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Preface

Semi-Markov processes are a generalization of Markov and of renewal pro-
cesses. They were independently introduced in 1954 by Lévy (1954), Smith
(1955) and Takacs (1954), who essentially proposed the same type of process.
The basic theory was given by Pyke in two articles (1961a,b). The theory was
further developed by Pyke and Schaufele (1964), Çinlar (1969, 1975), Koroliuk
and his collaborators, and many other researchers around the world.

Nowadays, semi-Markov processes have become increasingly important in
probability and statistical modeling. Applications concern queuing theory, re-
liability and maintenance, survival analysis, performance evaluation, biology,
DNA analysis, risk processes, insurance and finance, earthquake modeling,
etc.

This theory is developed mainly in a continuous-time setting. Very few
works address the discrete-time case (see, e.g., Anselone, 1960; Howard, 1971;
Mode and Pickens, 1998; Vassiliou and Papadopoulou, 1992; Barbu et al.,
2004; Girardin and Limnios, 2004; Janssen and Manca, 2006). The present
book aims at developing further the semi-Markov theory in the discrete-time
case, oriented toward applications.

This book presents the estimation of discrete-time finite state space semi-
Markov chains under two aspects. The first one concerns an observable semi-
Markov chain Z, and the second one an unobservable semi-Markov chain Z
with a companion observable chain Y depending on Z. This last setting, de-
scribed by a coupled chain (Z, Y ), is called a hidden semi-Markov model
(HSMM).

In the first case, we observe a single truncated sample path of Z and then
we estimate the semi-Markov kernel q, which governs the random evolution
of the chain. Having an estimator of q, we obtain plug-in-type estimators for
other functions related to the chain. More exactly, we obtain estimators of
reliability, availability, failure rates, and mean times to failure and we present
their asymptotic properties (consistency and asymptotic normality) as the
length of the sample path tends to infinity. Compared to the common use of
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Markov processes in reliability studies, semi-Markov processes offer a much
more general framework.

In the second case, starting from a truncated sample path of chain Y, we
estimate the characteristics of the underlying semi-Markov chain as well as
the conditional distribution of Y. This type of approach is particularly use-
ful in various applications in biology, speech and text recognition, and image
processing. A lot of work using hidden Markov models (HMMs) has been con-
ducted thus far in these fields. Combining the flexibility of the semi-Markov
chains with the advantages of HMMs, we obtain hidden semi-Markov models,
which are suitable application tools and offer a rich statistical framework.

The aim of this book is threefold:

• To give the basic theory of finite state space semi-Markov processes in
discrete time;

• To perform a reliability analysis of semi-Markov systems, modeling and
estimating the reliability indicators;

• To obtain estimation results for hidden semi-Markov models.

The book is organized as follows.
In Chapter 1 we present an overview of the book.
Chapter 2 is an introduction to the standard renewal theory in discrete

time. We establish the basic renewal results that will be needed subsequently.
In Chapter 3 we define the Markov renewal chain, the semi-Markov chain,

and the associated processes and notions. We investigate the Markov renewal
theory for a discrete-time model. This probabilistic chapter is an essential step
in understanding the rest of the book. We also show on an example how to
practically compute the characteristics of such a model.

In Chapter 4 we construct nonparametric estimators for the main charac-
teristics of a discrete-time semi-Markov system (kernel, sojourn time distribu-
tions, transition probabilities, etc.). We also study the asymptotic properties
of the estimators. We continue the example of the previous chapter in order
to numerically illustrate the qualities of the obtained estimators.

Chapter 5 is devoted to the reliability theory of discrete-time semi-Markov
systems. First, we obtain explicit expressions for the reliability function of such
systems and for its associated measures, like availability, maintainability, fail-
ure rates, and mean hitting times. Second, we propose estimators for these
indicators and study their asymptotic properties. We illustrate these theoret-
ical results for the model described in the example of Chapters 3 and 4, by
computing and estimating reliability indicators.

In Chapter 6 we first introduce the hidden semi-Markov models (HSMMs),
which are extensions of the well-known HMMs. We take into account two types
of HSMMs. The first one is called SM-M0 and consists in an observed sequence
of conditionally independent random variables and of a hidden (unobserved)
semi-Markov chain. The second one is called SM-Mk and differs from the
previous model in that the observations form a conditional Markov chain of



Preface IX

order k. For the first type of model we investigate the asymptotic properties of
the nonparametric maximum-likelihood estimator (MLE), namely, the consis-
tency and the asymptotic normality. The second part of the chapter proposes
an EM algorithm that allows one to find practically the MLE of a HSMM.
We propose two different types of algorithms, one each for the SM-M0 and
the SM-M1 models. As the MLE taken into account is nonparametric, the
corresponding algorithms are very general and can also be adapted to obtain
particular cases of parametric MLEs. We also apply this EM algorithm to a
classical problem in DNA analysis, the CpG islands detection, which generally
is treated by means of hidden Markov models.

Several exercises are proposed to the reader at the end of each chapter.
Some appendices are provided at the end of the book, in order to render it as
self contained as possible. Appendix A presents some results on semi-Markov
chains that are necessary for the asymptotic normality of the estimators pro-
posed in Chapters 4 and 5. Appendix B includes results on the conditional
independence of hidden semi-Markov chains that will be used for deriving
an EM algorithm (Chapter 6). Two additional complete proofs are given in
Appendix C. In Appendix D some basic definitions and results on finite-
state Markov chains are presented, while Appendix E contains several classic
probabilistic and statistical results used throughout the book (dominated con-
vergence theorem in discrete time, asymptotic results of martingales, Delta
method, etc.).

A few words about the title of the book. We chose the expression “to-
ward applications” so as to make it clear from the outset that throughout the
book we develop the theoretical material in order to offer tools and techniques
useful for various fields of application. Nevertheless, because we speak only
about reliability and DNA analysis, we wanted to specify these two areas in
the subtitle. In other words, this book is not only theoretical, but it is also
application-oriented.

The book is mainly intended for applied probabilists and statisticians in-
terested in reliability and DNA analysis and for theoretically oriented reliabil-
ity and bioinformatics engineers; it can also serve, however, as a support for
a six-month Master or PhD research-oriented course on semi-Markov chains
and their applications in reliability and biology.

The prerequisites are a background in probability theory and finite state
space Markov chains. Only a few proofs throughout the book require elements
of measure theory. Some alternative proofs of asymptotic properties of esti-
mators require a basic knowledge of martingale theory, including the central
limit theorem.

The authors express their gratitude to Mei-Ling Ting Lee (Ohio State Uni-
versity) for having drawn their attention to hidden semi-Markov models for
DNA analysis. They are also grateful to their colleagues, in particular N. Bal-
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akrishnan, G. Celeux, V. Girardin, C. Huber, M. Iosifescu, V.S. Koroliuk, M.
Nikulin, G. Oprisan, B. Ouhbi, A. Sadek, and N. Singpurwalla for numerous
discussions and/or comments. Our thanks go to M. Boussemart, for his initial
participation in this research project, and to the members of the statistical
work group of the Laboratory of Mathematics Raphaël Salem (University of
Rouen), for helpful discussions on various topics of the book. The authors
also wish to thank J. Chiquet and M. Karaliopoulou who read the manuscript
and made valuable comments. Particularly, we are indebted to S. Trevezas
for having tracked mistakes in the manuscript and for our discussions on this
subject.

The authors would equally like to thank Springer editor John Kimmel for
his patience, availability, advice, and comments, as well as the anonymous
referees who helped improve the presentation of this book by way of useful
comments and suggestions.

It is worth mentioning that this book owes much, though indirectly, to the
“European seminar” (http://www.dma.utc.fr/~nlimnios/SEMINAIRE/).

Rouen, France Vlad Stefan BARBU
Compiègne, France Nikolaos LIMNIOS
March, 2008
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1

Introduction

This introductory chapter has a twofold purpose: to answer the basic question
“Why do we think that the topic presented in the book is interesting and worth
studying?” and to give an overall presentation of the main features discussed
in the book.

1.1 Object of the Study

First, we want to look at the main reasons which motivated us to study
the topic of this book. Basically, here we answer two questions: “Why semi-
Markov?” and “Why work in discrete time?”

1.1.1 The Underlying Idea in Semi-Markov Models

Much work has been carried out in the field of Markov processes, and a huge
amount of Markov process applications can be found in the literature of the
last 50 years. One of the reasons for applying Markov process theory in various
fields is that the Markovian hypothesis is very intuitive and convenient when
dealing with applications and the underlying computations are quite simple.
One can formulate this hypothesis as follows: if the past and the present of a
system are known, then the future evolution of the system is determined only
by its present state, or equivalently, the past and the future are condition-
ally independent given the present (state). Thus the past history of a system
plays no role in its future evolution, which is usually known as the “memo-
ryless property of a Markov process.” But the Markovian hypothesis imposes
restrictions on the distribution of the sojourn time in a state, which should be
exponentially distributed (continuous case) or geometrically distributed (dis-
crete case). This is the main drawback when applying Markov processes in
real applications.

V.S. Barbu, N. Limnios, Semi-Markov Chains and Hidden Semi-Markov Models
toward Applications, DOI: 10.1007/978-0-387-73173-5 1,
c© Springer Science+Business Media, LLC 2008



2 1 Introduction

What came naturally was to relax the underlying Markov assumption in
order to:

• Allow arbitrarily distributed sojourn times in any state;
• Still have the Markovian hypothesis, but in a more flexible manner.

A process that has these two properties will be called a semi-Markov process.

To be more specific, let us consider a random system with finite state space
E = {1, . . . , s}, whose evolution in time is governed by a stochastic process
Z = (Zk)k∈N. We note here that all stochastic processes taken into account
throughout this book are considered to evolve in discrete time. We will use
the term chain for a discrete-time stochastic process.

Let us also denote by S = (Sn)n∈N the successive time points when state
changes in (Zn)n∈N occur and by J = (Jn)n∈N the chain which records the
visited states at these time points. Let X = (Xn)n∈N be the successive sojourn
times in the visited states. Thus, Xn = Sn−Sn−1, n ∈ N

∗, and, by convention,
we set X0 = S0 = 0.
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Fig. 1.1. Sample path of a semi-Markov chain

The relation between process Z and process J of the successively visited
states is given by

Zk = JN(k), or, equivalently, Jn = ZSn , n, k ∈ N,

where N(k) := max{n ∈ N | Sn ≤ k} is the discrete-time counting process
of the number of jumps in [1, k] ⊂ N. Thus Zk gives the system’s state at
time k.

Suppose the following conditional independence relation holds true almost
surely:
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P(Jn+1 = j, Sn+1 − Sn = k | J0, . . . , Jn; S0, . . . , Sn)
= P(Jn+1 = j, Sn+1 − Sn = k | Jn). (1.1)

This equation means: if we know the past visited states and jump times of the
system, as well as its present state, the future visited state and the sojourn
time in the present state depend only on the present state. In other words,
we basically have a Markovian-type hypothesis, with the difference that the
memoryless property does not act on the calendar time (0, 1, . . . , k, k + 1, . . .)
but on a time governed by the jump time process J, (J0, J1, . . . , Jn, Jn+1, . . .).
This is what we called before a more flexible Markovian hypothesis.

If Equation (1.1) holds true, then Z = (Zn)n∈N is called a semi-Markov
chain (SMC) and the couple (J, S) = (Jn, Sn)n∈N is called a Markov renewal
chain (MRC). Moreover, if the right-hand-side term of Relation (1.1) is inde-
pendent of n, then Z and (J, S) are said to be (time) homogeneous and we
define the discrete-time semi-Markov kernel q = (qij(k); i, j ∈ E, k ∈ N) by

qij(k) := P(Jn+1 = j, Xn+1 = k | Jn = i).

The semi-Markov kernel q is the essential quantity which defines a semi-
Markov chain (together with an initial distribution α, αi := P(J0 = i), i ∈ E).
All the work in this book will be carried out for homogeneous Markov
renewal/semi-Markov chains.

A few remarks are in order at this point.
First, Equation (1.1), together with the hypothesis of time homogeneity,

shows that the visited-state chain (Jn)n∈N is a homogeneous Markov chain
(MC), called the embedded Markov chain (EMC). We denote by p = (pij)i,j∈E

its transition matrix,

pij = P(Jn+1 = j | Jn = i), i, j ∈ E, n ∈ N.

We do not allow transitions to the same state, i.e., we set pii = 0 for any
i ∈ E.

Second, let us set f = (fij(k); i, j ∈ E, k ∈ N) for the sojourn time
distributions, conditioned by the next state to be visited, fij(k) = P(Xn+1 =
k | Jn = i, Jn+1 = j). Obviously, for any states i, j ∈ E and nonnegative
integer k we have

qij(k) = pijfij(k).

We want the chain to spend at least one time unit in a state, that is, fij(0) =
qij(0) = 0, for any states i, j.

Consequently, the evolution of a sample path of a semi-Markov chain can
be described as follows: the first state i0 is chosen according to the initial
distribution α; then, the next visited state i1 is determined according to
the transition matrix p and the chain stays in state i0 for a time k deter-
mined by the sojourn time distribution in state i0 before going to state i1,
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(fi0i1(k); k ∈ N). Note that the sojourn time distributions (fij(k); k ∈ N),
i, j ∈ E can be any discrete distribution (or continuous distribution in the
continuous case), as opposed to the sojourn time constraints in the Markov
case. This is why the semi-Markov processes are much more general and better
adapted to applications than the Markov ones.

We note here that a Markov chain is a particular case of a semi-Markov
chain (Example 3.2).

1.1.2 Discrete Time

As mentioned above, all the work presented in this book is carried out in
discrete time. Here we simply want to explain why we think that discrete
time is important.

Since the introduction of semi-Markov processes in the mid-1950s, their
probabilistic and statistical properties have been widely studied in the continu-
ous-time case. By contrast, discrete-time semi-Markov processes are almost
absent from the literature (see Chapter 3 for references). In the authors’ opin-
ion, there are at least two reasons why discrete-time semi-Markov processes
are interesting and worth studying.

The first reason for our interest in discrete time comes from specific semi-
Markov applications where the time scale is intrinsically discrete. For instance,
in reliability theory, one could be interested in the number of cycles done by
a system or in the number of times (hours, days, etc.) that a specific event
occurs. Note also that in DNA analysis, any natural (hidden) semi-Markov
approach is based on discrete time because we are dealing with discrete se-
quences of, say, the four bases A, C, G, T.

The second reason relies on the simplicity of modeling and calculus in
discrete time. A discrete-time semi-Markov process makes only a bounded
number of jumps in a finite time interval (a fortiori, it does not explode). For
this reason, any quantity of interest in a discrete-time semi-Markov model
can be expressed as a finite series of semi-Markov kernel convolution products
instead of an infinite series as in the continuous case.

Let us briefly explain this phenomenon. As will be seen in Chapter 3,
the functionals of the semi-Markov kernel that we are interested in can be
expressed as finite combinations of

∑∞
n=0 q(n)(k), k ∈ N, with q(n) the n-fold

convolution of the semi-Markov kernel. In Proposition 3.1 we will see that for
any states i, j ∈ E, the (i, j) element of the nth kernel convolution power has
the probabilistic expression

q
(n)
ij (k) = P(Jn = j, Sn = k | J0 = i),

which means: q
(n)
ij (k) is the probability that, starting from state i at initial

time, the semi-Markov chain will do the nth jump at time k to state j. But the
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SMC stays at least one unit of time in a state, so we obviously have q(n)(k) = 0
for any n ≥ k+1 (Lemma 3.2). Consequently, the infinite series

∑∞
n=0 q(n)(k)

becomes the finite series
∑k

n=0 q(n)(k), and, as previously mentioned, all the
quantities of interest can be written as finite series.

For these reasons, we think that it is interesting and legitimate to have
probabilistic and statistical tools for (hidden) semi-Markov models (SMMs),
adapted to the discrete case. This is also the case in Markov process studies,
where we have a discrete-time theory and a continuous-time theory.

1.2 Discrete-Time Semi-Markov Framework

Our main objective concerning the semi-Markov models is to provide estima-
tors for the main characteristics and to investigate their asymptotic properties.
In order to achieve this, we first need to present briefly the classical theory of
discrete-time renewal processes and then give the basic definitions and prop-
erties of a semi-Markov chain. We also need some basic definitions and results
on Markov chains, which can be found in Appendix D.

1.2.1 Discrete-Time Renewal Processes

Roughly speaking, a renewal process (RP) (Sn)n∈N represents the successive
instants when a specific (fixed but random) event occurs. The term renewal
comes from the assumption that when this event occurs, the process starts
anew (this is a regeneration point of time). For this reason, that specific event
will be called a renewal and (Sn)n∈N will be called a renewal process. Since we
will be concerned only with discrete-time renewal processes, we will generally
use the term renewal chain (RC).

For a renewal process we have

Sn := X0 + X1 + . . . + Xn,

where Xn, n ∈ N, called waiting times, represent the times between two
successive renewals. Note that the fundamental fact that the chain starts
anew each time a renewal occurs means that (Xn)n∈N∗ is a sequence of i.i.d.
random variables (in the simplest case, we suppose X0 = S0 = 0).

In Figure 1.2 we present the counting process of the number of renewals
in the time interval [1, n], denoted by N(n).

The need for studying renewal chains before investigating the probabilistic
behavior of semi-Markov chains comes from the fact that, as will be seen in
Chapters 3 and 4, a semi-Markov chain can be analyzed through the so-called
embedded renewal chains. That means that by taking into account only some
particular aspects of the evolution of a SMC (successive visits of a specific
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Fig. 1.2. Sample path of a renewal chain

state, for instance), we obtain a renewal chain. Due to this property, results
on RCs will be of great help when investigating the behavior of SMCs.

For these reasons, Chapter 2 is devoted to renewal chains. First, we give
some definitions and notation on RCs and introduce the basic notion of re-
newal equation in discrete time, given by

gn = bn +
n∑

k=0

fkgn−k, n ∈ N, (1.2)

where b = (bn)n∈N is a known sequence, g = (gn)n∈N is an unknown sequence,
and fk := P(X1 = k) is the waiting time distribution of the renewal chain
(i.e., the distribution of the time elapsed between two successive renewals).
We also suppose that the chain stays at least one time unit in a state, i.e.,
f0 = 0.

Under some conditions, the solution of the renewal equation is given by
(Theorem 2.2)

gn = (u ∗ b)n, n ≥ 1, (1.3)

where un represents the probability that a renewal will occur at time n and
∗ is the usual sequence convolution product (Definition 2.2).

Second, we study the asymptotic properties of quantities related to a re-
newal chain. Two cases – one periodic and the other aperiodic – are considered
(Definitions 2.4 and 2.5). In this introductory part we consider only the ape-
riodic case. The main results can be summarized as follows.
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• We give the strong law of large numbers (SLLN) and the central limit the-
orem (CLT) for the counting chain (N(n))n∈N∗ of the number of renewals
in the time interval [1, n].

• Another result consists in the asymptotic behavior of the expected number
of renewals up to time n, denoted by Ψ(n) and called renewal function.
This is the so-called elementary renewal theorem, which states that

lim
n→∞

Ψ(n)
n

=
1
μ

,

where μ := E(X1) is the expected waiting time between two successive
renewals.

• Similarly, the limit probability that a renewal will ever occur is provided
by the renewal theorem:

lim
n→∞

un =
1
μ

.

• A crucial result is the key renewal theorem, which gives the limit of the
solution of renewal equation (1.2):

lim
n→∞

n∑

k=0

bkun−k =
1
μ

∞∑

n=0

bn.

The importance of this theorem stems from the fact that quantities related
to a RC verify associated renewal equations. After solving these equations
(via Theorem 2.2), the key renewal theorem immediately provides the limit
of those quantities.

In the same chapter, we also introduce delayed renewal chains, stationary
renewal chains, and alternating renewal chains and we give some useful related
results.

1.2.2 Semi-Markov Chains

In order to undertake the estimation problems on semi-Markov chains, it is
important to investigate them first from a probabilistic point of view.

Generally speaking, the probabilistic study of semi-Markov chains follows
approximatively the same steps as for renewal chains, but with a different
degree of complexity. Obviously, this complexity comes from the structural
difference between the renewal framework and the semi-Markov one. We pass
from an i.i.d. context to a semi-Markov one, introducing the dependence on
a randomly chosen state.

As was done for renewal chains, the first part of this study developed
in Chapter 3 is centered around a type of equation similar to the renewal
equation. For a discrete-time semi-Markov framework, the variables in such
an equation are not real sequences, like for renewal chains, but matrix-valued
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functions defined on N and denoted by A = (A(k); k ∈ N), where A(k) =
(Aij(k); i, j ∈ E), k ∈ N, are matrices on E×E. Thus we define the discrete-
time Markov renewal equation (DTMRE or MRE) by

L(k) = G(k) + q ∗ L(k), k ∈ N, (1.4)

where q is the semi-Markov kernel, L = (Lij(k); i, j ∈ E, k ∈ N) is an
unknown matrix-valued function, G = (Gij(k); i, j ∈ E, k ∈ N) is a known
matrix-valued function, and ∗ denotes the discrete-time matrix convolution
product (Definition 3.5).

First, the solution of such an equation is given in Theorem 3.1 by

L(k) =

(
k∑

n=0

q(n)(k)

)

∗ G(k), (1.5)

where q(n) represents the n-fold convolution of the semi-Markov kernel q. We
see here what we already stated above: considering a quantity of interest of
a discrete-time semi-Markov process, after solving the corresponding Markov
renewal equation, we are able to express it as a series involving only a finite
number of terms.

Second, let us denote by ψ this finite series of matrix convolution pow-
ers, ψ(k) :=

∑k
n=0 q(n)(k). As will be seen in Chapter 3, the (i, j) element

of q(n)(k) has a simple probabilistic meaning: q
(n)
ij (k) is the probability that,

starting from state i at time zero, the semi-Markov chain will do the nth jump
at time k to state j. Thus ψij(k) represents the probability that, starting from
state i at time zero, the semi-Markov chain will do a jump at time k to state
j. Again, recalling that in a renewal context we denoted by un the probability
that a renewal will occur at time n, we see that we have a perfect correspon-
dence between the solution of a renewal equation (gn = (u ∗ b)n)) and the
solution of a Markov renewal equation.

As an application of the Markov renewal theory, we obtain the explicit form
of an important quantity of a semi-Markov chain, the semi-Markov transition
function (matrix) P = (Pij(k); i, j ∈ E, k ∈ N), defined by

Pij(k) := P(Zk = j | Z0 = i), i, j ∈ E, k ∈ N.

First, we obtain its associated Markov renewal equation (Proposition 3.2)

P = I − H + q ∗ P,

where:

I := (I(k); k ∈ N), with I(k) the identity matrix for any k ∈ N;
H := (H(k); k ∈ N), H(k) := diag(Hi(k); i ∈ E), with Hi(k) the cumu-
lative sojourn time distribution in state i of the SMC (Definition 3.4).
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Second, solving this Markov renewal equation we obtain the explicit expression
of the semi-Markov transition function

P(k) = ψ ∗ (I − H)(k), k ∈ N. (1.6)

The second part of the probabilistic study of semi-Markov chains presented
in Chapter 3 consists in limit results.

• We first have the analogy of the renewal theorem, called Markov renewal
theorem (Theorem 3.2), which states that, under some conditions, for any
states i and j we have

lim
k→∞

ψij(k) =
1

μjj
,

where μjj is the mean recurrence time of state j for the semi-Markov chain.
• Similarly, we have the key Markov renewal theorem (Theorem 3.3). Let us

associate to each state j ∈ E a real-valued function vj(n), defined on N,
with

∑
n≥0 | vj(n) |< ∞. Then, for any states i and j we have

lim
k→∞

ψij ∗ vj(k) =
1

μjj

∑

n≥0

vj(n).

• As an application of the key Markov renewal theorem, we obtain the limit
distribution of a semi-Markov chain (Proposition 3.9). Under some mild
conditions, for any states i and j we have

lim
k→∞

Pij(k) =
ν(j)mj∑
l∈E ν(l)ml

,

where (ν(1), . . . , ν(s)) is the stationary distribution of the EMC and mj

is the mean sojourn time of the SMC in state j.
• For each M ∈ N, we consider the following functional of the semi-Markov

chain

Wf (M) :=
N(M)∑

n=1

f(Jn−1, Jn, Xn),

where f is a real measurable function defined on E × E × N
∗. For the

functional Wf (M) we have the SLLN and the CLT (Theorems 3.4 and
3.5, respectively). This CLT will be extensively used in Chapters 4 and 5
for proving the asymptotic normality of different estimators.

In Section 3.5 we give a Monte Carlo algorithm for obtaining a trajectory
of a given SMC in the time interval [0, M ]. Another Monte Carlo algorithm
is proposed in Exercise 3.6.
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1.2.3 Semi-Markov Chain Estimation

Let us consider a sample path of a semi-Markov chain censored at fixed ar-
bitrary time M ∈ N

∗, that is, a sequence of successively visited states and
sojourn times

H(M) := (J0, X1, . . . , JN(M)−1, XN(M), JN(M), uM ), (1.7)

where uM := M − SN(M) represents the censored sojourn time in the last
visited state JN(M) (recall that N(M) is the discrete-time counting process
of the number of jumps in [1, M ]).

Our objective was, first, to obtain estimators for any quantity of a semi-
Markov model and, second, to investigate the asymptotic properties of these
estimators.

The likelihood function corresponding to the sample path H(M) is

L(M) = αJ0

N(M)∏

k=1

pJk−1Jk
fJk−1Jk

(Xk)HJN(M)(uM ),

where Hi(·) := P(X1 > · | J0 = i) is the survival function in state i and αi is
the initial distribution of state i.

By Lemma 4.1 we will show that uM/M
a.s.−−−−→

M→∞
0. Consequently, the term

HJN(M)(uM ) corresponding to uM has no contribution to the likelihood when
M tends to infinity, and for this reason it can be neglected. On the other
side, the information on αJ0 contained in the sample path H(M) does not
increase with M, because H(M) contains only one observation of the initial
distribution α of (Jn)n∈N. As we are interested in large-sample theory of
semi-Markov chains, the term αJ0 will be also neglected in the expression of
the likelihood function. For this reasons, instead of maximizing L(M) we will
maximize the approached likelihood function defined by

L1(M) =
N(M)∏

k=1

pJk−1Jk
fJk−1Jk

(Xk)

and we will call the obtained estimators “approached maximum-likelihood
estimators.”

Starting from a semi-Markov sample path H(M), we define for any states
i, j, and positive integer k, 1 ≤ k ≤ M :

• Ni(M): the number of visits to state i of the EMC, up to time M ;
• Nij(M): the number of transitions of the EMC from i to j, up to time M ;
• Nij(k, M): the number of transitions of the EMC from i to j, up to time

M, with sojourn time in state i equal to k.
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For any states i and j, the estimators of the (i, j) element of the transition
matrix p, of the conditional sojourn time distributions f , and of the discrete-
time semi-Markov kernel q are given by (Proposition 4.1 and Relations (4.1)–
(4.3))

p̂ij(M) = Nij(M)/Ni(M),

f̂ij(k, M) = Nij(k, M)/Nij(M),
q̂ij(k, M) = Nij(k, M)/Ni(M).

Once the estimator of the kernel is obtained, any quantity of the semi-
Markov chain can be estimated, after being expressed as a function of the
semi-Markov kernel.

The second step in the semi-Markov estimation is to derive the asymptotic
properties of the proposed estimators.

First, we need asymptotic results on Ni(M), Nij(M) and N(M), as M
tends to infinity. Using the fact that (Jn)n∈N is a Markov chain, some results
are directly obtained from Markov chain theory (Convergences (3.34) and
(3.35)), whereas others are specific to the semi-Markov context (Convergences
(3.36)–(3.38)).

Second, we look at the strong convergence of the estimators p̂ij(M),
f̂ij(k, M), q̂ij(k, M), P̂ij(k, M), etc. Results of this type are given in Corollary
4.1, Proposition 4.2, and Theorems 4.1, 4.3, 4.4, and 4.6.

Third, we are interested in the asymptotic normality of the estimators.
Two different proofs of this kind of result can be given. The first one is based
on the CLT for Markov renewal chains (Theorem 3.5) and on Lemmas A.1–
A.3. The second uses the Lindeberg–Lévy CLT for martingales (Theorem E.4).
When proving the asymptotic normality of the kernel estimator (Theorem
4.2), we give complete proofs based on both methods. In the other cases
(Theorems 4.5 and 4.7), we only present the main steps of the proof based on
the martingale approach. Note equally that the asymptotic normality allows us
also to construct asymptotic confidence intervals for the estimated quantities.

1.3 Reliability Theory of Discrete-Time Semi-Markov
Systems

Much work has been conducted in recent decades on probabilistic and sta-
tistical methods in reliability. Most of the existing mathematical models for
system reliability suppose that a system’s evolution is in continuous time.
As mentioned before, there are particular applications where it is natural to
consider that the time is discrete. For example, we think of systems working
on demand, like electric gadgets, in which case we are interested in the num-
ber of times the system functioned up to failure. Other examples are those
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systems whose lifetimes are expressed as the number of cycles/days/months
up to failure. For these kinds of problems we think that it is important to
have discrete-time mathematical models of reliability. But even when the ini-
tial problem is in continuous time, we can discretize it and handle it in dis-
crete time. Since in computer implementation we always need to discretize,
discrete-time semi-Markov systems can be useful as schemes of discretization
of continuous-time systems.

Among examples of existing works on discrete-time reliability, we cite Nak-
agawa and Osaki (1975), Roy and Gupta (1992), Xie et al. (2002), Bracque-
mond and Gaudoin (2003) (in a general i.i.d. context), Balakrishnan et al.
(2001), Platis et al. (1998) (reliability modeling via homogeneous and non-
homogeneous Markov chains), Sadek and Limnios (2002) (reliability metric
estimation of discrete-time Markov systems), Csenki (2002), Barbu et al.
(2004) (reliability modeling via semi-Markov chains), and Barbu and Limnios
(2006a,b) (reliability metric estimation of discrete-time semi-Markov sys-
tems).

In the work presented in Chapter 5 we consider a system S whose pos-
sible states during its evolution in time are E = {1, . . . , s}. We denote by
U = {1, . . . , s1} the subset of working states of the system (the up states)
and by D = {s1 +1, . . . , s} the subset of failure states (the down states), with
0 < s1 < s. We suppose that E = U ∪ D and U ∩ D = ∅, U �= ∅, D �= ∅.

The first part of the chapter is concerned with the modeling of reliability
for discrete-time semi-Markov systems. We obtain explicit forms for reliabil-
ity indicators: reliability, availability, maintainability, failure rates, and mean
hitting times (mean time to repair, mean time to failure, mean up time, mean
down time, mean time between failures) (Propositions 5.1–5.6).

NB: Generally, there are two different ways of obtaining these explicit
forms. The first one is the straight Markov renewal theoretic way: first we find
the Markov renewal equation associated to the respective quantity; then we
solve this equation (via Theorem 3.1) and get the desired result. The second
way is a case-adapted one, constructed for each reliability indicator. As an
example, see the two proofs of Proposition 5.3, where we use both methods
in order to find the explicit form of reliability.

From a theoretical point of view, the method based on Markov renewal the-
ory is more attractive due to its generality. But the direct way can be more
intuitive and can tell us information that is kept “hidden” by the general
method. An example justifying this assertion can be seen in the two different
ways of obtaining the reliability (Proposition 5.3).

The second part of the chapter looks at reliability indicator estimation.
Just like for the estimation of the SM model, we start with a semi-Markov
path censored at fixed arbitrary time M ∈ N

∗, as defined in (1.7). As the
reliability indicators have explicit formulas in terms of the basic quantities of
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the semi-Markov chain, the estimators of these quantities obtained in Chapter
4 allow us to immediately derive plug-in estimators of reliability, availability,
failure rates, and mean times. For instance, the reliability of a discrete-time
semi-Markov system at time k ∈ N is given by

R(k) = α1 P11(k)1s1 ,

where α1 and P11 are (roughly speaking) partitions of the initial distribution
vector α and of the semi-Markov transition matrix P(k) according to the state
partition E = U ∪ D, and 1s1 denotes the s1-column vector whose elements
are all 1. Using this expression of reliability, we immediately have its estimator

R̂(k, M) = α1 · P̂11(k, M) · 1s1 .

We also investigate the consistency and the asymptotic normality of these esti-
mators as the sample size M tends to infinity (Theorems 5.1–5.4 and Corollary
5.1). The techniques are the same as those previously used for the asymptotic
properties of the estimators of quantities associated to semi-Markov chains.
The only difference is the greater complexity of computations. Anyway, due
to the particularities of discrete-time semi-Markov systems (finite-series ex-
pressions), the numerical computations of complicated quantities are fast.

1.4 Hidden Semi-Markov Models

The basic idea of a hidden model is the following: we observe the evolution in
time of a certain phenomenon (observed process), but we are interested in the
evolution of another phenomenon, which we are not able to observe (hidden
process). The two processes are related in the sense that the state occupied
by the observed process depends on the state that the hidden process is in.

To get one of the most intuitive and general examples of a hidden model,
one can think the observed process as a received signal and the hidden process
as the emitted signal.

If we add to this elementary hidden model the assumption that the hidden
process (denoted by Z) is a Markov process of a certain order, we obtain
a hidden Markov model (HMM). The observed process (denoted by Y ) is
either a conditional Markov chain of order k or a sequence of conditionally
independent random variables. A schematic representation of this kind of
model is given in Figure 1.3. The arrows in Y or Z lines denote the dependence
on the past (k arrows if Markov of order k).

Since being introduced by Baum and Petrie (1966), hidden Markov models
have become very popular, being applied in a wide range of areas. The reason
is that many types of concrete applications can be investigated using this kind
of model. Some examples: Y is the GPS position of a car, while Z represents
the real (and unknown) position of the car; in reliability and maintenance, Y


