Analog Circuits and Signal Processing

For further volumes: http://www.springer.com/series/7381 Pipelined ADC Design and Enhancement Techniques Consulting Editor: Mohammed Ismail. Ohio State University Imran Ahmed

Pipelined ADC Design and Enhancement Techniques

Dr. Imran Ahmed Kapik Integration 192 Spadina Ave. Toronto M5T 2C2 Suite 218 Canada imran@kapik.com

ISBN 978-90-481-8651-8 e-ISBN 978-90-481-8652-5 DOI 10.1007/978-90-481-8652-5 Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2010920320

© Springer Science+Business Media B.V. 2010

No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Cover design: WMXDesign GmbH, Heidelberg, Germany

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Pipelined ADCs have seen a tremendous growth in innovation and scope over the past few years. As such understanding both the basic concepts and the leading edge techniques required to realize pipelined ADCs which meet the challenging specifications of today's market and applications is required. While pipelined ADCs are popular circuit blocks, beyond publications in periodicals there are only a few condensed resources which are dedicated to education in the area. This book aims to help bridge the gap with a thorough discussion of pipelined ADCs.

This book is targeted to both the beginner and expert looking to acquire knowledge in pipelined ADCs. In the first section of this book, a tutorial discussion of several key design tradeoffs involved in designing a pipelined ADC is given. The discussion is presented with sufficient detail so as to allow those with only introductory knowledge of pipelined ADCs to quickly understand the limiting factors which motivate research into methods which enhance the performance of pipelined ADCs. In the second half of this book a detailed overview and discussion of four state-of-the-art pipelined ADCs with silicon implementations and measured results is given. The innovations include: a technique to rapidly digitally correct gain + DAC errors in a pipelined ADC, an architecture to enable a single ADC to be designed to achieve low power for a very wide range of sampling rates, a circuit technique to eliminate front-end sample-and-holds in pipelined ADCs, and finally a very low power pipelined ADC architecture based on capacitive charge pumps.

The innovations presented in this book provides several tools which can be of great use to help a pipelined ADC designer deliver a design with good linearity, broad application, and very low power.

Acknowledgements

Research is a unique proposition. One is forced to look into the depths of the unknown and find an answer to a question that does not necessarily have an answer. In some cases your answer fits the question – in some cases your answer fits the question like a square peg in a round hole. Regardless of the madness, the journey of developing abstract ideas into ultimately something which works is truly a unique and completely enriching experience - an experience that I for one am tremendously thankful for and very fortunate to have undergone in developing the material for this book. Acknowledging specific people in the development of an abstract piece of art is somewhat partial, as undoubtedly every person one interacts with during the course of a writing a book in some shape or form impacts the work. There are a few key people however who have helped this work take form. Firstly I must thank Professor David Johns at the University of Toronto. His guidance in developing many of the ideas discussed in this book were invaluable. I am also thankful to Professor Ken Martin, also of the University of Toronto, whose rigor and boldness significantly helped this work take shape. I also thank the support of the team of excellent designers at Broadcom Netherlands, especially Jan Mulder and Klaas Bult, who in addition to providing a wealth of knowledge, have inspired me to be excited about the future in mixed signal circuit design. Of course one cannot accomplish anything in life without the unquestioned pillar of support one's family offers. This book is dedicated to my family.

Contents

1	Introduction	1
	1.1 Overview	1
	1.2 Chapter Outline	3
	1.2.1 Section I: Pipelined ADC Design	3
	1.2.2 Section II: Pipelined ADC Enhancement Techniques	4

Part I Pipelined ADC Design

2	ADC Architectures	7
	2.1 Overview	. 7
	2.2 Factors Which Determine ADC Resolution and Linearity	. 7
	2.3 ADC Architectures	11
	2.4 ADC Figure-of-Merit	12
	2.5 Flash ADC	12
	2.6 SAR ADC	14
	2.7 Sub-sampling	16
	2.8 Summary	17
3	Pipelined ADC Architecture Overview	19
	3.1 Overview	19
	3.2 Pipelined ADC Introduction	19
	3.3 Multiplying Digital to Analog Converter (MDAC)	21
	3.4 Opamp DC Gain Requirements	23
	3.5 Opamp Bandwidth Requirements	26
	3.6 Thermal Noise Requirements	28
	3.7 MDAC Design: Capacitor Matching/Linearity	29
	3.8 Error Correction in Pipelined ADCs: Relaxed Sub-ADC	
	Requirements	31
	3.9 Sub-ADC Design: Comparator	35
	3.10 Front-End Sample-and-Hold	36
	3.11 Summary	38

4	Scaling Power with Sampling Rate in an ADC	39
	4.1 Overview	39
	4.2 ADC Power as a Function of Sampling Rate	39
	4.3 Digital Versus Analog Power	40
	4.4 Weak Inversion Model: EKV	42
	4.5 Weak Inversion Issues: Mismatch	43
	4.6 Current Scaling: Multiple Design Corners	45
	4.7 Current Scaling: Bias Point Sensitivity	45
	4.8 Current Scaling: IR Drops	46
	4.9 Summary	48
5	State of the Art Pipelined ADC Design	49
	5.1 Overview	49
	5.2 Calibration in Pipelined ADCs	49
	5.2.1 Review of Error Sources	50
	5.2.2 Gain Error Correction	50
	5.2.3 DAC Error Correction	52
	5.2.4 Foreground Calibration	52
	5.2.5 Background Calibration	53
	5.2.6 Rapid Calibration of ADC Errors	54
	5.3 Power Scalability with Respect to Sampling Rate	56
	5.4 Power Reduction Techniques in Pipelined ADCs	56
	5.4.1 Front-End S/H Removal	56
	5.4.2 Open-Loop Amplifier Approach	58
	5.4.3 Comparator Based Switched Capacitor Circuits	60
	5.5 Summary	61
	-	

Part II Pipelined ADC Enhancement Techniques

6	Rapid Calibration of DAC and Gain Errors in a Multi-bit	
	Pipeline Stage	65
	6.1 Overview	65
	6.2 Motivation	65
	6.2.1 Why Are DAC Errors Important to Correct?	66
	6.3 Rapid DAC + Gain Calibration Architecture	66
	6.3.1 Measurement of Missing Codes Due to DAC	
	and Gain Errors	67
	6.3.2 Correction of Missing Codes	68
	6.3.3 Mismatch Between ADCs	69
	6.3.4 Simulation Results	70
	6.4 Circuit Implementation	73
	6.4.1 Front-End Sample-and-Hold	74
	6.4.2 5-Bit Flash ADC	75

	6.4.3 4-Bit MDAC	75
	6.4.4 Backend Pipelined ADC	77
	6.4.5 Digital Calibration	78
	6.5 Testing	. 78
	6.5.1 PCB	79
	6.5.2 Test Setup	79
	6.6 Measured Results	. 81
	6.6.1 INL/DNL Plots	81
	6.6.2 SNDR/SFDR Plots	81
	6.6.3 Calibration Time	82
	6.7 Summary	. 84
7	A Power Scalable and Low Power Pinelined ADC	85
'	7.1 Overview	85
	7.2 Power Scalable Architecture	. 05 85
	7.2 Current Modulated Power Scaling (CMPS)	. 05 88
	7.4 Current Switching Issues	. 00 Q1
	7.5 Hybrid Power Scaling	. 91
	7.6 Detailed Trigger Analysis	. 72
	7.7 Design of the Digital State Machine	. 95 97
	7.8 Ranid Power-On Onamps	100
	7.8.1 Conventional Approach: Switched Bias Opamp	100
	7.8.2 Ranid Power-On Onamps Used in This Work	101
	7.8.3 Benefits of Feedback Based Biasing: Increased Output	101
	Resistance	104
	7.8.4 Onamp Specification/Characterization	105
	7.9 Common Mode Feed Back (CMFB) for Rapid	105
	Power-On Onamn	109
	7 10 Power Reduction Through Current Modulation	111
	7.10.1 Common Mode Feed Back (CMFB) for	111
	Different Onamn Modes	112
	7 11 Sample-and-Hold (S/H)	113
	7.12 1.5-bit MDAC	114
	7.13 Sub-ADC Comparators	114
	7.14 Bias Circuits	115
	7.15 Non-overlapping Clock Generator	116
	7.16 Reference voltages	117
	7.17 Digital Error Correction	118
	7.18 Experimental Implementation: PCB	118
	7.19 Experimental Implementation: Test Setup	118
	7.20 Measured Results	120
	7.21 Current Scaled Power	121
	7.21.1 Power Reduction Mode: Static Accuracy	127
	7.21.2 Power Scalable ADC: Current Scaling	131
	σ	

	7.22 Power Scalable ADC: Power Scaling Using CMPS	137 144
	7.25 Summary	144
8	A Sub-sampling ADC with Embedded Sample-and-Hold	147
	8.1 Overview	147
	8.2 Motivation	147
	8.3 Embedded S/H Technique	148
	8.4 Circuit Implementation	151
	8.4.1 ADC Architecture	151
	8.4.2 Rapid Power-On Opamp	152
	8.4.3 Generation of Delayed Clock Φ_{2D}	153
	8.5 Test Setup: PCB	155
	8.6 Test Setup: Equipment	156
	8.7 Measured Results	156
	8.7.1 SNDR Versus Input Frequency	157
	8.7.2 Power Versus Sampling Rate	158
	8.7.3 T _{delay} Versus Settling Time: Robustness of Technique	159
	8.8 Summary	160
9	A Canacitive Charge Pump Based Low Power	
1	Pipelined ADC	163
	91 Overview	163
	9.7 Motivation	164
	9.3 Architecture: Capacitive Charge Pump Based Gain	164
	9.4 Effect of Parasitic Canacitors	168
	95 Unity Gain Buffer Topology	170
	9.5.1 Linearity of Source Follower in a Sampled System	175
	9.5.2 Signal Swing of Source Follower	176
	9.6 Noise Analysis of Canacitive Charge Pump Based MDAC	177
	9.7 Calibration of Pineline Stages	181
	9.7.1 Foreground Calibration in Detail	181
	0.8 Theoretical Power Savings	183
	9.8 Incorence Fower Savings	105
	0.10 Circuit Decign	105
	0.10 1 ADC Ten Level Tenelogy	100
	9.10.1 ADC Top Level Topology	100
	9.10.2 FIOIR-Elia Sample-and-Hold	107
	9.10.5 MDAC and Unity Gain Ampliner	10/
	9.10.4 Sub-ADC	109
	9.10.5 Digital State Machine	190
	9.10.0 Analog rest-with	190
	9.11 1 testing	191
	9.11.1 РСВ	191
	9.11.2 Test Setup	191

	9.12 Measured Results	193
	9.12.1 Measured ADC SNDR Variation	194
	9.12.2 ADC FFTs	196
	9.12.3 INL/DNL plots	199
	9.13 Summary	199
10	Summour	201
10	Summary	201
	10.1 Summary	201
Ref	References	
Ind	ex	209

Abbreviations

ADC	Analog to digital converter
CBSC	Comparator based switched capacitor
СМ	Common mode
CMFB	Common mode feed back
CMPS	Current modulated power scaling
CMR	Common mode rejection
DAC	Digital to analog converter
dBFS	dB relative to full scale
DLL	Delay locked loop
DNL	Differential non-linearity
DNW	Deep N-well
ENOB	Effective number of bits
FOM	Figure of merit
IC	Integrated Circuit
INL	Integral non-linearity
KCL	Kirchhoff's current law
MDAC	Multiplying digital to analog converter
MIM	Metal-insulator-metal
NM	Nominal mode
PGA	Programmable gain amplifier
PRM	Power reduction mode
S/H	Sample-and-hold
SAR	Successive approximation register
SFBO	Switched feedback biased Opamp
SFDR	Spurious free dynamic range
SNR	Signal to noise ratio
SNDR	Signal to noise plus distortion ratio

List of Figures

Figure 2.1	Baseband binary digital transmission	8
Figure 2.2	Digital AM transmission	8
Figure 2.3	Requirements of ADC input dynamic range	8
Figure 2.4	AGC before ADC input to relax ADC input dynamic	
	range requirements	9
Figure 2.5	ADC input spectrum illustrating case when desired signal	
	is spectrally next to a much more powerful signal	9
Figure 2.6	Example OFDM spectrum	. 10
Figure 2.7	Illustration of harmonic distortion in ADC output spectrum	. 10
Figure 2.8	ADC architecture comparison	. 11
Figure 2.9	Analogy between a ruler and a Flash ADC	. 13
Figure 2.10	SAR ADC topology	. 14
Figure 2.11	Example SAR conversion – DAC voltage	. 15
Figure 2.12	Frequency translation using a front-end mixer	. 16
Figure 2.13	Frequency translation using sub-sampling	. 17
Figure 3.1	Two step N-bit accurate pipelined ADC	. 20
Figure 3.2	General pipelined ADC architecture	. 21
Figure 3.3	Pipeline stage scaling – stages are sequentially smaller	. 21
Figure 3.4	Pipeline stage functionality	. 22
Figure 3.5	Generic MDAC circuit (shown single-ended but can also	
	be implemented fully-differentially)	. 22
Figure 3.6	Hypothetical pipeline ADC for illustration purposes	. 23
Figure 3.7	MDAC residue transfer curve, and total ADC output	
	when opamp DC gain is infinite, opamp bandwidth is infinite,	
	and capacitor mismatch ignored	. 24
Figure 3.8	Residue transfer curve of pipeline stage when opamp	
	gain error is included. (error free residue curve shown	
	in dashed lines)	. 24

	•	٠	•
xv	1	1	1
	-	-	•

Figure 3.9	Variation of required unity gain frequency relative to	
	sampling rate with number of bits resolved in the first	
	pipeline stage	27
Figure 3.10	Modeling an opamp by a single transistor	27
Figure 3.11	RC noise model	29
Figure 3.12	Illustration of DAC and gain errors in pipelined	
C	ADC output – ideal residue transfer curve shown by	
	dashed lines	30
Figure 3.13	Pipeline stage detail	33
Figure 3.14	Stage transfer function	33
Figure 3.15	Over-range error with pipeline stage	34
Figure 3.16	Reduced gain stage transfer function	34
Figure 3.17	Impact of errors on stage transfer function	35
Figure 3.18	Vref/4 offset to eliminate digital subtraction	35
Figure 3.19	1.5 Bit/stage transfer function	36
Figure 3.20	10-Bit pipeline ADC using 1.5 bits/stage	36
Figure 3.21	Timing mismatch between sub-ADC and MDAC	
8	when first pipeline stage is connected directly to	
	analog input	37
Figure 3.22	Commonly used. 'flip-around' front end S/H topology	37
Figure 4.1	RC model of digital switching	40
Figure 4.2	Simplified small signal opamp model	41
Figure 4.3	3σ current mismatch versus device area and bias current	43
Figure 4.4	Illustration of impact of mismatched current sources	44
Figure 4.5	Differential pair with RC load	46
Figure 4.6	Differential pair with active load	47
Figure 4.7	Impact of low currents on IR drops	47
Figure 5.1	Illustration of errors sources in pipelined ADC	50
Figure 5.2	Ideal residue transfer curve of a 3 + 1-bit pipelined stage	50
Figure 5.3	Residue transfer curve of a $3 + 1$ -bit pipelined stage	
8	with gain errors included	51
Figure 5.4	Residue transfer curve of a $3 + 1$ -bit pipelined stage	
8	with gain and DAC errors included	51
Figure 5.5	Gain error correction of first pipeline stage	51
Figure 5.6	Commonly used circuit topology for 1.5-bit based MDAC	52
Figure 5.7	Correction of gain and DAC errors in first pipeline stage	53
Figure 5.8	Principle of foreground calibration	53
Figure 5.9	Principle of background calibration	54
Figure 5.10	Split-ADC topology	55
Figure 5.11	4-bit pipeline stage using open-loop amplifier	00
8	(output of stage taken at nodes V_{mater}) – figure	
	taken from [74]	58
Figure 5.12	Non-linear transfer curve for residue transfer	
6	function – ideal transfer curve shown in <i>dashed lines</i>	59
Figure 5.13	Nonlinearity correction scheme	60
0	· · · · · · · · · · · · · · · · · · ·	

Figure 5.14	CBSC gain of 2× circuit	61
Figure 6.1	Dual-ADC approach of this work	67
Figure 6.2	Transfer curves of first stage (MSB), backend ADC (LSB)	
	and total ADC outputs from each split-ADC with no errors	67
Figure 6.3	Transfer curves of key ADC outputs with gain, DAC errors	
	included	68
Figure 6.4	Illustration of how correction terms for ADC B are derived	
	from estimates of missing codes (correction topology of	
	ADC A is similar)	69
Figure 6.5	Full ADC topology of this work	69
Figure 6.6	Matlab Simulink test setup for simulation verification	70
Figure 6.7	Simulation results with 1% gain and DAC error - before	
	calibration	71
Figure 6.8	Simulation results with 1% gain and DAC error – after	
	calibration	72
Figure 6.9	SNDR/SFDR improvement with calibration cycles in	
	Simulink model	72
Figure 6.10	FFT of ADC after calibration driven by uniform random	
	input for 1.5×10^4 clock cycles	72
Figure 6.11	SNDR/SFDR improvement with calibration cycles when	
	ADC driven by a uniform random input	73
Figure 6.12	Analog portion of ADC topology in detail	74
Figure 6.13	Sample-and-hold topology (implemented fully-differentially	
	in this work)	74
Figure 6.14	Comparator topology used in 5-bit flash sub-ADC	75
Figure 6.15	Topology of first stage MDAC (implemented	
	fully-differentially in this work)	76
Figure 6.16	Opamp used in first stage MDAC	77
Figure 6.17	Detail of IIR filter blocks used in 'estimate error' block of	
	Fig. 6.18	78
Figure 6.18	Digital implementation of calibration	79
Figure 6.19	Custom PCB layout	80
Figure 6.20	Test setup for rapid DAC calibration ADC	80
Figure 6.21	Micrograph of fabricated IC in 1.8 V, 0.18 µm CMOS	81
Figure 6.22	INL before and after calibration, $f_s = 45$ MS/s	
	(LSB @ 11-bit level)	82
Figure 6.23	DNL before and after calibration (LSB @ 11-bit level)	82
Figure 6.24	FFT of ADC output before and after calibration	83
Figure 6.25	Variation of ADC SNDR, SFDR with input frequency,	
	before and after calibration	83
Figure 6.26	ADC SNDR, SFDR improvement with # of	
	calibration cycles	84
Figure 7.1	Setup times for a nominal ADC	87
Figure 7.2	Setup times for a current modulated ADC	87

Figure 7.3	Illustration of a high average power with	
	modulated current	. 88
Figure 7.4	Illustration of low average power with modulated current	. 88
Figure 7.5	Example illustrating the valid inputs to a pipelined ADC	. 89
Figure 7.6	On/off triggering sequence for a 10-bit pipeline ADC	. 90
Figure 7.7	Power supply noise decoupling circuit	. 91
Figure 7.8	CMPS limitations on power scalable frequency range	. 92
Figure 7.9	Continuous power scalable range with hybrid power scaling	. 93
Figure 7.10	Major sub-blocks in a 1.5 bit/stage pipeline ADC	
	using CMPS	. 94
Figure 7.11	One to one stage biasing arrangement	. 95
Figure 7.12	Illustration of different bias circuit on/off techniques	. 95
Figure 7.13	A power on/off scheme for current mirror biased	
	by off chip resistor	. 96
Figure 7.14	Bias current routing for ADC	. 97
Figure 7.15	Current switch 'MS' modulates bias circuit power	. 97
Figure 7.16	Detailed triggering diagram for pipeline ADC using CMPS	
	(stage 9 does not require a power on/off trigger as it only	
	consists of dynamic comparators)	. 98
Figure 7.17	System level diagram of on/off trigger generating digital	
	state machine	. 99
Figure 7.18	Switched bias approach to turn the current source M1	
	on/off	100
Figure 7.19	Feedback based bias switching	101
Figure 7.20	Series switching to turn M2 on/off	102
Figure 7.21	Feedback opamp with current switching	103
Figure 7.22	Increased output impedance using feedback based biasing	104
Figure 7.23	Switched PMOS gain boosting opamp	105
Figure 7.24	High gain feedback based switched opamp	106
Figure 7.25	SPICE simulation comparing different switching	
	approaches	107
Figure 7.26	SPICE simulation showing impact of switching	
	architecture on bias voltages	107
Figure 7.27	Stage grouping for scaling	107
Figure 7.28	Opamp for stages 3–5	108
Figure 7.29	Opamp for stages 6–8	109
Figure 7.30	Relative variation (3σ /mean) of opamp bandwidth versus	100
	tail current of opamp in Fig. 7.24	109
Figure 7.31	Conventional passive switched capacitor CMFB circuit	110
Figure 7.32	Passive switched capacitor circuit for switched opamps	110
Figure 7.33	Illustration of MDAC power reduction using rapid	4.4.4
	power-On Opamp	111
Figure 7.34	Hybrid switched capacitor CMFB circuit	113
Figure 7.35	Front-end S/H (shown single-ended, but implemented	
	differentially)	114

Figure 7.36	1.5-bit Pipelined stage architecture (shown single-ended,	
	implemented differentially)	114
Figure 7.37	Dynamic comparator used in flash sub-ADC	115
Figure 7.38	Wide swing cascode current mirror (n is typically > 4)	116
Figure 7.39	Inversion insensitive bias circuit	116
Figure 7.40	Non-overlapping clock generator	117
Figure 7.41	Illustration on non-overlapping time in SPICE simulation	117
Figure 7.42	Custom PCB layout	119
Figure 7.43	Test setup for power scalable pipeline ADC	119
Figure 7.44	Photograph of fabricated chip	121
Figure 7.45	SNDR, SFDR variation with sampling rate for	
	PRM and NM	122
Figure 7.46	ENOB variation with sampling rate for PRM and NM	123
Figure 7.47	Variation of power with sampling rate for PRM and NM	123
Figure 7.48	$f_s = 50 \text{ MS/s}, f_{in} = 20.9371 \text{ MHz}, \text{PRM}$	124
Figure 7.49	$f_s = 50 \text{ MS/s}, f_{in} = 20.9371 \text{ MHz}, \text{ NM}$	124
Figure 7.50	$f_s = 30 \text{ MS/s}, f_{in} = 14.013 \text{ MHz}, PRM$	124
Figure 7.51	$f_s = 30$ MS/s, $f_{in} = 14.013$ MHz, NM	125
Figure 7.52	$f_s = 10 \text{ MS/s}, f_{in} = 4.571 \text{ MHz}, \text{PRM}$	125
Figure 7.53	$f_s = 10$ MS/s, $f_{in} = 4.571$ MHz, NM	125
Figure 7.54	Input dynamic range, $f_s = 50$ MS/s, $f_{in} = 20.371$ MHz	126
Figure 7.55	SNDR versus supply voltage for $f_s = 50$ MS/s,	
U	$f_{in} = 20.173 \text{ MHz}$	127
Figure 7.56	Input dynamic range, $f_s = 30$ MS/s, $f_{in} = 14.317$ MHz	127
Figure 7.57	SNDR versus supply voltage for $f_s = 30$ MS/s,	
U	$f_{in} = 20.173 \text{ MHz}$	128
Figure 7.58	Input dynamic range, $f_s = 10$ MS/s, $f_{in} = 4.571$ MHz	128
Figure 7.59	SNDR versus supply voltage for, $f_s = 10$ MS/s,	
U	$f_{in} = 4.571 \text{ MHz}$	129
Figure 7.60	SNDR versus input frequency for $fs = 50$ MS/s	129
Figure 7.61	INL @ 50 MS/s	129
Figure 7.62	DNL @ 50 MS/s	130
Figure 7.63	INL @ 30 MS/s	130
Figure 7.64	DNL: @ 30 MS/s	131
Figure 7.65	INL @ 10 MS/s	131
Figure 7.66	DNL @ 10 MS/s	132
Figure 7.67	INL @ 50 MS/s (Max BW)	133
Figure 7.68	DNL @ 50 MS/s (Max BW)	133
Figure 7.69	INL @ 30 MS/s (Max BW)	134
Figure 7.70	DNL @ 30 MS/s (Max BW)	134
Figure 7.71	INL @ 10 MS/s (Max BW)	135
Figure 7.72	DNL @ 10 MS/s (Max BW)	135
Figure 7.73	Setup to perform bias point analysis	136
Figure 7.74	Bias point sensitivity of ADC as current reduced with f.	136
<u> </u>	1 2	

Figure 7.75	SNDR variation with effective sampling rate for	
	$f_{sm} = 50 \text{ MHz}$	138
Figure 7.76	Analog and total ADC power variation with effective	
	sampling rate for $f_{sm} = 50 \text{ MHz}$	139
Figure 7.77	SNDR variation with effective sampling rate for	
	$f_{sm} = 30 \text{ MHz}$	139
Figure 7.78	Analog and total ADC power variation with effective	
	sampling rate for $f_{sm} = 30 \text{ MHz}$	140
Figure 7.79	SNDR variation with effective sampling rate for	
	$f_{sm} = 10 \text{ MHz}$	140
Figure 7.80	Analog and total ADC power variation with effective	
	sampling rate for $f_{sm} = 10 \text{ MHz}$	141
Figure 7.81	SNDR variation with effective sampling rate for	
	$f_{sm} = 1 \ MHz \dots $	141
Figure 7.82	Analog and total ADC power variation with effective	
	sampling rate for $f_{sm} = 1 \text{ MHz}$	142
Figure 7.83	Power scalable range of ADC with CMPS applied to	
	current scaled sampling rates of 1-50 MS/s	143
Figure 7.84	Bias point variation of ADC using CMPS and current	
	scaling for $f_s = 1$ MS/s, and $f_s = 100$ kS/s	143
Figure 7.85	Comparison of power to recently published works	
	and industrial parts	144
Figure 8.1	Conventional 1.5 bit MDAC	148
Figure 8.2	MDAC of this work which enables elimination of front-end	
	S/H (shown single-ended, but implemented	
	fully-differentially)	149
Figure 8.3	Detailed illustration of MDAC functionality during t _{delay}	149
Figure 8.4	Comparison of MDAC settling time of this work versus	
	conventional MDAC	150
Figure 8.5	Alternative configuration of MDAC during t _{delay} without	
	floating capacitors	150
Figure 8.6	Architecture of pipelined ADC	151
Figure 8.7	Rapid power-on opamp	152
Figure 8.8	Gain booster opamp used in Chapter 7 (left), and in	
	this work (<i>right</i>)	153
Figure 8.9	Clock delay block to generate Φ_{2D} from Φ_2	154
Figure 8.10	Comparison of different current starved inverter topologies	154
Figure 8.11	Custom PCB layout	155
Figure 8.12	Test setup for pipelined ADC without front-end S/H	156
Figure 8.13	Micrograph of fabricated chip in 1.8 V, 0.18 µm CMOS	157
Figure 8.14	SNDR versus input frequency for $f_s = 50, 4.55$ MS/s	157
Figure 8.15	SNDR versus input frequency for $f_s = 24$ MS/s, 2.12 MS/s	158
Figure 8.16	FFT of ADC output at $f_s = 50, 4.55$ MS/s	158
Figure 8.17	Power versus sampling rate	159

Figure 8.18	Variation of ENOB with t _{delay} using approach	
	of Fig. 8.3	159
Figure 8.19	Variation of ENOB with t _{delay} using approach	
	of Fig. 8.5	160
Figure 9.1	Example of a voltage doubler	164
Figure 9.2	Pipeline stage using a capacitive charge pump $(C_1 = C_2)$	165
Figure 9.3	Illustration of how $1 \times$ buffer prevents charge sharing	165
Figure 9.4	Illustration of poor input CMR for pipeline stage shown	
	in Fig. 9.2	166
Figure 9.5	Pipeline stage used in the work of this chapter	167
Figure 9.6	Illustration of parasitic capacitors in MDAC of this chapter	168
Figure 9.7	Variation of gate capacitance with gate-source voltage	170
Figure 9.8	Opamp in unity gain configuration	171
Figure 9.9	Compound source follower	171
Figure 9.10	Resistively degenerated differential pair	171
Figure 9.11	Unity gain buffer which has an N-P complimentary	
	input stage	172
Figure 9.12	Cascade source follower	172
Figure 9.13	PMOS source follower	172
Figure 9.14	NMOS source follower	172
Figure 9.15	Parasitic capacitance in NMOS source follower	175
Figure 9.16	NMOS source follower with output resistances labeled	175
Figure 9.17	NMOS source follower signal swing	176
Figure 9.18	Signal path of V_{in+} during Φ_1	177
Figure 9.19	MDAC configuration during Φ_2	178
Figure 9.20	NMOS source follower	178
Figure 9.21	Power spectral density of noise at V_{out-} during Φ_2	179
Figure 9.22	Amplifier noise during Φ_2 in traditional MDAC	180
Figure 9.23	Ideal 1.5-bit first pipeline stage	182
Figure 9.24	1.5-bit pipeline stage with gain error	182
Figure 9.25	Measure of missing codes when pipeline stage input (Vin)	
	is zero – left is ideal, right is with errors	182
Figure 9.26	Illustration of correction scheme	183
Figure 9.27	Multistage foreground calibration	183
Figure 9.28	Fractional reduction of power in MDAC of this chapter	
	versus traditional MDAC	185
Figure 9.29	Top-level topology of ADC used in the work	
	of this chapter	186
Figure 9.30	Front-end sample-and-hold using unity gain buffer	
	(shown single-ended, implemented pseudo-differentially	
	in practice)	187
Figure 9.31	Modified S/H which has a gain of 'A'	188
Figure 9.32	First stage MDAC circuit	188
Figure 9.33	Stage-gain variation with temperature (Based on simulation)	189
Figure 9.34	Dynamic comparator used in flash sub-ADC	190

Figure 9.35	Analog test mux configuration	191
Figure 9.36	PCB used to in test setup for ADC described	
	in this chapter	192
Figure 9.37	Test setup of ADC	192
Figure 9.38	Micrograph of low powered pipeline ADC	193
Figure 9.39	SNDR/SFDR variation with input frequency, $f_s = 50$ MS/s	194
Figure 9.40	ENOB variation with input frequency, $f_s = 50 \text{ MS/s} \dots$	194
Figure 9.41	Comparison of power of ADC of this work versus	
-	other 10-bit ADCs	195
Figure 9.42	Comparison of FOM of ADC of this work versus other	
-	10-bit ADCs	195
Figure 9.43	FFT of ADC output before calibration, $f_{in} = 2.4$ MHz,	
	$f_s = 50 \text{ MS/s}$	196
Figure 9.44	FFT of ADC output after calibration, $f_{in} = 2.4$ MHz,	
-	$f_s = 50 \text{ MS/s}$	196
Figure 9.45	FFT of ADC output before calibration, $f_{in} = 20.7$ MHz,	
-	$f_s = 50 \text{ MS/s}$	197
Figure 9.46	FFT of ADC output after calibration, $f_{in} = 20.7$ MHz,	
C	$f_s = 50 \text{ MS/s}$	197
Figure 9.47	INL before calibration (LSB @ 10-bit level)	198
Figure 9.48	INL after calibration (LSB @ 10-bit level)	198
Figure 9.49	DNL before calibration	198
Figure 9.50	DNL after calibration	199

List of Tables

Table 2.1	Comparison of ADC architectures	12
Table 5.1	Survey of power scalable ADCs in industry	57
Table 6.1	Summary of ADC performance	84
Table 7.1	Variation of digital state machine power with clock	
	frequency	99
Table 7.2	MDAC Opamp DC gain and bandwidth for 50 MS/s	
	operation	108
Table 7.3	Measured ENOB and power from fabricated ADC	122
Table 7.4	Figure of merits for measured ADC at various f _s	126
Table 7.5	INL/DNL maxima and minima for $f_s = 10, 30, 50$ MS/s	
	for current scaled f _s	132
Table 7.6	INL/DNL maxima and minima for $f_s = 10, 30, 50$ MS/s	
	for maximum bandwidth	135
Table 7.7	ADC performance using CMPS with $f_{sm} = 50 \text{ MHz} \dots$	137
Table 7.8	ADC performance using CMPS with $f_{sm} = 30 \text{ MHz} \dots$	137
Table 7.9	ADC performance using CMPS with $f_{sm} = 10 \text{ MHz} \dots$	138
Table 7.10	ADC performance using CMPS with $f_{sm} = 1 \text{ MHz} \dots$	138
Table 7.11	Summary of key results	144
Table 8.1	Summary of key results	160
Table 9.1	Summary of measured results	199
Table 10.1	Summary of measurement results from Chapter 6	202
Table 10.2	Summary of measurement results from Chapter 7	202
Table 10.3	Summary of measurement results from Chapter 8	202
Table 10.4	Summary of measurement results from Chapter 9	202

Chapter 1 Introduction

1.1 Overview

The pipelined topology is a popular option for ADCs which require resolutions on the order of 8–14 bits and sampling rates between a few MS/s to hundreds of MS/s. The popularity of the topology can be attributed to its relatively simple and repetitive unit structure, as well as a significant reduction in the number of comparators required to achieve a fixed resolution when compared to other Nyquistrate data converters such as Flash, and Folding + Interpolating based converters. Pipelined ADCs are used in a variety of applications such as: mobile systems, CCD imaging, ultrasonic medical imaging, digital receivers, base stations, digital video (e.g. HDTV), xDSL, cable modems, cellular base stations, and fast Ethernet. Since pipelined ADCs are used in a variety of electronic systems, research in improving the performance of pipelined ADCs has attracted much attention over the past decade, where the most popular areas of research have been: linearity enhancement, and power reduction. In recent years, an emerging area of research in ADCs has been the development of reconfigurable ADCs [1].

Linearity enhancement has been an active area of research as with deeper submicron technology low intrinsic gain, low supply voltages, and device mismatch have made achieving very linear data converters (i.e. >10-bit linear) challenging using conventional pipelined ADC design techniques. Low power consumption in pipelined ADCs is motivated by the fact that low power consumption enables increased battery life and thus increased user productivity in mobile systems. In wired systems where many ADCs can be integrated on-chip in parallel, large net power consumption can generate high amounts of heat requiring expensive packaging for heat dissipation; hence lower power enables more cost-effective packaging. With the green-shift of modern electronics, a paradigm of 'doing more with less' has become a popular mantra in the latest semiconductor systems. In the interest of saving power as well as recycling as much area in an electronic implementation as possible (and thus reducing implementation costs), reconfigurable data converters, which can operate at a variety of different operating points have become an emerging area of research. A reconfigurable ADC for example which has its power scale with sampling speed, would allow a single ADC to be used to meet the demands a variety of different standards and/or inputs without using multiple ADCs. As multiple devices and communication protocols are integrated onto single devices such as cell phone, designing flexible reconfigurable electronic systems is emerging as an area of great interest to ADC designers.

This book aims to be of interest to those who are new to pipelined ADCs and those who are seasoned experts in the field. The book is divided into two sections: Section I discusses pipelined ADC design, and Section II discusses pipelined ADC enhancement techniques. Although many topics related to pipelined ADCs are discussed in both sections, the primary focus of the book is on design techniques which (1) improve linearity, (2) enable reconfigurable ADCs, and (3) Facilitate low power consumption. Throughout the book examples of prior art and silicon implementations of state of the art solutions in these areas will be described in detail.

Section I of the book is aimed at those new to pipelined ADCs, where a review of the basic knowledge and design trade-offs required to understand how a pipelined ADC works are detailed. By understanding the conventional approaches used to implement a pipelined ADC it is expected that the casual reader can put together a functional ADC with reasonable specifications. By understanding the conventional approaches used to implement pipelined ADCs the reader will gain an appreciation of the limitations of the conventional approaches, and the motivation of state of the art designs described in the second portion of the book.

The second portion of the book is aimed at those already familiar with the basics of pipelined ADCs. In the second portion of the book four state of the art pipelined ADC designs are reviewed and presented in detail. For each implementation a state of the art architectural innovation which substantially improved on the prior art, with verification in silicon will be discussed. The following are brief summaries of the four pipelined ADC architectures discussed in this book:

- 1. A topology [2, 3] to rapidly digitally correct for both DAC and gain errors in the multi-bit first stage of an 11-bit pipelined ADC. Using a dual-ADC based approach the digital background scheme is validated with a proof-of-concept prototype fabricated in a 1.8 V, 0.18 μ m CMOS process, where the calibration scheme improves the peak INL of a 45 MS/s ADC from 6.4 to 1.1 LSB after calibration. The SNDR/SFDR is improved from 46.9/48.9 dB to 60.1/70 dB after calibration. Calibration is achieved in approximately 10⁴ clock cycles.
- 2. A 10-bit pipelined ADC which has its average power is scalable with sampling rate over a large variation of sampling rates [4, 5]. Fabricated in a 1.8 V, 0.18 μ m CMOS process, the ADC uses a novel Rapid Power-On Opamp to achieve power scalability between sampling rates as high as 50 MS/s (35 mW), and as low as 1 kS/s (15 μ W), while achieving 54–56 dB of SNDR (at Nyquist) for all sampling rates. A current modulation technique is used to avoid the less accurate simulation, poorer matching, and increased bias sensitivity associated with