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Preface

Multibody Dynamics is an exciting area of applied and computational mechanics,
whose substantial progress during the last five5 decades has stemmed from the
rapid and simultaneous development of many technological disciplines like robotics,
spacecraft and machine design, and was stimulated by the advances in computa-
tional techniques. In order to deliver methods and tools for the modeling, analysis
and simulation of complex mechanical systems, various topics were merged in the
field, including contact and impact, control and mechatronics, real-time simula-
tion, optimization, flexibility, time integration schemes and software development.
The current area of interest include robotics and walking machines, road and rail-
way vehicle dynamics, aerospace, biomechanics, and many other multidisciplinary
applications.

The ECCOMAS Thematic Conference on Multibody Dynamics was initiated in
Lisbon in 2003, and then continued in Madrid (2005) and Milan (2007), aimed at
providing a venue for exchanging ideas and recent developments related to the the-
ory and applications of multibody systems. The fourth edition of the Conference was
held at the Warsaw University of Technology, Warsaw, Poland, from June 29 to July
2, 2009. At the Conference participated 219 researches from 27 countries, mainly
from Europe (162), but also from Asia (40), and North (13) and South America
(4). They presented 167 technical papers, having an excellent forum for discussion
and technical exchange on the most recent advances in the rapidly growing field of
Multibody Dynamics.

The present book is a collection of revised and extended versions of 15 papers
presented at the Conference, recommended by the Session Organizers for pub-
lication in this post-conference book. The general selection criterion was that
the papers best reflect the state-of-art of the topics associated to the particular
sessions, and cover the areas of biomechanics (Raison et al.), contact dynamics
(Flores et al./Ziegler and Eberhard), control, mechatronics and robotics (Iwamura
et al./Seifried), efficient methods and real-time applications (Cavagna et al./Pfau
and Schaden), flexible multibody dynamics (Ambrósio et al./Dibold and Gerst-
mayr), formulations and numerical methods (Garcı́a Orden and Aguilera/Schindler
et al.), miscellaneous multibody applications (Frączek and Wojtyra), optimization

v
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(Brüls et al.), software development, validation, and education (Tasora et al.), and
vehicle systems (Bottasso et al.). We hope you will find the reading of this collection
enjoyable and stimulating.

March 2010 Wojciech Blajer, Krzysztof Arczewski
Radom/Warsaw Janusz Frączek, and Marek Wojtyra



Contents

A Flexible Multibody Pantograph Model for the Analysis
of the Catenary–Pantograph Contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Jorge Ambrósio, Frederico Rauter, João Pombo,
and Manuel S. Pereira

Maneuvering Multibody Dynamics: New Developments
for Models with Fast Solution Scales and Pilot-in-the-Loop
Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Carlo L. Bottasso, Giorgio Maisano, and Francesco Scorcelletti

Optimization of Multibody Systems
and Their Structural Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Olivier Brüls, Etienne Lemaire, Pierre Duysinx,
and Peter Eberhard

Real-Time Aeroservoelastic Analysis of Wind-Turbines by Free
Multibody Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Luca Cavagna, Alessandro Fumagalli, Pierangelo Masarati,
Marco Morandini, and Paolo Mantegazza

Comparison of Planar Structural Elements for Multibody
Systems with Large Deformations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Markus Dibold and Johannes Gerstmayr

Modeling and Analysis of Rigid Multibody Systems
with Translational Clearance Joints Based on the Nonsmooth
Dynamics Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107
Paulo Flores, Remco Leine, and Christoph Glocker

Application of General Multibody Methods to Robotics . . . . . . . . . . . . . . . . . . . . . .131
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A Flexible Multibody Pantograph Model
for the Analysis of the Catenary–Pantograph
Contact

Jorge Ambrósio, Frederico Rauter, João Pombo, and Manuel S. Pereira

Abstract The pantograph–catenary system is still the most reliable form of
collecting electric energy for running trains. This system should ideally run with
relatively low contact forces, in order to minimize wear and damage of the con-
tacting elements but without contact loss to avoid power supply interruption and
electric arching. However, the quality of the pantograph–catenary contact may be
affected by operational conditions, defects on the overhead equipment, environ-
mental conditions or by the flexibility of the pantograph components. In this work
a flexible multibody methodology based on the use of the mean-axis conditions, as
reference conditions, mode component synthesis, as a form of reducing the number
of generalized coordinates of the system and virtual bodies, as a methodology to
allow the use of all kinematic joints available for multibody modeling and applica-
tion of external forces, are used to allow building the flexible multibody pantograph
models. The catenary model is built in a linear finite element code developed in a
Matlab environment, which is co-simulated with the multibody code to represent
the complete system interaction. A thorough description of rigid-flexible multibody
pantograph models is presented in a way that the proposed methodology can be
used. Several flexible multibody models of the pantograph are described and pro-
posed and the quality of the pantograph–catenary contact is analyzed and discussed
in face of the flexibility of the overhead components.

1 Introduction

The interaction between the pantograph and the catenary is one of the factors
that limits the operating speed of railway vehicles and, consequently, is one
of the research priorities in the European railway community. These limitations
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2 J. Ambrósio et al.

concern not only the ability to collect energy at high operating speeds but also
the interoperability between the overhead equipment in trains and infrastructure.
From the mechanical point of view, the most important feature of the pantograph–
catenary system consists on the contact quality between the registration strips of
the pantograph and the contact wires of the catenary. The system must ideally run
with relatively low contact forces, to minimize wear and damage of the contact
elements, but with high enough contact forces to prevent contact loss, to ensure a
constant power supply and minimize the occurrence of electric arching. The design
of pantograph–catenary systems aims at controlling the interaction phenomena
maintaining the contact forces within an acceptable operational envelope. Among
the factors that affect the quality of the pantograph–catenary contact are those con-
cerned with the defects on the catenary or pantograph, environmental conditions,
such as wind [1, 2] and extreme temperatures [3], running dynamics of the railway
vehicle and the deformability of the pantograph mechanical system. This work
proposes the use of flexible multibody methodologies to describe the pantograph
system and the co-simulation of the models obtained with detailed finite element
models of the catenary to evaluate the quality of the overhead contact and to identify
the main mechanical issues influencing it.

Some of the earlier works in flexible multibody systems use fixed reference
frames to describe the small elastic deformations given by the finite element method
of planar mechanical systems [4]. This methodology effectively coupled the rigid
body motion and the small deformations. To be able to analyze complex shaped
flexible multibody systems, Shabana and Wehage proposed the use of substructur-
ing and the model component synthesis method to reduce the number of generalized
coordinates required to represent the flexible components [5, 6]. Reduction of the
dimension of the flexible multibody problem is achieved by choosing only a small
number of suitable vibration modes. In most cases only a small number of natural
modes of vibration are needed, namely those related to the lower natural frequen-
cies of the structure. The static correction modes represent the typical response of a
structure subject to given boundary conditions [7]. Criteria to estimate the number
of modes of vibration of each type have been proposed and proven to be successful
for low velocity systems [8].

The coupling terms is dependent of the type of finite elements used in the model
and involve the derivation of the element shape functions, which are not available in
finite element literature [9, 10]. To enable the general use of finite element types in
the analysis of flexible multibody systems a lumped mass formulation, based on the
diagonalization of the mass matrix preserving the rotational inertia, is used [11].

For problems in which the flexible bodies experience nonlinear deformation the
approach must be different and based on large displacements and rotations theory
[12–14]. For nonlinear problems Kane and coworkers propose a nonlinear theory
that includes the dynamic stiffening [15]. In the line of work developed by the finite
element community [16–18], Cardona and Geradin propose a formulation for the
nonlinear flexible bodies using either exact geometrical models or substructuring
[19, 20]. An approach based on the use of the finite rotations nodal coordinates
enabling the capture of the geometric nonlinear deformations has been proposed
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and named absolute nodal coordinates [21]. A different approach has been proposed
to model geometric nonlinear deformations based on relaxing the need to exhibit
small moderate rotations about the reference frame, by using an incremental finite-
element approach within the flexible body description [22]. The extent of the use of
the referred approach to model material nonlinearities has also been proposed [23].
In these formulations the rigid body motion and the elastic variables are expressed
in inertia reference frames, where the deformation state is derived with respect to
local reference frames and a relation deformation-displacement is obtained but, due
to the inherent nonlinearity of the deformations, the problem cannot be reduced
implying the handling of large system matrices during the analysis process. Because
the deformations observed in the pantograph or on the catenary are small, only linear
elastodynamics is considered in the flexible multibody models used. In any case,
structural damping is used in order to improve the time integration [24].

The use of finite element method on the framework of flexible multibody dynam-
ics implies the definition of a set of reference conditions. Straightforward reference
conditions are the body fixed reference frames, where the frame is attached to one
or more nodes of the flexible body, constraining at least six degrees of freedom
[11]. The mean-axis reference conditions correspond to a different approach by
introducing a floating frame defined to minimize the kinetic energy associated to
the deformation, measured with respect to an observer stationed on the flexible
body [25, 26]. Another type of floating reference frame is called the principal axis
reference conditions where the origin of the reference frame is associated to the in-
stantaneous center of mass and its directions to the principal inertia directions [27].
Augusta and Ambrósio analyze and point out the major advantages and drawbacks
of the different methodologies and their main applications [28]. The mean-axis con-
ditions are used here as reference conditions for the flexible multibody formulation.

To be able to use the extensive library of kinematic constraints developed for
rigid multibody systems with flexible bodies, the concept of virtual bodies has been
developed [29, 30]. The numerical efficiency of this methodology applied to com-
plex structures was shown using a sparse matrix solver after comparison to that of
multibody models with custom developed flexible kinematic joints [31]. Kinematic
joints based on the use of the virtual body approach [32] are implemented in this
work so that the pantograph model can include the type of kinematic joints particu-
lar to its construction, described in reference [32].

Previous studies of the catenary–pantograph interaction emphasized not only the
mechanical aspects of construction, operation and maintenance but also the chal-
lenges of its numerical simulation due to the multi-physics characteristic of this
problem. Ranging from simple linear catenary models using 2D finite elements
[33], or having the catenary represented by cables and loaded by a lumped mass
model of a pantograph [34] several approaches proposed kept the problem simple
enough to tackle it by a single code. In a similar line of work Dahlberg describes
the contact wire as an axially loaded beam and uses modal analysis to represent
its deflection when subjected to transversal and axial loads, showing in the pro-
cess its relation to the critical velocity of the pantograph [35]. Labergri presents
a very thorough description of the pantograph–catenary system that includes a 2D
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finite element model for the catenary and a multibody pantograph, being the contact
treated by unilateral constraints [36]. In all works mentioned it is claimed that the
catenary structural deformations are basically linear and consequently the catenary
systems are modeled using linear finite elements. The slacking of droppers is an
exception being handled as a nonlinear effect. Another approach is proposed by Seo
and coworkers that states the need to treat the catenaries as being nonlinear due to
their large deformations [37, 38]. The large deformation of the catenary is modeled
using the three-dimensional finite element absolute nodal coordinate formulation
while the pantograph is a full 3D multibody model. The interaction between the
pantograph and the catenary is modeled by a sliding joint that allows for the motion
of the pan-head on the catenary cable and no contact loss is represented [38]. Arnold
and Simeon address the pantograph–catenary interaction as time dependent prob-
lems coupled by constraints on boundaries [39]. A half-explicit integration method
reversible in time was also developed in order to preserve as much information as
possible during time discretization. Due to the multi-physics problem involved in
the catenary–pantograph system, Veitl and Arnold proposed a co-simulation strat-
egy between the code PROSA, where a catenary is described by the finite difference
method and the SIMPACK commercial multibody code, used to simulate the pan-
tograph [40]. Several strategies tackling the co-simulation problem, such as gluing
algorithms proposed by Hulbert and coworkers [41] or the co-simulation procedures
suggested by Kubler and Schiehlen [42]. Recognizing that the finite element method
is appropriate to model in detail the catenary and that the multibody dynamics ap-
proach is suited to handle the pantograph dynamics, a co-simulation approach using
two separate codes is proposed in this work.

2 Flexible Multibody Systems

2.1 Flexible Body Equations of Motion

For the flexible body depicted by Fig. 1 let qi D �
qT

r u0T �T
i

be the vector of gener-

alized coordinates of body i , where qr D �
rT

i pT
i

�T
represents the translational and

rotational position of body i local coordinate system .�; �; �/i and vector u0 repre-
sents body i elastic coordinates. The flexible body equations of motion are obtained
by Gonçalves and Ambrósio as [11].

2

4
Mrr Mr� Mrf

M�r M�� M�f

Mfr Mf � Mff

3

5

i
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4
Rri

P!0
i

Ru0
i

3

5 D

2
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�
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f

3
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i
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2

6
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�
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f

3

7
5

i

�
2

4
0 0 0
0 0 0
0 0 Ki

3

5
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4
ri

pi

u0
i

3

5 (1)

where the mass matrix Mi contains the mass, inertia tensor and inertia coupling
terms, vector si represents the velocity quadratic terms and other acceleration in-
dependent terms, gi is the generalized external force vector, and Ki is the finite
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Fig. 1 Flexible body i

X
Z

Y

Point k

hj

xj

xi

zizj

Element j

Body i

iη
dk

bk

ri

elements stiffness matrix. The mass matrix in Eq. (1) may be either consistent or
lumped. In order to maintain the inertia coupling terms independent of the finite
element shape functions, the lumped mass formulation is used in this work [11].

The equations of motion obtained, using consistent or diagonalized mass ma-
trices, do not have a unique displacement field. It is necessary to impose a set of
reference conditions to eliminate the rigid body modes and provide the unique dis-
placement field of the flexible body. In general, reference conditions are written as
kinematic constraints that relate the independent and the dependent elastic coordi-
nates. The mean axis conditions constraints are such that enforce the local frame
.�; �; �/i of body i to follow the motion of the nodes in such a way that the kinetic
energy associated with the deformation corresponds to a minimum value for an ob-
server stationary in the body local frame [25, 26]. The deformation kinetic energy
of a flexible body can be expressed in terms of the generalized elastic coordinates
with respect to the local coordinate system .�; �; �/i as:

T D 1

2
Pu0T M Pu0 D 1

2

nX

kD1

mk
P•0T

k
P•0

k C 1

2

nX

kD1

P™0T
k �k

P™0
k (2)

where the nodal translation velocities are denoted by P•0
k and the nodal angular ve-

locities by P™0
k . The generalized elastic coordinate velocities Pu0

k
of a node k of the

body mesh are written in terms of generalized set of coordinates qr of the body as:

Pu0
k D

" P•0
kP™0
k

#

D
�

AT
� Pdk � Pr C A Qb0

k
¨0�

P̨ 0
k � ¨0

�
(3)

in which matrix A represents the transformation matrix from the body local coordi-
nate system to the inertial frame. Minimizing the deformation kinetic energy of the
body with respect to the translational and rotational velocities leads to

TPr D @T

@Pr D
nX

kD1

mk

� Pdk � Pr C A Qb0
k¨

0� D 0

T¨0 D @T

@¨0 D
nX

kD1

mk

�
A Qb0

k

�T � Pdk � Pr C A Qb0
k¨

0�C
nX

kD1

�k

� P’0
k � ¨0� D 0 (4)
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Substituting Eq. (3) into Eq. (4) results in the velocity constraint equations that
define the mean axis reference conditions, as

P̂ .ma/ �

8
ˆ̂
<

ˆ̂
:

nP

kD1

mk
P•0

k

nP

kD1

mk
Qb0T

k
P•0

k C
nP

kD1

�k
P™0

k

9
>>=

>>;
D 0 (5)

The velocity constraint equations may be written in more compact form as:

P̂ .ma/ � ˆ
.ma/
u0 Pu0 D 0 (6)

where ˆ.ma/
u0 represents the Jacobian matrix of the mean axis reference conditions

constraint equations, which is explicitly written as

ˆ
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u0 D

2
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ˆ
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5 (7)

The time derivative of Eq. (6) results in the acceleration constraint equations of the
mean axis reference conditions, written here in a compact form as

R̂ .ma/ � ˆ
.ma/
u0 Ru0 D ”.ma/ (8)

The constraints associated to the mean axis conditions are imposed on the flexible
body equations of motion, described by Eq. (1), leading to

2
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5 (9)

Note that the mean axis conditions are non-holonomic constraint conditions and can
only be defined at the velocity and acceleration levels.

The flexible body equations of motion, shown in Eq. (9), include a very large
number of generalized coordinates, leading to a computational expensive proce-
dure. For linear elastic small deformations, as those experienced by the pantograph
components in the applications foreseen in this work, it is possible to represent the
deformation of the flexible body as a sum of deformation modes that are constant
in time. Let those deformation modes be the modes of vibration associated to the
natural frequencies of the flexible body. The generalized elastic coordinates of body
i are now described by a weighted sum of these modes as

u0 D Xw (10)



A Flexible Multibody Pantograph Model 7

where w represents the contributions of the modes of vibration towards the nodal
displacements and X the modal matrix containing a selected number of modes of
vibration ¦i that are obtained by solving the eigenproblem:

Kff¦i D N!i Mff¦i (11)

The solution of Eq. (11) is independent of the reference conditions used to constrain
the rigid body movement of the elastic coordinates. Therefore the modes of vibration
obtained correspond to those of a structure free in space, defined as free-free modes.
The vibration modes obtained related to the first six lowest frequencies, generally
null, represent the rigid body motion of the flexible body. These modes of vibration
are removed from the modal matrix. A simpler system of equations is obtained by
normalizing ¦i with respect to the mass matrix Mff

XT Mff X D I (12)

XT Kff X D ƒ (13)

where ƒ is a diagonal matrix containing the square the natural frequencies associ-
ated to each mode of vibration.

By substituting Eq. (10), and its time derivatives, into Eq. (9), pre-multiplying the
second row by XT and using the relations described by Eqs. (12) and (13) leads to:
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5 (14)

The number of generalized elastic coordinates used in Eq. (14) is equal to the num-
ber of vibration modes included in the modal matrix, thus being possible to reduce
considerably the problem dimension considering a general use of flexible multibody
models. The effects of local deformations induced by high concentrated loads origi-
nated, for example, by kinematic constraint reaction forces or other force elements,
can also be included in the modal synthesis using of static correction modes [7, 8].

2.2 Kinematic Joints with Virtual Bodies

The use of flexible bodies requires that the kinematic joints implemented in the
multibody code are re-written again for the new set of generalized coordinates used.
A form to circumvent this difficulty is to use the concept of virtual bodies introduced
by Bae et al. [30] and further developed by Ambrosio and Gonçalves [31, 32]. With
the virtual body approach, a rigid joint between a flexible body and a rigid body
is derived for a node k of the mesh of the flexible body and the origin of the vir-
tual rigid body fixed reference frame, as depicted in Figs. 2 and 3. Afterwards, any
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a b

Fig. 2 Rigid joint between a flexible body i and a massless rigid body j : (a) virtual body; (b) nodal
and body fixed coordinate systems

a b

Fig. 3 External forces applied on a flexible body: (a) Forces applied directly on the nodes;
(b) FORCES applied on the virtual body attached to the finite element nodes

kinematic joint between the flexible body and other bodies of the system is estab-
lished using the virtual body instead, making possible to use any of the kinematic
joints available on the multibody code library.

The constraint equations for the rigid joint are defined for the translational and
rotational parts of the constraint independently. Let a spherical joint be defined be-
tween node k of flexible body i and a point P of the rigid body j , coincident to the
origin of the body fixed coordinate system. This is the translation part of the rigid
kinematic joint written as

ˆ.t/ � rj � ri � Ai bk D 0 (15)

In order to define the rotational part of the rigid joint let a coordinate system
.�; �; �/k be attached to node k, as showed in Fig. 3b. The nodal frame is defined
by unit vectors Nek D � Ne1

k
Ne2

k
Ne3
k

� � I initially parallel to the flexible body i local
reference frame .�; �; �/i unit vectors e0

i . Unit vectors defining both nodal and body
coordinate frames are expressed in the inertial frame .X; Y;Z/ as:

ek D Ai Ak Nek (16)

ej D Aj e0
j (17)
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where Ak D I C Q™0
k

represents the nodal rotational matrix for small rotations. The
rotational part of the rigid joint constraint enforces that the relative orientation be-
tween the node and virtual body reference frames remains invariant, i.e.

ˆ.r/ � �
Ai Akem

k

�T
Aj e0l

j � ˇml D 0I with .m; l/ D .2; 1/; .3; 1/; .2; 3/ (18)

in which only three equations are defined, corresponding to the independent rota-
tional constraints. Constants ˇml are related to the initial angle between the axis of
the coordinate systems in the undeformed state.

The external applied forces on the flexible bodies are applied to the nodes of the
finite element model, as shown in Fig. 3a. Assume that force fi and a moment ni ,
shown in Fig. 3a, are applied in node k of the flexible body. Then, introducing a
virtual body rigidly attached to that node allows for the direct applications of these
forces on the center of mass, as shown in Fig. 3b. Note that the use of the virtual
body approach allows for setting rigid joints with more than one node at a time. This
approach can be used to setup complex interaction conditions between the flexible
body and the external environment.

3 Co-simulation of Multibody and Finite Element Codes

The fundamental element of the co-simulation between a finite element code, de-
nominated by EUROPACAS-FE, and the multibody code, herein denominated by
EUROPACAS-MB, is the contact module between the two subsystems. The contact
force due to pantograph–catenary interaction is characterized by a high-frequency
oscillating force with high relative amplitude. Railway industry measurement data
shows that reasonable values for the contact force are, for a train running at approx-
imately 80 m/s: a mean value of 200 N oscillating between 400 and 100 N. Loss of
contact in particular points of the catenary may also occur. Therefore impact effects
must be included in the model.

Most continuous force contact force models have similar features, i.e., they eval-
uate the contact force as a function of a pseudo-penetration between two elements
and a proportionality factor often designated as stiffness of the contact elements.
The contact model used here, proposed by Lankarani and Nikravesh [43], is of the
Hertzian type and includes internal damping and relates the normal contact force fn

with the penetration between two rigid bodies ı by

fn D Kın

"

1C 3.1 � e2/

4

Pı
Pı.�/

#

(19)

where K is the generalized stiffness, e is the restitution coefficient, Pı is the relative
penetration velocity and Pı.�/ is the relative impact velocity. Factor K is obtained
from the Hertz contact theory as the external contact between two cylinders with
perpendicular axis.
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The issue of the co-simulation is now ‘reduced’ to be able to find the state
variables of the finite element catenary model and of the multibody pantograph
model at the same instants of time, so that the contact force and its application
points can be evaluated and used in the equations of motion of each subsystem.

3.1 Integration of the Finite Elements Equations of Motion

The motion of the catenary is characterized by small rotations and small defor-
mations, in which the only nonlinear effect is the slacking of the droppers, being
typically modeled with linear finite elements. All catenary elements, contact and
messenger wires are modeled by using Euler–Bernoulli beams. Using the finite ele-
ment method, the equilibrium equations for the structural system are [44]

M a C C v C K x D f (20)

where M, C and K are the finite element global mass, damping and stiffness ma-
trices of the finite element model of the catenary, not to be confused with the finite
element models of the flexible bodies used for the pantograph. The nodal displace-
ments vector is x while v is the vector of nodal velocities, a is the vector of nodal
accelerations and f is the vector with the applied forces. Equation (20) is solved for
x or for a depending on the integration method used.

In this work the integration of the nodal accelerations uses a Newmark family
integration algorithm [45]. The contact forces are evaluated for t C�t based on the
position and velocity predictions for the FE mesh and on the pantograph predicted
position and velocity. The finite element mesh accelerations are calculated by

�
M C ��tC C ˇ�t2K

�
atC�t D ftC�t � CQvtC�t � K QdtC�t (21)

Predictions for new positions and velocities of the nodal coordinates of the linear
finite element model of the catenary are found as

QdtC�t D dt C�tvt C �t2

2
.1 � 2ˇ/ at (22a)

QvtC�t D vt C�t .1 � �/ at : (22b)

Then, with the acceleration atC�t the positions and velocities of the finite elements
at time t C�t are corrected by

dtC�t D QdtC�t C ˇ�t2atC�t (23a)

vtC�t D QvtC�t C ��tatC�t : (23b)

This procedure is repeated until convergence is reached for a given time step.
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3.2 Integration of the Multibody Equations of Motion

The forward dynamic analysis of a multibody system requires that the position vec-
tor q0 and the velocity vector Pq0 are given. The multibody equations of motion
assembled and solved for the unknown accelerations, which are in turn integrated
in time together with the velocities. Due to the long periods of analysis and to the
structure of the equilibrium equations not only the stabilization of the integration
must be insured but also the constraint violations must be eliminated. In this work,
the Baumgarte constraint stabilization method is used to stabilize the multibody sys-
tem equations of motion and the Coordinate Partition Method is used to correct the
position and velocity constraint equations when the violations exceed a prescribed
acceptable tolerance [46], as depicted in Fig. 4.

The pantograph–catenary system is characterized by an intermittence of the
contact between the contact wire of the catenary and the registration strip of the pan-
tograph. The numerical methods used for the dynamic simulation must be able to
represent the loss and start of contact. This fact puts particular restrictions on the
numerical integration algorithms for both pantograph and catenary with particular
emphasis on the time step size selection. The multibody code used for the panto-
graph dynamics, considered here, uses as a Gear multi-step multi-order integration
algorithm [47, 48].

3.3 Co-simulation Using Different Codes

The analysis of the pantograph–catenary interaction is done by two indepen-
dent codes, the pantograph code, EUROPACAS-MB, which uses a multibody

Fig. 4 Flowchart representing the forward dynamic analysis of a multibody system implemented
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Fig. 5 Structure of the communication scheme between the MB and the FE codes

formulation, and the catenary code, EUROPACAS-FE that is a finite element soft-
ware. Both programs can work as stand-alone codes. The EUROPACAS-MB code
provides the EUROPACAS-FE code with the positions and velocities of the pan-
tographs registration strips. EUROPACAS-FE calculates the contact force, using
the contact model represented by Eq. (19), and the location of the application points
in the pantographs and catenary, using geometric interference. These forces are
applied to the catenary, in the finite element code, and to the pantograph model, in
the MB code, as implied in Fig. 5. Each code handles separately the equations of
motion of each sub-system based on the shared force information.

The compatibility between the two integration algorithms imposes that the state
variables of the two subsystems are readily available during the integration time but
also that a reliable prediction of the contact forces is also available at any given
time step. Several strategies can be envisaged to tackle this co-simulation problem
such as the gluing algorithms proposed by Hulbert et al. [41] or the co-simulation
procedures suggested by Kubler and Schiehlen [42]. The key of the synchronization
procedure between the MB and FE codes is the time integration, which must be such
that it is ensured the correct dynamic analysis of the pantograph–catenary system,
including the loss and regain of contact. Let it be assumed that the FE integration
code is of the Newmark family and has a constant time step. Moreover, let it be
assumed that the time step of the FE is small enough not only to assure the stability
of the integration of the catenary but also to be able to capture the initiation of
the contact between the pantograph registration strip and the contact wire of the
catenary. The only restriction that is imposed in the integration algorithm of the
multibody code is that its time step cannot exceed the time step of the FE code.
Finally let it be assumed that both codes can start independently from each other, i.e.,
the catenary FE model and the pantograph MB model include the initial conditions
for the start of the analysis expressed in terms of the initial positions and velocities
of all components of the systems. A fully integrated communication interface is
implemented according to the two stages represented in Fig. 6.

Initially, when both codes exchange input data information, it is necessary to
perform initialization procedures, while, after, data is shared during the dynamic
analysis [49,50]. The EUROPACAS-MB code provides the EUROPACAS-FE code
with the information about the number of contacting bodies in the model, and their
initial position and velocity. Subsequently, the EUROPACAS-FE code provides the
MB code with information about the initial and final analysis time and the time step
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Fig. 6 Communication procedure during the dynamic analysis

to be used in the FE analysis. Note that nowhere in the communication procedure
outlined it is implied what kind of integration algorithm is used for the FE catenary
analysis, provided that it is a fixed time step integrator. Even this condition can be
relaxed, but it would not have any practical implication as it is not usual that FE
dynamic analysis is performed with variable time step integrators.
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4 Analysis of the Pantograph–Catenary Contact Problem

4.1 Pantograph Multibody Models

The flexibility of a pantograph is described by the experimental modes of vibration
shown in Table 1 for the CX Pantograph [51]. The modal data acquisition is obtained
by imposing a cyclical force to the pantograph head of constant value with frequen-
cies ranging from 0 to 200 Hz. It is observed that important natural frequencies exist
in the pantograph within the range of the operating frequencies of the overhead elec-
tric collection system, justifying that a flexible multibody approach is used to model
the pantograph.

Several models of the pantograph, shown in Fig. 7, are modeled using a rigid-
flexible multibody approach to evaluate their influence on the quality of the
pantograph–catenary contact. The lower and top arms are steel tubular structures
with varying cross-section, whereas the pantograph head is composed by steel,
composite materials and carbon registration strips. Although highly detailed FEM
models may be derived using solid and shell finite elements, simplified models of
the referred bodies are used as local effect analysis as stress and strain analysis
are not required. The mechanical data for the pantograph top arm and for its finite
element model is shown in Table 2.

The modes of vibration of the top arm FEM model are obtained for free-free con-
figuration, i.e., the model free in space. The first six structural natural frequencies
are shown in Table 3.

The pantograph head, shown in Fig. 8, is another component for which the flex-
ibility is expected to play a role. Its structure is composed by several elements with

Table 1 Representative experimental modal basis of the CX Pantograph

Mode
nı

Frequency
(Hz) Description

Mode
nı

Frequency
(Hz) Description

1 11.0 Rotational
movement
of the
main frame
around base
(Z)

2 19.3 Bending of
the top
link (Y)

3 40.1 Bending of
the lower
link (Y)

X 4 45.7 Bending
of the
panto-
graph head
(Z)

5 49.3 Bending of
the top
arm (Z)

6 71.1 Bending of
the top
link (Z)
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Fig. 7 CX pantograph used
for the rigid-flexible
multibody models

Lower arm

Top arm

Pantograph
head

Table 2 Material and geometric data for the upper arm
and finite element information

Mechanical data Unit Value

Mass [kg] 15.6
Young Modulus [GPa] 206.8
Density Œkg=m3� 7,820
Average length [m] 1.36

FEM model data Value

Finite element [type] 3D elastic beam
Cross-section [type] Circular hollow
Cross-section area Œm2� 6:9 � 10�4

Finite element 42
Nodes 43

different materials, including steel, for the support structures, carbon strips, for the
registration strips, and composite materials, for the aerodynamic elements.

As the first mode of vibration of the pantograph head is a flexion mode, the
structure may be modeled in a simple and straightforward way as a straight beam.
The FEM model used is composed by a collection of beam elements, with rectan-
gular cross-section and two lumped masses at the end-points of the straight beam,
with the general characteristics shown in Table 4. The modes of vibration, for the
free-free configuration, are described in Table 5.

In order to appraise the influence of the flexibility of the top arm to the global dy-
namic behavior of the pantograph in the rigid-flexible pantograph multibody model
only the top arm is described as a flexible body. Figure 9 shows a representation of
this multibody model, referred to as pantograph model 2.

By considering the top arm as a flexible body, four virtual bodies are added to
the multibody model to allow for the definition of kinematic joints. In Table 6, the
main characteristics of the flexible multibody model are described.

The characteristics of the rigid bodies used in the multibody model are presented
in Table 7 for the fully rigid multibody model. Note that the top arm is flexible and,
consequently, the mass and inertia is not explicitly given as input data. The virtual
bodies shown in Table 8, and added to the rigid multibody model, are in the points
of the top arm involving kinematic joints.
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Fig. 8 Pantograph head
representation

Registration
Strips

Support 
Structure

Aerodynamic
elements

Table 4 Pantograph head
FEM model characteristics

FEM model data Unit Value

Finite element 3D elastic beam
Cross-section Rectangular
Cross-section area Œm2� 5� 10�4

Finite element 2
Finite element Lumped mass
Finite element 2
Nodes 3

Table 5 Natural frequencies and modes of vibration of the pantograph head FEM model

Mode
nı

Frequency
(Hz) Description

Mode
nı

Frequency
(Hz) Description

1 49.6 First bending
moment X

2 98.7 Rotation X

3 173.9 Second bending
moment X

4 335.0 First bending
moment Z

5 398.7 Second
rotation X

6 701.0 Translation C
bending X

The virtual bodies, 8 through 11, are linked to the flexible bodies through the rigid
kinematic joints and to the rigid bodies through standard kinematic joints. Table 9
presents the definition of the rigid kinematic joints for the rigid-flexible pantograph
multibody model 2. Note that the rigid-flexible joints rigidly attach a node of the
flexible body mesh to a virtual body. Consequently, the mesh of the flexible body
must be generated in such a way that at the least one node is included at each point
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Fig. 9 Pantograph model 2 with a flexible top arm

Table 6 Characteristics
of the pantograph multibody
model 2

Multibody model data Number

Rigid bodies 6
Virtual bodies 4
Flexible bodies 1
Rigid kinematic joints 8
Rigid-flexible kinematic joints 3

Table 7 Rigid body data of the pantograph multibody model 2

Inertia properties
.kg:m2/

Initial
position (m)

Initial
orientation

ID Rigid body Mass (kg) I��=I��=I�� x0=y0=z0 e1=e2=e3

1 Pantograph
base

32.65 2.76/4.87/2.31 0.00/0.00/0.00 0.00/0.00/0.00

2 Lower arm 32.18 0.31/10.43/10.65 �0:57=0:00=0:41 0.00/0.17/0.00
3 Upper arm 15.6 0.15/7.76/7.86 �0:39=0:00=1:06 0.00/�0:18=0:00
4 Lower link 3.10 0.05/0.46/0.46 �0:89=0:00=0:28 0.00/0.21/0.00
5 Upper link 1.15 0.05/0.48/0.48 �0:36=0:00=1:00 0.00/�0:16=0:00
6 Stab. arm 1.51 0.07/0.05/0.07 0.55/0.00/1.42 0.00/0.00/0.00
7 Panto. head 9.50 1.59/0.21/1.78 0.55/0.00/1.51 0.00/0.00/0.00

to which a kinematic joint is attached. The linear force elements are detailed in
Table 10. The force exerted by the air pump, located between the lower arm and the
base of the pantograph, is represented as a constant moment n� D 440 Nm applied
to the lower arm.
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Table 8 Data for the virtual bodies used in the flexible pantograph multibody model 2

Inertia properties
.kg:m2/

Initial
position (m)

Initial
orientation

ID Rigid body Mass (kg) I��=I��=I�� x0=y0=z0 e1=e2=e3

8 Virtual
body

0.0 0.0/0.0/0.0 �1:19=0.00=�0:13 0.00/�0:18=0:00
9 Virtual

body
0.0 0.0/0.0/0.0 1.01/�0:31=0:00 0.00/�0:18=0:00

10 Virtual
body

0.0 0.0/0.0/0.0 �1:01=0:00=0:00 0.00/�0:18=0:00
11 Virtual

body
0.0 0.0/0.0/0.0 1.01/0.31/0.00 0.00/�0:18=0:00

Table 9 Definition of the kinematic joints used in flexible multibody model 2

Connected bodies Attachment points Local coordinates (m)

ID Kinematic joint i j Body i .�j =�j =�/ Body j .�j =�j =�j /

1 Revolute joint 1 2 .0:02=0:00=0:13/P .0:82=0:00=0:00/P
.0:02=1:00=0:13/Q .0:82=1:00=0:00/Q

2 Revolute joint 2 10 .�0:82=0:00=0:00/P .0:00=0:00=0:00/P
.�0:82=1:00=0:00/Q .0:00=1:00=0:00/Q

3 Revolute joint 11 6 .0:00=0:00=0:00/P .0:00=0:31=0:00/P
.0:00=1:00=0:00/Q .0:00=1:31=0:00/Q

4 Spherical joint 1 4 .�0:26=0:00=0:00/P .0:69=0:00=0:00/P
5 Spherical joint 8 4 .0:00=0:00=0:00/P .�0:62=0.00=�0:03/P
6 Spherical joint 2 5 .�0:78=0:00=0:00/P .�1:00=0:00=0:00/P
7 Spherical joint 5 6 .0:96=0:00=0:00/P .0:00/0.00=�1:05/P
8 Spherical joint 9 6 .0:00=0:00=0:00/P .0:00=0.00=�1:05/P
9 Rev.-prism. joint 6 7 .0:00=0:34=0:00/P .0:00=0:34=0:00/P

.0:00=0:34=1:00/Q .0:00=1:34=0:00/Q

Table 10 Linear force elements data for the flexible multibody model 2

Spring elements Bodies Attach points local coord (m)

ID

Linear
force
element

Stiffness
(N/m)

Length
(m)

Damping
coefficient
(N.s/m) i j �i =�i=�i �j =�j =�j

1 Spring-
damper

2,000.00 9.06 3,000.00 1 2 0.28/0.00/0.09 0:82=0.00=�0:05
2 Spring-

damper
3,600.00 0.12 13.00 6 7 0.00/0.34/0.00 0.00/0.34/0.00

3 Spring-
damper

3,600.00 0.12 13.00 6 7 0:00=�0:34=0:00 0:00=�0:34=0:00

Another rigid-flexible pantograph multibody model, depicted as model 4 in
Fig. 10 and described in Table 11, is used here considering the flexibility of the pan-
tograph head only. The objective of this model is to understand the influence to the
pantograph head on the quality of contact.
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Fig. 10 Pantograph model 4 with flexible head

Table 11 Characteristics of
the flexible pantograph head

Multibody model data Number

Rigid bodies 6
Virtual bodies 4
Flexible bodies 1
Rigid kinematic joints 8
Rigid-flexible kinematic joints 4

Table 12 Data for the virtual bodies in the rigid-flexible pantograph multibody model 4

Inertia properties
.kg:m2/

Initial
position (m)

Initial
orientation

ID Rigid body Mass (kg) I��=I��=I�� x0=y0=z0 e1=e2=e3

8 Virtual body 0.0 0.0/0.0/0.0 0.55/0.34/1.51 0.00/0.00/0.00
9 Virtual body 0.0 0.0/0.0/0.0 0.55=�0:34=1:51 0.00/0.00/0.00
10 Virtual body 0.0 0.0/0.0/0.0 0.55/0.34/1.51 0.00/0.00/0.00
11 Virtual body 0.0 0.0/0.0/0.0 0.55=�0:34=1:51 0.00/0.00/0.00

In order to establish the kinematic constraints between the stabilization arm
and the flexible pantograph head, four virtual bodies are used to establish a
revolute-prismatic joint, to apply spring-dampers and to allow the application
of the contact force. The positions of the virtual bodies, at the attachment locations
of the kinematic joints, are shown in Table 12.

The virtual bodies are also used in order to handle all interactions between
the flexible body and the surrounding environment, including forces generated by
spring-damper elements or by contact. The rigid multibody model linear force el-
ement between the stabilization arm and the pantograph head are now set between
the stabilization arm and virtual bodies.
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Fig. 11 Representation of a SNCF 25 kV suspended catenary

4.2 Catenary Finite Element Model

Catenaries are complex periodical structures, such as those presented in Fig. 11.
Examples of typical structural elements involved in the catenary model are the con-
tact, stitch and messenger wires, droppers and registration arms. Depending on the
catenary system there are other elements that may have to be considered. In any
case, the contact wire is the responsible for the contact between catenary and panto-
graph and therefore the element that provides electrical power. The messenger wire
prevents excessive sag caused by the contact wire weight. Both of these wires are
connected by vertical, tensile force droppers.

Even in a single European country there are different types of catenaries in use
with different particularities in their construction. The contact wire is typically
characterized by a small cross-section, compared to its length, being primarily sus-
pended at the masts. Depending on the topology of the track and on the exposure to
transversal winds the masts are placed at a distance of 27–63 m from each other. To
maintain a constant mechanical stiffness of the contact wire a set of elements are
designed to suspend the contact wire at these locations, specific of each suspended
catenary type. In the French 25 kV catenary represented in Fig. 11 the contact wire
is suspended by a low inertial elemental called the steady arm which is linked to the
registration arm. The latter is suspended with respect to the messenger wire by the
stitch wire and is connected by a hinge to the mast. This solution aims at limiting
the dynamic coupling between the contact wire and the supporting elements. To
minimize the spatial curve described by the contact wire and to maximize the wave
propagation velocity of the contact wire a static load is applied to its extremities.
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If seen from the top, the contact wire is suspended forming a zigzag around the
longitudinal direction, designated by stagger. This geometric characteristic of the
suspended catenary enables a constant wear of the pantograph registration strip.

4.3 Simulation Scenario and Results

To be able to understand the influence of the flexibility of the structural elements
of the pantograph on the contact dynamics of the pantograph–catenary interface a
single pantograph scenario is analyzed. The scenario corresponds to a single panto-
graph system attached to a railway vehicle running at approximately 300 km/h on a
straight track, as depicted in Fig. 12.

The flexible multibody model 2 allows the analysis of the deformation of the
upper arm. As expected the deformation is described by the bending modes of vi-
bration. The results depicted in Fig. 13 show that the dominant mode of vibration on
the pantograph top arm behavior is the first bending mode.

The bending of the upper arm results in lowering the position of the contact points
with the pantograph head, as depicted in Fig. 14. However, the differences observed
on the contact kinematics are not reflected on the contact forces, which are similar
for the rigid and flexible models as seen in Fig. 15.

The analysis of the influence of pantograph head deformation in the contact force
generated due to the pantograph–catenary interaction is analyzed also. Disregarding
the deformation of the main frame can be, it is possible to understand the influence
of the flexibility of the pantograph head by modeling the pantograph using the flex-
ible multibody model 4. As depicted in Fig. 16, the first and second bending modes
contribute to the deformation of the pantograph head. The deformation of the pan-
tograph head has a very small influence on the contact forces, as seen in Fig. 17.

Although, for operational conditions and considering the present catenary model
the influence of the deformation of the pantograph head may be disregarded with-
out loss of accuracy, its influence is important to develop an actively controlled
pantograph. Another aspect not studied in this work is the effect of the pantograph

Catenary Contact Wire

Pantograph
Subsystem

Vehicle 
Subsystem

Rigid Link

Prescribed Motion
Constraint Joint

Fig. 12 Scenario for a high-speed train equipped with a pantograph running on a tangent track


