flow H is the vertical distance between the water surface and the
channel bottom. In natural channels the depth and bed elevation have local meaning
only, since they vary along the axis x, which is parallel to the flow direction and y
axis, which is horizontal and normal to x. Conversely, in prismatic channels both Z
and H are uniquely defined for each cross-section and depend on x only. Thus, the
following relation holds:

h(x) = Z(x) + H(x). (1.1)

1R. Szymkiewicz, Numerical Modeling in Open Channel Hydraulics, Water Science
and Technology Library 83, DOI 10.1007/978-90-481-3674-2_1,
C© Springer Science+Business Media B.V. 2010
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Fig. 1.1 Possible shapes of cross-sections of the non-prismatic channel (a) compacted,
(b) composite

The longitudinal bed slope is defined as:

s = −∂Z

∂x
, (1.2)

Its value is usually small, which allows for considerable simplifications of the
flow equations. In Fig. 1.2 a longitudinal profile of channel is shown.

The slope is uniquely defined for prismatic channels only. For natural channels
the bed slope has rather local meaning, however its average value along channel axis
taken over longer distances of practical interest is rough but important information.

h

h( x )

bottomϕ
Z( x )

datum

H( x ) H’( x )

Fig. 1.2 Definition of the cross-section parameters for prismatic channel
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The value of H(x) should be distinguished from so-called depth of flow of section
H′(x), which is measured perpendicularly to the bottom (Fig. 1.2). Since both depths
are related to each other by means of the bed slope H′ (x) = H (x) cos (ϕ), then for
small values of the longitudinal bed slope, when cos(ϕ) ≈ 1, one can assume that
H (x) ≈ H′ (x). Only in particular situations, for steep channels, this difference is
appreciable (Akan 2006, French 1985). Consequently, usually it is reasonable to
assume that the flow depth is measured vertically from bottom to the water surface,
whereas the distance along channel axis is considered as horizontal one. The prob-
lem of co-ordinates system is summarized by Liggett (1975) as follows: “For open
channel flow the system of co-ordinates is not entirely orthogonal in that x lies in
the bed of the channel and z is vertical. This arrangement assumes that the cosine of
the channel slope is approximately unity.”

The cross-section can be characterized by the following geometric parameters:

• Top width B is the width of the channel at the level of water surface (Fig. 1.1).
• Flow area A is the wetted cross-sectional area measured perpendicularly to the

vector of channel flow velocity.
• Wetted perimeter P is the length of the interface between the water and the

channel bed.
• Hydraulic radius R is the ratio of the wetted flow area and the wetted perimeter:

R = A

P
. (1.3)

This parameter is meaningful only for compact cross-sections as shown in
Fig. 1.1a.

• Hydraulic depth Ha is the ratio of the wetted flow area A and the top width B:

Ha = A

B
. (1.4)

Ha and B represent the dimensions of a rectangle of area A equivalent to the
natural cross-section (Fig. 1.1a).

The cross-sections of prismatic channels are typically triangular, rectangular or
trapezoidal so the parameters listed above can be expressed as analytical functions
of the depth H. Consider for example a trapezoidal channel (Fig. 1.3) characterized
by the channel width at the level of bottom b, and the side slope m, which is the
cotangent of the angle ψ between the side and horizontal plane.

For such type of channel the cross-section parameters A, P and B are given by
the following formulas:

A = b · H + m · H2 (1.5)

P = b + 2H
√

1 + m2 (1.6)

B = b + 2m · H (1.7)
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b

ψ

B

m  H

datum
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h

H

Z

H
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.

∇

∇

Fig. 1.3 Trapezoidal channel cross-section

For m = 0 the trapezoidal cross-section becomes rectangular, whereas for b = 0
it becomes triangular. For natural channels, the geometric parameters are usually
expressed as function of the water stage, presented in tabularized form.

The basic quantities characterizing liquid flow are: pressure, density, velocity and
acceleration. The flow is described by the scalar or vector fields of these variable
parameters. In general all those variables depend on three spatial coordinates and
time. However, in open channel flow the component of the velocity vector parallel
to the channel axis is typically dominating and in addition it has relatively uniform
distribution over the cross-section area. Thus, it is assumed that the flow parameters
are functions of two variables only: x and t, which represent the spatial coordinate
related to the channel axis and time.

The flowing stream is conveniently characterized by the following averaged
quantities:

• Discharge, which represents the mass or volume of water flowing through
considered cross-section per unit time. The volume discharge is defined as:

Q =
∫∫

A

u · dA (1.8)

where:

u – normal velocity to the cross-section,
A – wetted cross-sectional area,
Q – flow discharge.

• Average flow velocity in the cross-section, which ensures the same discharge as
actual velocity distribution over cross-section. It is defined as follows:

U = Q

A
= 1

A

∫∫

A

u · dA (1.9)
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where: U – average velocity in a cross-section.
• Volume flux per unit time and unit width of the vertical cross-section measured

between the water surface and the bottom, given by the formula:

q =
h∫

Z

u · dz = U · H (1.10)

where q is flow discharge related to the width unit of a channel. For channel
having a rectangular cross-section q is equal:

q = Q

B
(1.11)

The total energy of water particle traveling along a streamline (a line constructed
in the velocity field, so that at its every point the velocity vector is tangential to this
line) is given by the Bernoulli equation:

Esl = zsl + psl

γ
+ u2

sl

2g
(1.12)

where:

Esl – total energy of traveling particle along a streamline,
zsl – elevation of the streamline above the assumed datum,
psl – local pressure,
γ – specific weight,
usl – local velocity,
g – local acceleration due to gravity.

In Eq. (1.12) the term (psl /γ ) is the pressure head, whereas the term (u2
sl/2 g) rep-

resents velocity head. The term (psl /γ + zsl) is called the piezometric head (Chanson
2004).

When the flow in open channel with cross-sectional average velocity is consid-
ered, the total energy of flow referred to the assumed datum is:

E = Z + H + α · U2

2 g
= h + α · U2

2 g
, (1.13)

whereas the specific energy of the open channel flow relative to the bottom of a
channel is defined by formula (Fig. 1.4):

ES = H + α · U2

2g
(1.14)

where:
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z
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Fig. 1.4 Representation of
the energy equation’s terms

E – total energy related to the assumed datum,
Es – specific energy related to the bottom,
Z – elevation of the bed above the assumed datum,
H – depth,
h – elevation of the water surface above the assumed datum,
U – average flow velocity,
α – kinetic energy correction factor (Coriolis coefficient).

The Coriolis coefficient α is introduced to correct the kinetic energy calculated
using the average flow velocity U instead of the actual velocities, variable over
wetted cross-sectional area A. Comparison of both energies yields:

α = 1

U3 · A

∫∫

A

u3·dA (1.15)

Coefficient α is never less than 1. Its value increases with the increasing
differentiation of flow velocity distribution over cross-section.

Analysis of Eq. (1.13) for horizontal channel with α = 1 shows that the specific
energy is a function of the flow depth H only, i.e. Es = Es (H). From its examination
results that Es tends to infinity for H tending either to 0 or to infinity. This means
that in the interval 〈0, ∞) the function Es(H) has an extreme minimum point. At this
point the following condition resulting from Eq. (1.14) is valid:

α · Q2

g
= A3

B
(1.16)
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Then except this point, there are two alternate depths H for which Es(H) takes
the same values. The depth corresponding to the extreme minimum is critical depth.
This depth, designed as Hc, ensures that the flowing stream with flow rate Q has least
specific energy or for given specific energy the flow rate is greatest. The critical
depth divides the interval 〈0, ∞) into two parts. The channel flow with H < Hc

is so called supercritical or torrential flow, whereas the flow with H >Hc is called
subcritical or fluvial one. To distinguish these cases the following dimensionless
Froude number is introduced:

Fr = U√
g · H

(1.17)

This number, representing the ratio of inertial and gravity forces, is expressed
by the average flow velocity U and the celerity of gravity wave in shallow water
(g H)1/2. Using the Froude number one can distinguish:

• critical flow when Fr=1,
• supercritical flow when Fr > 1,
• subcritical flow when Fr < 1.

The subcritical flow is typical form of channel flow. It is characterized by rela-
tively high depths and small velocities. This form of flow is required as the most
suitable one in natural channel. The supercritical flow is characterized by relatively
small depths and great velocities. In natural conditions it can occur in upper parts of
rivers. This kind of flow is typically observed on the weirs of dams.

Since Eq. (1.13) represents the total mechanical energy related to the assumed
datum, then its derivative with regard to x represents local energy grade line slope
S. Therefore one can write:

dE

dx
= −S (1.18)

where S is energy grade line slope or friction slope. The negative sign at right side
of Eq. (1.18) takes into account the fact that energy decreases with increasing of x
(Fig. 1.4).

The water flow in open channel can be classified with regard to various criteria.
Taking into account the time variability one can distinguish:

• steady flow, when the flow parameters do not vary in time,
• unsteady flow when the flow parameters vary in time.

With the time variation of flow is connected the notion of time-invariant process
or system. A channel reach can be considered as a physical system, which is capable
to transform the flood wave occurring at the upstream end to the one observed at the
downstream end. If the same waves entering the channel at given time intervals
produce the same response, the considered channel reach is a time-invariant system.
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It means that its main properties affecting the flow process, such as the shape of
cross-sections and hydraulic roughness do not vary in time. In the opposite case,
when the channel properties vary in time, the system is called time-variable.

Steady flows can be further divided with respect to the spatial variability of the
parameters. From this point of view one can distinguish uniform and non-uniform
flows. A uniform flow is characterized by spatially constant flow parameters such as
velocities and depths, so that the water surface and the energy line are parallel to the
bottom. Thus uniform flow can occur in prismatic channels only, in which the shape
of cross-sections does not vary and the bed slope is constant. In natural channels
such kind of flow does not exist. For steady uniform flow the average velocity is
given by the well known empirical formulas:

• The Chézy equation:

U = CC (R · s)1/2 (1.19)

where:

CC – the Chézy coefficient,
R – hydraulic radius,
s – longitudinal channel bed slope, equal to the energy line slope S.

• The Manning equation

U = 1

nM
R2/3 · s1/2 (1.20)

This equation can be considered as the Chézy equation with CC defined as
follows:

CC = 1

nM
R1/6 (1.21)

where nM is the Manning roughness coefficient. In SI units this coefficient is
expressed in s/m1/3.

The depth Hn which satisfies Eqs. (1.19) or (1.20) is called normal depth. In the
case of uniform flow, when the flow velocities and wetted cross-sectional areas do
not vary, the energy grade line, the hydraulic grade line and bottom line are parallel
one another.

In particular cases it can occur that the normal depth is equal to the critical depth.
The channel slope, for which the uniform flow is critical, is called the critical slope
(Chanson 2004, French 1985). Usually it is denoted sc. Relation between the normal
and critical depths can be used to characterize the channel slope. One can distinguish
(Chanson 2004):

• mild slope when Hn > Hc,
• critical slope when Hn = Hc,
• steep slope when Hn < Hc.
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The non-uniform flow does not satisfy the conditions of uniform flow, so the
depths and velocities vary along channel axis. Consequently the bottom, water sur-
face and energy line are not parallel to each other. Depending on the degree of the
spatial variability one can distinguish gradually and rapidly varied flows. To explain
the essential difference between both types of flow, let us recall the Bernoulli equa-
tion (Eq. 1.12). In open channel gradually varied flow the water particles move along
nearly straight streamlines. Since the streamlines have insignificant curvature, the
cross-sectional surface, orthogonal to the streamline, are nearly flat. It means that
they are almost normal to the velocity vectors and the vertical components of veloc-
ity do not exist. These assumptions imply that the sum (zsl + p/γ ) representing the
elevation of the hydraulic grade line above the assumed datum, can be considered
as constant. Consequently the pressure distribution in the stream flowing in a chan-
nel with small bed slope, in which the streamlines are nearly parallel to the bottom,
is governed by the hydrostatic law. Conversely, when rapid flow is considered, one
needs to take into account the curvature of the streamlines and cross-sections. The
law of hydrostatic distribution of pressure along the depth is no longer valid.

In non-uniform flow the friction slope S is usually also expressed with the
Manning formula. Although this formula has been derived for steady uniform flow,
it is applicable for non-uniform flow as well. It is assumed that the error gener-
ated due to this approximation is small comparing with the one resulting from the
estimation of the coefficient nM. The reformed formula (1.20) is used:

S = n2
M · U2

R 4/3
= n2

M · Q2

R 4/3 · A2
(1.22)

For steady uniform flow the friction slope is constant, whereas for non-uniform
flow it varies along channel axis.

To solve practical open channel flow problems the energy equations written for
two neighboring stations is usually applied. For a channel reach presented in Fig. 1.5
it takes the following form:

h i + α · U2
i

2 g
= h i+1 + α · U2

i+1

2 g
+� xi · S (1.23)

where:

hi, hi+1 – elevations of the water surface above the assumed datum in cross-
section i and i+1 respectively,

U1, Ui+1 – average flow velocities in cross-section i and i+1 respectively,
S – average friction slope between both cross-sections,
Δxi – distance between considered stations.

The average value of the friction slope is determined using its local values in both
cross-sections calculated using Eq. (1.22). Equation (1.23) allows us to compute the
water surface profile in open channel for steady gradually varied flow.
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Fig. 1.5 Sketch of a channel reach

This section covers only basic information on the open channel flow, which is
necessary for further presentation of numerical applications. For more comprehen-
sive discussion of the theoretical background for the open channel hydraulics the
reader is directed to the works of Akan (2006), Chanson (2004), Chow (1959),
French (1985), Henderson (1966), Jain (2000), Singh (1996) and others.

1.2 General Equations for Incompressible Liquid Flow

Domination of one component of the velocity vector is a typical attribute of the
open channel flow. This feature allows us to consider the flow process as spatially
one-dimensional phenomenon. Similarly to the other types of surface water flows,
the governing equations are derived from two principles of conservation:

• momentum conservation law,
• mass conservation law.

The derivation can be performed in various ways. The approaches found in the
literature differ with respect to the formulation of the principle of conservation, and
to the stage at which the one-dimensionality assumption is introduced. For exam-
ple, the open channel flow equations are very often derived by balancing the fluxes
and forces acting on the considered control volume, with an a priori assumption
of uniform velocity flow distribution over a channel cross-section. Next, when the
governing equations are derived, some additional factors are introduced to correct
the balanced quantity. In such a way the correction parameters α or β appear in the
1D dynamic equation.

A more consistent approach is to derive the unsteady open channel flow equations
from general equations of hydrodynamics. It allows us to show clearly that this kind
of flow is governed by equations being a particular case of general equations for 3D
unsteady flow. In addition, the effects of introduced simplifications and assumptions
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can be easily followed. This point of view coincides with the suggestion given by
Abbott and Basco (1989). These authors cite Bird, Steward and Lightfoot (1960),
who stated: “It is not. . . necessary to formulate a momentum balance (or mass bal-
ance for continuity) whenever one begins to work on a new flow problem. In fact,
it is seldom desirable to do so. It is quicker, easier and safer to start with the equa-
tions of conservation of mass and momentum in general form and to simplify these
equations to fit the problem at hand”. Moreover Abbott and Basco (1989) state:
“The advantage of this procedure is that when we are finished discarding terms and
simplifying the equations (based on intuition, experiments, field data, experience,
etc.) we will have available a complete list of assumptions.” This approach will be
followed here.

It is well known that in general case the flow of viscous and incompressible
fluid is described by the Navier–Stokes equations and the continuity equation. These
equations are derived from the momentum and mass conservation principles, respec-
tively. Although the Navier–Stokes equations describe all forms of flow, in practice
they are useful for laminar flow only, while every large scale geophysical surface
flow is turbulent (Eagleson 1970). Therefore the open channel flow must be consid-
ered as turbulent. In such kind of flow random fluctuations of velocities and pressure
are present. Since it is impossible to describe these fluctuations, the instantaneous
velocity is expressed in terms of a time-averaged velocity and its random part,
according to the Reynolds hypothesis. The same is applied for pressure. Inserting
these relations into the Navier–Stokes equations one obtains the Reynolds equa-
tions. As a result of this operation an additional tensor of turbulent stresses appears.
Applying the Boussinesq concept of the eddy viscosity one obtains the following
system of equations (French 1985):

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= Fx − 1

ρ

∂p

∂x
+ 1

ρ
(μ+ μT )�u, (1.24)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= Fy − 1

ρ

∂p

∂y
+ 1

ρ
(μ+ μT )�v, (1.25)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= Fz − 1

ρ

∂p

∂z
+ 1

ρ
(μ+ μT )�w, (1.26)

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0, (1.27)

where:

t − time,
x, y, z − spatial coordinates,
u, v, w − components of the velocity vector in x, y and z direction respectively,
ρ − water density,
μ − coefficient of dynamic viscosity,
μT − coefficient of turbulent viscosity (eddy viscosity),
p − pressure,



12 1 Open Channel Flow Equations

Fx, Fy, Fz − components of gravitational forces in x, y and z direction
respectively,

Δ – Laplace operator.

The system of Eqs. (1.24), (1.25), (1.26) and (1.27) is formally very similar the
system of Navier–Stokes equations. However, it is interpreted in a different way.
Eqs. (1.24), (1.25), (1.26) and (1.27) describe the relations between time averaged
values of the dependent variable, while the Navier–Stokes equations relate their
instantaneous values. Conversely to the coefficient μ depending on the physical
properties of the water, the coefficient μT is a function of the flow turbulence only.
As the turbulent diffusion is much more important than the molecular one because
μT�μ (Martin and McCutcheon 1999), is reasonable to neglect the dynamic
viscosity.

The system of Eqs. (1.24), (1.25), (1.26) and (1.27) representing the momentum
and mass conservation equations written in general form will be used to derive the
equations for open channel flow.

1.3 Derivation of 1D Dynamic Equation

Equations (1.23), (1.24), (1.25) and (1.26) can be simplified when the specific fea-
tures of the open channel flow problem are taken into account. Usually open channel
flow can be considered as a propagation of long waves in shallow water. These
waves have relatively small amplitudes compared to their lengths so the accel-
erations and velocities in vertical direction are negligibly small in relation to the
accelerations and velocities in horizontal directions. Let us assume the co-ordinate
system as shown in Fig. 1.6, in which after Liggett (1975), x corresponds to the
direction of the primary flow, y is the horizontal direction normal to primary flow,
whereas z is the vertical direction.

The gravity force is the only force acting along z axis:

F z = −g, (1.28)

y

z

x

H(x,y,t)

h(x,y,t)

datum

Z(x,y)

ϕbottom

Fig. 1.6 Assumed system of
co-ordinates
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Consequently Eq. (1.26) takes the following form:

− g − 1

ρ

∂p

∂z
= 0. (1.29)

Integration of this equation with regard to z from the bottom to the water surface
(Fig. 1.6)

h∫

Z

∂p

∂z
dz = −

h∫

Z

ρ · g · dz (1.30)

yields:

p (h)− p (Z) = −ρ · g (h − Z) . (1.31)

Since at the water surface the pressure is equal to the atmospheric one p(h)= Pa

then the following formula representing pressure variation along z axis accordingly
to the hydrostatic pressure law, is obtained:

p (z) = Pa + ρ · g (h − z) for Z ≤ z ≤ h (1.32)

where:

Pa − atmospheric pressure,
ρ − water density,
g – acceleration due to gravity,
h – elevation of the water surface above the datum,
Z – elevation of the bottom above the datum,
z – vertical co-ordinate.

Let us assume that the velocity vector is parallel to x axis – it has one component
only u = u(z, x, t). Consequently Eq. (1.25) for the component v disappears, whereas
Eq. (1.24) becomes:

∂u

∂t
+ u

∂u

∂x
= F x − 1

ρ

∂p

∂x
+ μT

ρ

(
∂2 u

∂x 2
+ ∂2 u

∂z 2

)
. (1.33)

In addition, let us assume that the channel bed is inclined towards x axis and its
slope is given by the angle ϕ (Fig. 1.6). The only force acting along x axis is the
component of the gravitational force parallel to the bottom:

Fx = −g · sin (ϕ) . (1.34)

For a small bottom slope which is usually assumed for open channels (see Section
1.1), one has sin(ϕ) ≈ tg(ϕ). Then the component Fx is expressed as:
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F x = − g
∂Z

∂x
, (1.35)

where ∂Z/∂x accordingly to Eq. (1.2) is the longitudinal channel bed slope. With
Eqs. (1.32) and (1.35), Eq. (1.33) is rewritten as follows:

∂u

∂t
+ u

∂u

∂x
+ g

∂Z

∂x
+ 1

ρ

∂

∂x
(P a + ρ · g · H) − μT

ρ

(
∂2 u

∂x 2
+ ∂2 u

∂z 2

)
= 0. (1.36)

In turbulent open channel flow the vertical velocity distribution is rather uniform,
so the actual velocity u(x,z,t) can be replaced by the depth-averaged one U(x,t). Let
us introduce:

• the average horizontal velocity U(x,t):

U(x,t) = 1

H

h∫

Z

u(x,z,t) d z, (1.37)

where H = h−Z designates the depth;
• the deviation u′′(z) of the actual velocity from the average one (Fig. 1.7):

u′′ (z) = u (z)− U. (1.38)

From Eq. (1.37) results the following condition:

h

u(z)

u z( )

U

z

H

Z

datum

Fig. 1.7 Actual and averaged distribution of horizontal velocity u along the vertical axis
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h∫

Z

u′′ (z) dz = 0. (1.39)

Averaging the horizontal velocity over depth allows us to eliminate the variability
in z direction and consequently to reduce the number of dimensions. To do it, Eq.
(1.36) must be integrated over depth:

h∫

Z

(
∂u

∂t
+ u

∂u

∂x
+ g

∂Z

∂x
+ 1

ρ

∂

∂x
(P a + ρ · g · H) − μT

ρ

(
∂2u

∂x2
+ ∂2u

∂z 2

))
dz = 0.

(1.40)

The integration limits, i.e. the water stage h and the bottom elevation Z, in a
general case are functions of the horizontal spatial coordinates. Therefore while
integrating Eq. (1.40) we will face a problem of differentiation inside the integral
with variable limits. According to the Leibniz rule (Korn and Korn 1968, McQuarrie
2003) in such a case the differentiation of any function φ is carried out as follows:

h (x)∫

Z(x)

∂φ

∂x
d z = ∂

∂x

h (x)∫

Z(x)

φ · d z − φ(h)
∂h

∂x
+ φ(Z)

∂Z

∂x
. (1.41)

Let us integrate subsequent terms of Eq. (1.40). The first term is integrated as
follows:

I1 =
h∫

Z

∂u

∂t
dz = ∂

∂t

h∫

Z

u · d z − u(h)
∂h

∂t
+ u(Z)

∂Z

∂t
. (1.42)

If we:

• make use of the definition (1.37),
• assume that the channel bed does not change its position with time,
• assume that the velocity at the water surface is equal to the average one

then Eq. (1.42) will take the following final form:

I1 = ∂

∂t
(U · H) − U

∂H

∂t
= H

∂U

∂t
. (1.43)

The integral of the second term with Eq. (1.38) is rearrangered to the form:
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I2 =
h∫

Z

u
∂u

∂x
dz = 1

2

h∫

Z

∂(U + u′′)2

∂x
d z

= 1

2

⎡

⎣ ∂
∂x

h∫

Z

(U + u′′)2dz − (U + u′′)2
z=h

∂h

∂x
+ (U + u′′)2

z=Z
∂Z

∂x

⎤

⎦ .

(1.44)

Developing the square of sum and assuming that the flow velocities at the water
surface and at the channel bottom are equal to the average velocity U, one obtains:

I2 = 1

2

⎡

⎣ ∂
∂x

⎛

⎝
h∫

Z

U2 · dz +
h∫

Z

2U · u′′ · dz +
h∫

Z

(
u′′)2 dz

⎞

⎠− U2 ∂ (h − Z)

∂x

⎤

⎦ .

(1.45)
Integrals in the brackets are calculated term by term as follows:

h∫

Z

U2 · d z = U2·H, (1.46)

h∫

Z

2U · u′′ · dz = 2U

h∫

Z

u′′ · dz = 0. (1.47)

The last integral at the right hand side of Eq. (1.45)
h∫

Z
(u′′)2dz cannot be cal-

culated since the actual distribution of the velocity over the depth is unknown.
However, a rough estimation of this integral in relation to the integral (1.46) can
be attempted. To this end let us assume a hypothetical vertical distribution of u(z) as
presented in Fig. 1.8.

Over the entire depth the deviation of actual velocity is taken as u′′(z) = ±0.2U.
Then we have:

h∫

Z

(u′′)2dz =
h∫

Z

(0.2U)2d z = 0.04 U2

h∫

Z

d z = 0.04 U · H. (1.48)

The result of integration shows that even for the assumed significant non-
uniformity of the vertical distribution of velocity, the value of integral (1.48)
constitutes only 4% of the value of integral (1.46). To take into account these inte-
gral we can consider it as a fraction of integral (1.46) and to add its value to (1.46).
This allows us to write:
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Fig. 1.8 Assumed hypothetical vertical distribution of flow velocity
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U2·H = β·U2·H.

(1.49)
In this equation we recognize

β = 1 +

h∫

Z
(u′′)2dz

U2 · H
. (1.50)

as a correction parameter. Coming back to Eq. (1.45) we have:

I2 = 1

2

[
∂

∂x

(
β · U2 · H

)
− U2 ∂H

∂x

]
. (1.51)

Developing of the derivative in Eq. (1.51) yields:

I2 = 1

2

[

H
∂
(
β · U2

)

∂x
+ β · U2 ∂H

∂x
− U2 ∂H

∂x

]

. (1.52)

Neglecting the difference of the last two terms as small value, which additionally
can be corrected by chosen value of β, the integral of the second term of Eq. (1.40)
takes its following final form:

I2 = β · U
∂U

∂x
H. (1.53)
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Introduction of the correction factor β requires a comment. Assumption of the
uniform flow velocity distribution instead of the actual one always requires a correc-
tion of the conservative quantity, which depends on the velocity. In the case of the
discrete energy equation (1.23) applied for channel flow, comparison of the actual
kinetic energy with that calculated with the average velocity shows that it is neces-
sary to introduce the correction factor α, given by Eq. (1.15). This coefficient was
introduced into the dynamic equation of the Saint Venant system by Chow (1959).
However, Abbott (1979) in this same equation introduces the factor β, which cor-
rects the momentum. It is worth emphasizing that usually at first the unsteady flow
equations are derived assuming a priori one dimensionality and afterwards the effect
of averaging is corrected. In the derivation from general equations as we have just
applied, the correction factor appears naturally as a result of the averaging process.
Such a way of derivation ensures a simple interpretation of the corrective parameter
β and explains the real reasons of its appearance. It corrects the balance of momen-
tum affected by the average flow velocity introduced instead of the actual velocity
distribution over the cross-sectional area. This parameter allows us to include the
estimated value of integral (1.48), impossible to be calculated directly. For u(z)=
const., i.e. when u"(z) = 0 for Z ≤ z ≤ h one obtains β = 1.

The terms of Eq. (1.40) representing gravitation and pressure are integrated as
follows:

I3 =
h∫

Z

g
∂Z

∂x
d z = g

∂Z

∂x
H, (1.54)
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ρ
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∂x
H. (1.55)

The term describing the turbulent diffusion of momentum in x direction takes the
form:
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ρ
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ρ
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∂x2
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(1.56)

where μD is the coefficient of dispersive transport of momentum in x direction. It
represents the combined effect of the turbulent viscosity with coefficient μT and
vertical velocity averaging. This is an analogous situation to the one discussed pre-
viously, where integrating the term of velocity advection led to the correction factor
β (see Eq. 1.50).

The term describing the momentum transfer in vertical is integrated as follows:


