

Russian Space Probes

Scientific Discoveries and Future Missions

Russian Space Probes

Scientific Discoveries and Future Missions

Brian Harvey, FBIS 2 Rathdown Crescent Terenure Dublin 6W Ireland Dr Olga Zakutnyaya Space Research Institute Russian Academy of Sciences Profsoyuznaya 84/32 Moscow GSP-7 117997 Russia

SPRINGER-PRAXIS BOOKS IN SPACE EXPLORATION SUBJECT ADVISORY EDITOR: John Mason, M.B.E., B.Sc., M.Sc., Ph.D.

ISBN 978-1-4419-8149-3 e-ISBN 978-1-4419-8150-9 DOI 10.1007/978-1-4419-8150-9 Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2011921111

© Springer Science+Business Media LLC 2011

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Cover design: Jim Wilkie

Project copy editor: Christine Cressy Typesetting: BookEns, Royston, Herts., UK

Printed on acid-free paper

Springer is part of Springer Science + Business Media (www.springer.com)

Contents

	Introduction by the authorsixAcknowledgmentsxGlossaryxiiTerminological and translation notesxxReference notesxviList of tablesxixList of illustrationsxxii
	List of figures xxvi
1	Early space science
	Scientific flights into the atmosphere: the <i>Akademik</i> series
	Scientific test flights with animals
	The idea of a scientific Earth satellite
	Scientific objectives of the first Earth satellites
	Key people
	Instead, Prosteishy Sputnik
	PS 2
	Object D: the first large scientific satellite in orbit
	Early space science: what was learned?
	References
2	Deepening our understanding
	Following Sputnik: the MS series
	Cosmos 5 and Starfish: introducing Yuri Galperin
	Following Sputnik: Elektron55
	Elektron feast
	Introducing the Cosmos program
	Dnepropetrovsky Sputnik (DS)
	DS-U series
	Molecular oscillator in orbit

vi Contents

	The great hunt for anti-matter	0
	First astronomy and heliophysical missions8	4
	New geomagnetic map	
	Supplementary science	
	Nauka modules	
	Application satellites with scientific instruments	
	The third radiation belt	
	Intercosmos	
	Intercosmos solar missions	
	Intercosmos ionospheric missions	
	Intercosmos charged particle missions	
	Ionosfernaya Stantsiya and the Galperin missions	
	Proton: elusive cosmic rays	
	Specialized scientific missions: <i>Energiya</i> and <i>Eftr.</i>	
	Solar observatories: Prognoz	
	Relikt and Intershock	
	Early Soviet space science: what was learned?	
	References	
	Russian-language references	1
3	Revealing the Moon	3
3	First Cosmic Ship: discovery of the solar wind	
	Second Cosmic Ship: the lunar environment	
	Mapping the far side of the Moon	
	Soft-landing on the Moon	
	Orbiting the Moon	
	Mapping the Moon in detail: Luna and Zond	
	Recovering lunar samples	
	Luna 20: into the lunar highlands	
	Luna 24: the long view	
	Roving the Moon	
	Lunokhod 2: along the rim of Le Monnier	
	Revealing the Moon: what was learned?	
	References	
	Russian-language references	9
4	Unveiling Venus	1
4	First Venus probes	
	At last, signals from Venus	
	Descent into the clouds	
	At last, the surface of Venus	
	Photographing the surface	
	Strange atmosphere	
	Chemical laboratory on the surface	
	Mapping the surface of Venus	1

	Balloons into the atmosphere	
	Finally, to Halley	. 255
	Unveiling Venus: what was learned?	. 258
	References	. 260
5	The path to Mars	263
5	First Mars mission: Mars 1.	
	The orbital science missions of Mars 2 and 3	
	Descent through Mars's atmosphere	
	Orbital science: observations from Mars 5	
	Meeting with Phobos	
	Science from Phobos.	
	Phobos postscript	
	The path to Mars: what was learned?	
	References	
		,,
6	Orbiting space stations	. 301
	Beginnings of space biology: Korabl Sputnik	
	Space biology by cosmonauts	
	Hitting the first walls of space biology: Cosmos 110	
	Space biology's lunar journey: the flight of the tortoises	
	Soyuz as a platform for space science	. 318
	Weightlessness: a warning	. 321
	Salyut orbiting station	
	Salyut science	. 327
	Solo Soyuz science	
	Salyut 3 science.	
	Salyut 4 science.	
	Salyut 5 science: materials processing plant on orbit	
	Salyut 6 science.	
	Salyut 7 science	
	Mir science	
	International Space Station (ISS) science	
	Orbiting space stations: what was learned?	
	References	. 368
7	Later Soviet space science: the observatories	. 375
	Astronomical science: Astron, Kvant, Granat, and Gamma	
	Great observatories: Astron	
	Great observatories: Kvant	
	Granat and the great annihilator	
	The last great observatory: Gamma	
	Integral: the great attractor	
	Intercosmos: introducing the second phase	. 393
	The Ellipse and Magik missions	

viii Contents

	The <i>Ionozond</i> missions	397
	The <i>Priroda</i> and <i>Bulgaria 1300</i> missions	402
	The Aktivny and APEX missions	405
	The Oval mission	
	Aureole 3	
	The search for fireballs: Prognoz M (Interball)	
	Interball: the magnetosphere remodeled	
	Atmospheric science from sounding rockets: Vertikal	
	Smaller sounding rocket programs	
	Solar science: Koronas	
	Small specialized satellites: Pion and Kompass	437
	Biological science: Bion	
	Materials science: Foton	449
	Later Soviet space science: what was learned?	
	References	455
	Russian-language references	464
8	Perspectives, past and future	467
O	Decline of science during the transition	
	Spektr observatories	
	Lunar "Polygons"	
	Phobos sample return	
	Space science in the federal space plan, 2006–2015	
	Historical overview	
	The Keldysh ascendancy	
	The emergence of IKI	
	Key institutes and personalities in the space science program	
	Soviet and Russian space science in a global context	
	Concluding remarks	
	References	
	Russian-language references	
A -	many Common of Conist and Durain	40.5
	mexe: Summary of Soviet and Russian space science missions	
	bliography	
ıno	lex	50/

Introduction by the authors

Russia launched the first Earth satellite in 1957 and the first scientific laboratory into Earth orbit the following year – Sputnik 3. Most accounts of Russian and Soviet space achievements have, understandably, focused on manned spaceflight, the cosmonauts, the rockets, the politics, and the engineering achievements of the Russian and Soviet space programs. There has not yet been an examination of what Russian space science has actually achieved in building our knowledge of the space environment and the solar system. This is a largely untold story. During the days of the space race, the scientific outcomes of Soviet space missions were not well known and reached only eminent scientists at international gatherings of their peers. In the English-language-speaking world, media coverage of Russian scientific discoveries was limited, some was even dismissive (and, in the Cold War period, suspicious), and the Soviet Union lacked the channels like *National Geographic Magazine* to communicate its message. Their leading scientists were little known.

As we will see, these discoveries were substantial. This book attempts to build a comprehensive picture of the record and story of Russian space science, before, during, and after the Soviet period. It focuses not just on the higher-profile missions to Mars, Venus, and the Moon, but on a broad range of missions from astrophysics to the ionosphere, from solar studies to the plasmasphere. The questions we attempt to answer are: What scientific missions were undertaken? How? Why? What instruments were used? What was learned? What discoveries were made? Where were the greatest gains in our knowledge? How important was science within the Soviet and Russian space program? Who were the key personalities? What were the principal decisions and priorities?

Defining what is and what is not "space science" is not as straightforward as it may first appear, especially in the area of space-based applications looking back towards Earth. Here, we have generally excluded the use of space-based instruments to map the Earth and its ground features, as well as other applications of spaceflight, such as communications and navigation. This book includes space-based research to improve our knowledge of the relationship between our atmosphere, water, and land, as well as space biology and the analysis of substances in microgravity in Earth orbit. This book covers not only unmanned robotic probes, but scientific work

x Introduction by the authors

undertaken on board orbital space stations, such as Salyut, Almaz, Mir, and the International Space Station.

Although the Soviet Union and Russia have engaged in many international collaborative missions, especially around the space station Mir, the focus here will be on Soviet/Russian space science, rather than on international equipment carried on Russian satellites and space stations. Where international equipment was used as an integral part of Russian space science projects, it is, of course, very much included.

Brian Harvey Dublin, Ireland

Olga Zakutnyaya Moscow, Russia 2010

Acknowledgments

Many people helped to make this book possible by providing access to information, documentation, and papers as well as permission to use photographs, diagrams, and illustrations. We especially wish to thank, in Britain, the late Rex Hall; Suszann Parry, Mary McGivern, and Ben Jones for access to the library of the British Interplanetary Society; in Swindon, Doug Stimson of the Library of the Science Museum; Andrew Ball (Open University); in Belgium, Bart Hendrickx, especially for the information he provided on the Elektron, MS, and DS missions; in the Netherlands, Bert Vis; in Denmark, Øjvind Hesselager; in Paris, Dr Aaron Janovsky, for providing access to the papers of COSPAR; COSPAR; in Moscow, the Director of the Institute for Space Research of the Russian Academy of Sciences, Dr Lev Zelenyi; and his colleagues there, Yuri Zaitsev, Dr Alexander Zakharov, Dr Oleg Vaisberg, and Dr Tatiana Mularchik; Dr Sergei Pulinets; Dr Natasha Khisina; Dr Viktor Khalipov; Dr Vladimir Temnvi; Dr Oleg Bartunov of the Sternberg Astronomical Institute of Moscow University; in the Czech Republic, Dr Jaroslav Syýkora, Dr Pavel Triska, Eva Vlčková, and Ivana Kolmašová; and in Canada, Joel Powell.

Glossary

AIS Automatic Interplanetary Station

ARAKS Artificial Radiation and Aurora between Kerguelen and the

Soviet Union

ARCAD ARC Aurorale et Densité

AU Astronomical Unit (distance of the Earth from the Sun = 1 AU) AUOS Avtomaticheskaya Universalnaya Orbitalnaya Stantsiya (Auto-

matic Universal Orbital Station)

Aureole AURora and EOLus

CNES Centre National des Études Spatiales (French space agency)
KORONAS Comprehensive Orbital Near Earth Observations of the Active

Sun

COSPAR Committee on Space Research
DS Dnepropetrovsky Sputnik

GAISh State Astronomical Institute in memory of P.K. Sternberg of

Moscow State University

GEOKHI Vernadsky Institute for Geochemistry and Analytical Chemistry

of the Russian Academy of Sciences

IGY International Geophysical Year

IKI Institute for Space Research of the Russian Academy of

Sciences, Moscow

IZMIRAN Pushkov Institute of Terrestrial Magnetism, Ionosphere and

Radio Wave Propagation of the Russian Academy of Sciences

KNA Konteyner Nauchnoy Apparatury, or Scientific Equipment Con-

tainer

KOMPASS Complex Orbital Magneto Plasma Autonomous Small Satellite KREEP Potassium, Rare Earth Elements and Phosphorus (type of Moon

rock)

KS Korabl Sputnik

LMC Large Magellanic Cloud

MKA Maly Kosmicheski Apparat (Small Space Apparatus)

MS Maly Sputnik (Small Satellite)

xiv Glossary

NASA National Aeronautics and Space Administration (United States)
NIIYaF Skobeltsyn Institue for Nuclear Physics, Moscow State Uni-

versity

OKB Oputno Konstruktorskoe Byuro (Experimental Design Bureau)
OSOAVIAKHIM Society for the Promotion of Defence, Air Travel and Chemistry

RIFMA Röntgen Isotopic Fluorescent Method of Analysis

PrOP PRibori Otsenki Prokhodimosti (Penetrometer to test the terrain)
SIGNE Solar International Gamma Ray and Neutron Experiment

Terminological and translation notes

The term "weightlessness" is used to describe the gravity environment in which people (or other life forms) find themselves during the course of space journeys. Although "microgravity" is more correct, the term "weightlessness" is generally well understood.

Politically, the term "Russia" is used as shorthand for "the Russian federation" in the period from January 1992. In the case of "Germany", the term "Germany" will be used, for convenience, to refer to both the Federal Republic of Germany before 1991 (often then known as "West" Germany) and to the reunited country after 1991. The state known as "East" Germany for 1949–1989 will be called by its formal title, the GDR (German Democratic Republic).

For temperatures, two units of measurement will be used: Celsius and Kelvin. Celsius, which runs from 0° (the freezing point of water) to 100° (boiling) is the most popularly understood and is cited as °C. Where measurements are much larger, many scientists use Kelvin (K), which begins at absolute zero, which is –273°C. Accordingly, both are used and indicated appropriately and readers should add or subtract 273 to make the necessary conversion.

It was a normal habit of the first of a series of Russian spacecraft to have a simple name, without a number. Yuri Gagarin was launched in Vostok, not Vostok 1. Thus, we have the first Moon rover Lunokhod, not Lunokhod 1. There were exceptions of course, when more than one were launched together (e.g. Elektron 1 and 2) or when they were clearly going to be part of a long series (e.g. Cosmos 1) or when they were retrospectively renamed (e.g. Venera 1).

There is a difference in academic degrees between Russia and Europe. In Russia, the first stage is Candidate of Science, equivalent to Ph.D. The second stage is Doctor of Science, which does not have a direct equivalent.

Russian names are transliterated into English in what is called the simplified form (British Standard).

Every effort has been made to ensure that the reproduction of photographs and illustrations is of the highest quality. Readers are asked to make allowances for the fact that in the case of some historic photographs, especially from the early Soviet period, original negatives were not always available and reproduced versions may have aged over time.

Reference notes

The general sources for the research are reported and discussed in more detail in the bibliographical note at the end. In the case of more specific chapter references, rather than disrupt the flow of the narrative by numerous references after each individual point, the scientific results of each mission are given a composite set of references. Where there are multiple authors (three or more), the first named is normally given.

Tables

1.1	The balloon flights	13
1.2	The ionosphere	
1.3	Akademik and subsequent scientific launchings	19
1.4	Sounding rocket flights with animals	23
1.5	Scientific objectives, object D, as set in 1956	25
1.6	Sputnik 3 instruments	34
1.7	The first Sputniks missions	
2.1	MS series	
2.2	Instrumentation on Elektron satellites, 1964	58
2.3	Elektron series	58
2.4	Aims of the Cosmos program, announced 16th March 1962	68
2.5	DS series categories	69
2.6	DS series, first round, science missions	
2.7	DS-U satellites in the Cosmos program – outline	77
2.8	DS-U series – detailed breakdown	78
2.9	Scientific instruments flown on military and other Cosmos missions	88
2.10	Nauka modules with scientific payloads, 1968–1979	97
2.11	Applications satellites with scientific instruments	99
2.12	Cosmos missions to detect third radiation belt	102
2.13	Early Intercosmos DS-U series	104
2.14	Intercosmos series	113
2.15	Cosmos 381 Ionosfernaya Stantsiya instruments	115
2.16	Ionospheric satellites	119
2.17	Proton series aims	121
2.18	Proton series instruments	121
2.19	Proton series	126
2.20	Energiya and Efir series	129
2.21	Prognoz missions and instruments	132
2.22	Orbiting solar observatories (Prognoz program)	139
3.1	First and Second Cosmic Ship instruments	154
3.2	Automatic Interplanetary Station instruments	160

xx Tables

3.3	Zond 3 scientific instruments	163
3.4	First Moon-probe discoveries	164
3.5	The first Moon probes	164
3.6	Luna soft-lander instruments	167
3.7	Luna soft-landing missions	169
3.8	Luna 10 instruments	170
3.9	Luna 10 discoveries	172
3.10	Luna 11 and 12 instruments	173
3.11	The lunar orbiting missions, with orbiting parameters	181
3.12	The circumlunar missions, with distance from Moon	181
3.13	Soil density measurements, later Lunas	185
3.14	Sample return missions	191
3.15	Lunokhod instruments	193
3.16	Lunokhod 2 instruments.	196
3.17	The lunar rovers	201
4.1	First Venus probe instruments	212
4.2	Zond instruments	213
4.3	Venera 2 and 3 instruments	214
4.4	The first Venus probes	215
4.5	Venera 4 instruments	217
4.6	Venera 4 science	220
4.7	Venera 5 and 6 science	221
4.8	Descents into Venus's atmosphere (launch dates)	222
4.9	Venera 7 instruments	222
4.10	Venera 7 science	
4.11	Venera 8 instruments	224
4.12	Venera 8 science	228
4.13	Venera 9 and 10 instruments.	229
4.14	Venera 9 lander science	230
4.15	Venera 10 lander science.	230
4.16	Venera 9 and 10 orbiter science	
4.17	Venera 11 and 12 instruments	
4.18	Venera 11 and 12 science	237
4.19	Venera 13 and 14 landing sites chemistry	240
4.20	Venera 13 and 14 discoveries	241
4.21	Venera 15 and 16 instruments	
4.22	Venera 15 and 16 achievements and discoveries	
4.23	VEGA experiments	251
4.24	Venus lander summary	252
4.25	Venus atmospheric science from the VEGAs	255
4.26	Typology of landing sites	258
4.27	Venus: cloud layers.	259
5.1	Mars 1 instruments.	266
5.2	Mars 1 science	267
5.3	Mars 2 and 3 instruments	269

5.4	Mars 2 and 3 science	277
5.5	Mars 73 experiments	278
5.6	Mars 6 science	281
5.7	Mars 5 discoveries: composition of Mars rock	283
5.8	Mars 5 discoveries	286
5.9	Phobos experiments	289
5.10	Phobos 2: composition of Mars rock	292
5.11	Phobos 2 science	294
6.1	Orbited Korabl Sputnik biological missions, with names of dogs	
6.2	Korabl Sputnik mission outcomes	308
6.3	Scientific outcomes, early manned missions (Vostok and Voskhod)	312
6.4	Cosmos 110 22-day mission: Veterok and Ugolyok, results	314
6.5	The early manned and biological missions	315
6.6	Zond 5–8 missions and instrumentation	318
6.7	Early Soyuz missions science	324
6.8	Early Soyuz science outcomes	324
6.9	Salyut space stations, with launch and de-orbit dates	325
6.10	Bios ground experiment durations	327
6.11	Salyut science	328
6.12	Soyuz 13 science experiments	331
6.13	Solo Soyuz science missions	331
6.14	Salyut 3 experiments	
6.15	Salyut 4 science	
6.16	Salyut 5 experiments	
6.17	Salyut 6 science	
6.18	Salyut 7 science	
6.19	Pion K science (Cosmos 1686)	
6.20	Mir – extension of duration records	
6.21	Science on Mir	
6.22	Selection of Russian science experiments, International Space Station.	
7.1	Granat astrophysical instruments	383
7.2	Periods of X-ray pulsars studied by Granat	
7.3	The great observatories	
7.4	Periods of operation of the great observatories	
7.5	AUOS series	
7.6	Magion 1 instruments	
7.7	Ionozond instruments	
7.8	Intercosmos 22 Bulgaria 1300 instruments	
7.9	Intercosmos 24 Aktivny instruments	405
7.10	Magion 2 instruments	407
7.11	APEX instruments	407
7.12	Magion 3 instruments	409
7.13	Cosmos 900 instruments	411
7.14	Aureole 3 experiments	413
7.15	Intercosmos – second phase (AUOS)	414

xxii Tables

7.16	Prognoz 11 (M 1) (Interball 1, tail probe) instruments	416
7.17	Prognoz 12 (M 2) (Interball 2, auroral probe) instruments	417
7.18	Magion 4 instruments	417
7.19	Prognoz M program/Interball	423
7.20	Summary of Magion missions	423
7.21	Vertikal launches	426
7.22	Focus of Vertikal: missions	426
7.23	Meteorological rocket campaigns	431
7.24	Electron guns, beams, and plasma blob experiments (Feyerwerk)	431
7.25	Koronas I instruments	433
7.26	Koronas F instruments	434
7.27	Koronas Foton instruments	437
7.28	Koronas series summary	437
7.29	Pion series	437
7.30	Specialized small satellites, 2000–2009	439
7.31	ESA Bion 8 and 9 experiments	445
7.32	Bion 10 experiments	445
7.33	Space biology: Bion missions summary	448
7.34	Space biology: Bion payloads	448
7.35	Space biology: participating countries, apart from USSR/Russia	448
7.36	Standard Foton instruments	449
7.37	Foton materials science missions	453
8.1	Phobos Sample Return instruments	473
8.2	Main lines of development and highlights of Soviet and Russian	
	space science	479
8.3	Post-war presidents of the Soviet Academy of Sciences	481
8.4	Key dates and key decisions in early Soviet space science	482
8.5	Later Soviet space science: key decisions from early IKI period	485
8.6	MSU principal investigators, selected missions	489
	-	

Illustrations

Pulkovo observatory
Vladimir Vernadsky
Book by Nikolai Rynin
Sergei Vernov
USSR 1 balloon completed
USSR 1 balloon crew 6
USSR 1 balloon take-off
USSR 1 balloon landed
OSOAVIAKHIM preparations
OSOAVIAKHIM take-off
Pavel Fedoseenko
Andrei Vasenko
Illya Usyskin
Balloon memorial stamps
Anatoli Blagonravov
R-2A rocket
Cosmic ray slits on Akademik rockets
Space dog Kozyavka
Mstislav Keldysh, Sergei Korolev, and Igor Kurchatov
The first Sputnik
Sputnik 2
Contemporary view of the ionosphere
Cosmos 2
Cosmos 3
Yuri Galperin
Iosif Shklovsky
Yuri Galperin and Iosif Shklovsky
Making observations
Elektron 1
Elektron 2
DS design 67

xxiv Illustrations

Cosmos 149 Kosmicheski Strela	. 74
DS-U design	
Nikolai Basov	
Cosmos 97 Molekularni	
Boris Konstantinov	
Nauka module	
KNA system	
Loading KNAs	
Naum Grigorov	101
Intercosmos 1 launch	105
Intercosmos 1 instrumentation	106
Intercosmos 7	106
Intercosmos 2	108
Intercosmos 10	111
Cosmos 381 Ionosfernaya.	114
Proton	120
Intercosmos 6	128
Oleg Vaisberg	130
Preparing Prognoz for launch	131
Relikt experiment.	136
Prognoz 9	136
Konstantin Gringauz.	155
Yuri Lipsky	159
Zond 3	164
Luna 9 close-up of Moon soil	168
Luna 13 penetrometer at work.	169
Luna 10 in lunar orbit	170
Craters from Zond 6	177
Zond 7 crosses boundary of lunar night and day	178
Zond 8 sweeps around the edge of the Moon	178
Luna 19	179
Luna 16.	183
Details of the drilling system	183
Samples from Luna 16	184
Luna 24 on the lunar surface	190
Luna 24 samples	190
Lunokhod and its laser	190
	193
Lunokhod's final resting place	195
Lunokhod 2 in Le Monnier bay	193
Lunokhod 2 looking down into the rille	198 198
Lunokhod 2's final stop	
	213
Venera 4 descent cabin	217

Illustrations	s XXV

Venera 8 landing site	
Venera 9–14 series	
Venus's magnetic field	231
Venera 14 image of surface	239
Venera 15 map of Ishtar Laksmi	245
Venera images of ridges and irregular terrain	246
Core of comet Halley from VEGA	257
Gavril Tikhov at Pulkovo observatory	263
Gavril Tikhov in the 1950s	264
Mars 1	265
Mars 3 soft-lander	270
Mars 3 image of Mars	272
Vasili Moroz	276
Plains with craters and linear features	282
Crater impacts	282
Ridges and depression	
Larger crater with dark flat floor	282
Mars UVL spacecraft Phobos	
Phobos globe	
Oleg Gazenko	304
Konstantin Feoktistov	311
Spacesuit for the Cosmos 110 dogs	
Zond 5 turtles	
Soyuz 7 crew, with Vladislav Volkov	
Vulkan welding unit	
Soyuz 9 crew recovery	
Iosif Gitelson	
Biosphere in Krasnoyarsk	326
Lower-body gravity suit	329
Salyut 4's telescope	333
Splav furnace	337
Zona furnace	337
Yuri Romanenko running on Salyut 6	340
Growing wheat in orbit	342
Salyut 6 observations of the atmosphere	344
Salyut external sample fixtures	345
Malakhit experiment on Salyut 7	348
Svetlana Savitskaya operating the <i>Tavria</i> experiment	349
Dr Valeri Poliakov	353
Dr Jaroslav Sykora	354
Peas gone to seed in greenhouse	358
Plants that grew unusually long stems	358
Water droplets attached to plants	359
Matroshka inside the station with Sergei Krikalev	363
Matroshka outside the station	364

xxvi Illustrations

Dusty plasma experiment	365
Astron	377
Granat	384
Granat image of galactic center	386
Granat image of radio source in the center of our galaxy	387
Gamma	390
Integral sky map	392
Intercosmos 17 Ellipse preparations	395
Intercosmos 18 Magik with Magion	396
Preparing Magion	396
Magion	397
Intercosmos 19 Ionozond rollout	399
Intercosmos 19 Polish scientists	399
Intercosmos 22 Bulgaria 1300	404
Intercosmos 24 Aktivny	406
Intercosmos 25 APEX	408
Olga Kohrosheva	410
Interball final mission concept	415
Pavel Triska	415
Interball data printout from <i>Elektron</i> instrument, 1995	418
Model of Earth's magnetosphere	420
Vertikal	425
Vertikal container	425
Vertikal 8 launch crew	425
ARAKS launch site in Kerguelen	429
ARAKS rocket in preparation	429
ARAKS launch site, a penguin colony	430
KOMPASS	439
Bion cabin	442
Biopan experiment	443
Cells affected by radiation	450
Details inside the Bion/Foton cabin.	451
Foton M-3	452
Dr Lev Zelenyi, Director of IKI	468
Spektr design.	469
Alexander Zakharov	472
Possible landing sites for Phobos Sample Return	474
IKI during its early years	484
Roald Sagdeev at international meeting.	486
reals suggest at international mouning	100

Figures

1.1	Chart of OSOVIAKHIM flight	13
1.2	Measurement of electrons by three 1958 sounding rockets	
1.3	Measurement of temperature by sounding rocket, June 1963	
1.4	Air density measurements taken by Sputnik 3	36
2.1	Printout of Cosmos 2 measurements of ion concentrations,	
	April 1962	46
2.2	Cosmos 12 analyzer	
2.3	Cosmos 12, 15 passes over the Southern Ocean	49
2.4	Cosmos 12, 15 measurement points of anomaly	
2.5	Cosmos 15 map of South Atlantic magnetic anomaly	
2.6	Map of the <i>Starfish</i> blast, based on Cosmos 5	
2.7	Elektron trajectories	
2.8	New map of the magnetosphere	
2.9	New map of the distribution of electrons	60
2.10	Map of a magnetic storm	60
2.11	Elektron map of soft protons	61
2.12	Elektron map of the sporadic zone	61
2.13	Elektron detection of meteor showers in January 1964	
2.14	Cosmos 11 data on ion concentrations by altitude	
2.15	New map of radiation belts, which used data from Cosmos 17	
2.16	A magnetogram from Cosmos 49	
2.17	The part of Earth covered by Cosmos 26 and 49 mapping	
2.18	Cosmos 49 magnetic map of Africa	
2.19	Air density measurements of the early Cosmos satellites	
2.20	Cosmos 135 measurements of gamma-ray impacts	
2.21	Cosmos 321 new world geomagnetic map	
2.22	Cosmos 321 map of the auroral oval	
2.23	Cosmos 92 airglow measurements	
2.24	Cosmos 65 map of Earth's ozone	
2.25	Cosmos 208 measurements of X-rays coming from constellations	
2.26	Cosmos 243 measurement of water vapor levels over the oceans	

xxviii Figures

2.27	Cosmos 243 measurement of water vapor lines over the Indian	
	Ocean	
2.28	Cosmos 243 measurement of temperature of Australian landmass	
2.29	Cosmos 384 map of Antarctic icefields	
2.30	Ion concentration measured by Intercosmos 2	108
2.31	Soviet model of the magnetosphere, early 1970s	109
2.32	The cyclotron whistlers detected by Intercosmos 5	110
2.33	Soviet map of the magnetosphere by Cosmos 348	117
2.34	The multiple layers of the ionization calorimeter	122
2.35	The electron spectrometer	123
2.36	The SEZ 13, with its walls to trap cosmic rays	124
2.37	Proton 2 average rates of particles	124
2.38	Proton 2 particle intensities	125
2.39	Proton 4 primary cosmic rays	126
3.1	New map of Earth's radiation belt, based on passage of First	
	Cosmic Ship	155
3.2	Passage of the Second Cosmic Ship (Luna 2) through the radiation	
	belts	158
3.3	The Moon map compiled by the Automatic Interplanetary Station	161
3.4	Zond 3 trajectory, showing period of photography of western limb	101
	of Moon	162
3.5	Zond 3 mapping frames	165
3.6	Turning the photographs into maps, Zond 3	166
3.7	Zond 3 interpretive map	167
3.8	Luna 6 contributed to a picture of the strength of cosmic rays over	107
5.0	1959–1965	168
3.9	Luna 10 magnetometer measurements	170
3.10	Luna 10 map of the lunar magnetic field	171
3.11	Luna 11 detection of long-range radio bursts, 8th September 1966	174
3.12	Zond 5 map of Africa	176
3.13	Luna 16 particle analysis	185
3.14	Geological chart of Lunokhod 2's journey	200
4.1	Radiation measured by Venera 4 en route	216
4.2	The original profile of the Venera 4 descent	218
4.3	Comparison of Venera 4 and Mariner 5 data	219
4.4	Profile of bow shock from Venera 4	219
4.5	Profile of Venus magnetic field after Venera 4	220
4.6	Profile of wind during Venera 7 descent	223
4.7	Wind profile of Veneras 4, 7, and 8	223
4.8	Light levels during the Venera 8 descent	226
4.9	Descent profile of Venera 8	227
4.10	Surface map of Venus from Venera 9 and 10 radar imaging	232
4.10	Flare record by Venera 12, 3rd December 1978	232
4.11		233
	Telemetry readout of chemical composition, Veneras 13 and 14	
4.13	Map of the northern latitudes of Venus from Veneras 15 and 16	243

Figures	XX1X

Analysis of northern latitudes, Veneras 15 and 16	244
Large-scale geological features	246
Tessera Fortuna	247
Parquet	247
Ravina Sedna	248
Balloon release points, VEGAs 1 and 2	253
Journey of VEGA 1 and 2 balloons	253
VEGA 1 balloon speeds	254
VEGA 1 and 2 balloons: pressure, temperatures recorded	254
Earth's environment, as mapped from the outward trajectory of	
Mars 1	266
Mars 2 and 3 instrument readout of water in the atmosphere	272
First Soviet map of Martian magnetic field	275
Mars 2 and 3 instruments registering disturbed ions	276
Mars 6 data for pressure, temperature and altitude	280
The Mars 5 map of water vapor	284
Map of the Martian shock wave and magnetic field following	
Mars 5	285
Air density map 1960–1963 compiled by Korabl Sputnik	302
Korabl Sputnik 2 map of the South Atlantic magnetic anomaly	306
Radiation intensity, compiled by Korabl Sputnik 3	307
Radiation map, compiled by Korabl Sputnik 3	307
Konstantin Feoktistov's observations	311
Pulse rates of the Voskhod 2 crew	312
Radiation meter count readouts from Zond 5	317
Measurement of airglow from Soyuz 5	319
Mir map of electron densities	356
Astron detection of gamma burst	379
The nuclear plume from Three Mile Island	400
Electrical activity before the Kermadec Earthquake (Intercosmos 19).	402
Cosmos 900 passing through storm	411
Cosmos 900 plasma blobs	412