Hydroecology and Ecohydrology
Hydroecology and Ecohydrology: Past, Present and Future

Edited by

PAUL J. WOOD
Department of Geography, Loughborough University, UK

DAVID M. HANNAH
School of Geography, Earth and Environmental Sciences, University of Birmingham, UK

and

JONATHAN P. SADLER
School of Geography, Earth and Environmental Sciences, University of Birmingham, UK

John Wiley & Sons, Ltd
Paul Wood for Maureen, Connor and Ryan
David Hannah for Angela and Ellie
Jonathan Sadler for Elizabeth, Matthew, Thomas, Rachel and Rebecca
Contents

List of Contributors xix
Preface xxiii

1 Ecohydrology and Hydroecology: An Introduction 1
Paul J. Wood, David M. Hannah and Jonathan P. Sadler
1.1 Wider Context 1
1.2 Hydroecology and Ecohydrology: A Brief Retrospective 2
1.3 A Focus 3
1.4 This Book 4
1.5 Final Opening Remarks 4
References 5

PART I PROCESSES AND RESPONSES

2 How Trees Influence the Hydrological Cycle in Forest Ecosystems 7
Barbara J. Bond, Frederick C. Meinzer and J. Renée Brooks
2.1 Introduction 7
2.2 Key Processes and Concepts in Evapotranspiration –
Their Historical Development and Current Status 8
2.2.1 The SPAC 8
2.2.2 Transpiration 9
2.2.3 Liquid Water Transport through Trees and the Role
of Hydraulic Architecture 14
2.2.4 Water Uptake by Roots 19
2.3 Evapotranspiration in Forest Ecosystems 21
2.3.1 Evaporation and Transpiration 21
2.3.2 Transpiration from the Understory 22
2.4 Applying Concepts: Changes in Hydrologic Processes through
the Life Cycle of Forests 22
2.4.1 A Summary of Age-related Changes in Forest
Composition, Structure, and Function 23
2.4.2 Impacts of Tree Size on Stomatal Conductance and Whole-tree Water Use 23
2.4.3 Age-related Change in Transpiration, Interception and Water Storage on the Forest Stand Level 25
2.4.4 Impacts of Change in Species Composition on Transpiration in Aging Forests 27
2.4.5 Implications for Predictive Models 27
Acknowledgments 28
References 28

3 The Ecohydrology of Invertebrates Associated with Exposed Riverine Sediments 37
Jonathan P. Sadler and Adam J. Bates
3.1 Introduction 37
3.2 ERS Habitats 38
3.3 Invertebrate Conservation and ERS Habitats 38
3.4 Flow Disturbance in ERS Habitats 39
3.5 The Importance of Flow Disturbance for ERS Invertebrate Ecology 41
3.5.1 Principle (i): Physical Variability and ERS Invertebrates 41
3.5.2 Principle (ii): Life History Patterns and Function Ecology 46
3.5.3 Principle (iii): Lateral and Longitudinal Connectivity and Population Viability 47
3.6 How Much Disturbance is Needed to Sustain ERS Diversity? 48
3.7 Threats to ERS Invertebrate Biodiversity 50
3.8 Conclusions 52
References 52

4 Aquatic–Terrestrial Subsidies Along River Corridors 57
Achim Paetzold, John L. Sabo, Jonathan P. Sadler, Stuart E.G. Findlay and Klement Tockner
4.1 Introduction 57
4.2 What Controls Aquatic–Terrestrial Flows? 58
4.2.1 Subsidies from Land to Water 59
4.2.2 Subsidies from Water to Land 59
4.3 Aquatic–Terrestrial Flows Along River Corridors 61
4.3.1 Aquatic–Terrestrial Subsidies in Forested Headwater Streams 61
4.3.2 Aquatic–Terrestrial Subsidies in a Braided River Reach 63
4.3.3 Aquatic–Terrestrial Subsidies in Temperate Lowland Rivers 66
4.4 Influence of Human Impacts on Aquatic–Terrestrial Subsidies 67
4.4.1 Riparian Deforestation 67
4.4.2 River Channelization and Regulation 67
4.5 Conclusions 68
4.6 Future Research 68
References 69
5 Flow-generated Disturbances and Ecological Responses: Floods and Droughts

Philip S. Lake

5.1 Introduction 75
5.2 Definition of Disturbance 75
5.3 Disturbances and Responses 76
5.4 Disturbance and Refugia 77
5.5 Floods 78
 5.5.1 The Disturbance 78
5.6 Droughts 79
 5.6.1 The Disturbance 79
5.7 The Responses to Floods 80
 5.7.1 Constrained Streams 80
 5.7.2 Floodplain Rivers 82
5.8 Responses to Drought 82
 5.8.1 Impacts 82
 5.8.2 Recovery from Drought 85
5.9 Summary 86
5.10 Hydrological Disturbances and Future Challenges 87
Acknowledgements 88
References 88

6 Surface Water–Groundwater Exchange Processes and Fluvial Ecosystem Function: An Analysis of Temporal and Spatial Scale Dependency

Pascal Breil, Nancy B. Grimm and Philippe Vervier

6.1 Introduction 93
6.2 Fluvial Ecosystems: The Hydrogeomorphic Template and Ecosystem Function 94
 6.2.1 Fluvial Ecosystem Function: Biogeochemical Dynamics 94
 6.2.2 Fluvial Ecosystem Structure: Biotic Communities 95
6.3 Flow Variability and SGW Water Movements 96
 6.3.1 In Space 96
 6.3.2 In Time 99
 6.3.3 An Analysis of Flow Variability Dependency with Basin Area 99
 6.3.4 Linkage Between SGW and Flow Dynamics 103
6.4 Implications of Flow Variability for SGW Exchange and Fluvial Ecosystem Structure and Function 103
 6.4.1 Material Delivery to and within Fluvial Ecosystems 103
 6.4.2 Modulation of Nutrient and Organic Matter Delivery by the Riparian Interface Zone 105
 6.4.3 In-stream Biogeochemical Function and Flow Variability 106
6.5 Conclusion 107
Acknowledgments 108
References 108
7 Ecohydrology and Climate Change

Wendy S. Gordon and Travis E. Huxman

7.1 Introduction

7.2 Ecohydrological Controls on Streamflow

7.3 Simulation Studies of Ecohydrological Effects of Climate Change

7.4 Experimental Studies of Ecohydrological Effects of Climate Change

7.5 Differing Perspectives of Hydrologists and Ecologists

7.6 Future Research Needs

7.7 Postscript

References

PART II METHODS AND CRITIQUES

8 The Value of Long-term (Palaeo) Records in Hydroecology and Ecohydrology

Tony G. Brown

8.1 River–Floodplain–Lake Systems and the Limits of Monitoring

8.2 Key Concepts

8.3 Palaeoecology and Palaeohydrology: Proxies and Transfer Functions

- **8.3.1** Dendrohydrology
- **8.3.2** Coleoptera (Beetles)
- **8.3.3** Chironomids (Non-biting Midgeis)
- **8.3.4** Cladocera (Water Fleas)
- **8.3.5** Diatoms
- **8.3.6** Pollen and Spores

8.4 Palaeoecology, Restoration and Enhancement

8.5 Case Study I. The River Culm in South-west England

8.6 Case Study II. The Changing Status of Danish Lakes

8.7 Conclusions

Acknowledgements

References

9 Field Methods for Monitoring Surface/Groundwater Hydroecological Interactions in Aquatic Ecosystems

Andrew J. Boulton

9.1 Introduction

9.2 Research Contexts: Questions, Scales, Accuracy and Precision

9.3 Direct Hydrological Methods for Assessing SGW Interactions

- **9.3.1** Seepage Meters
- **9.3.2** Mini-piezometers and Groundwater Mapping
- **9.3.3** Synoptic Surveys of Surface Discharge or Lake Levels

9.4 Indirect Hydrological Methods for Assessing SGW Interactions

- **9.4.1** Water Temperature and Thermal Patterns
- **9.4.2** Water Chemistry and Chemical Signatures
- **9.4.3** Dyes and Added Tracers

9.5 Future Technical Challenges and Opportunities

Acknowledgements

References
10 Examining the Influence of Flow Regime Variability on Instream Ecology

Wendy A. Monk, Paul J. Wood and David. M. Hannah

10.1 Introduction 165
10.2 The Requirement for Hydroecological Data 166
10.3 Bibliographic Analysis 167
10.4 Importance of Scale 167
10.5 River Flow Data: Collection and Analysis 171
10.6 Ecological Data: Collection and Analysis 172
10.7 Integration of Hydrological and Ecological Data for Hydroecological Analysis 175
10.8 River Flow Variability and Ecological Response: Future Directions and Challenges 176

References 178

11 High Resolution Remote Sensing for Understanding Instream Habitat

Stuart N. Lane and Patrice E. Carbonneau

11.1 Introduction 185
11.2 Scale, the Grain of Instream Habitat and the Need for Remotely Sensed Data 185
11.3 Depth and Morphology 188
11.3.1 Image Processing 188
11.3.2 Photogrammetry 190
11.3.3 Laser Scanning 194
11.4 Substrate 196
11.5 Discrete Grain Identification 196
11.5.1 Principles 196
11.5.2 Example Application: Exposed Gravel Grain-size Distributions 197
11.6 Ensemble Grain Size Parameter Determination 197
11.6.1 Principles 197
11.7 Example Application: Substrate Mapping in a Salmon River 198
11.8 Future Developments 200

References 200

12 A Mathematical and Conceptual Framework for Ecohydraulics

John M. Nestler, R. Andrew Goodwin, David L. Smith and James J. Anderson

12.1 Introduction 205
12.2 Ecohydraulics: Where Do the Ideas Come From? 207
12.3 Reference Frameworks of Engineering and Ecology 208
12.3.1 Eulerian Reference Framework 209
12.3.2 Lagrangian Reference Framework 209
12.3.3 Agent Reference Framework 209
12.4 Concepts for Ecohydraulics 211
12.5 Two Examples of Ecohydraulics
 12.5.1 Example 1: Semi-quantitatively Describing Habitat of Drift Feeding Salmonids
 12.5.2 Example 2: Quantitatively Describing Fish Swim Path Selection in Complex Flow Fields

12.6 Discussion
 12.6.1 An Opportunity for Engineers and Ecologists
 12.6.2 Challenges and Limits for Ecohydraulics

12.7 Conclusions

Acknowledgements

References

13 Hydroecology: The Scientific Basis for Water Resources Management and River Regulation
 Geoffrey E. Petts
 13.1 Introduction
 13.2 A Scientific Basis for Water Resources Management
 13.2.1 Principles for Sustainable River Regulation
 13.3 Hydroecology in Water Management
 13.3.1 Water Allocation to Protect Riverine Systems
 13.3.2 Defining Ecologically Acceptable Flow Regimes
 13.3.3 Determining Environmental Flows
 13.4 Applications to Water Resource Problems
 13.4.1 Communication and Policy Development
 13.5 Conclusions

References

PART III CASE STUDIES

14 The Role of Floodplains in Mitigating Diffuse Nitrate Pollution
 Tim Burt, Mariet M. Hefting, Gilles Pinay and Sergi Sabater
 14.1 Context
 14.2 Nitrogen Removal by Riparian Buffers: Results of a Pan-European Experiment
 14.2.1 The NICOLAS Experiment
 14.2.2 Climatic and Hydrological Controls on the Efficiency of Riparian Buffers
 14.2.3 The Effect of the Riparian Vegetation Type on Nitrate Removal
 14.2.4 Nitrogen Saturation Effect
 14.2.5 N₂O Emissions
 14.3 Landscape Perspectives
 14.3.1 Upslope–Riparian Zone–Channel Linkage
 14.3.2 Catchment-scale Considerations
 14.3.3 N Loading
 14.4 Future Perspectives

References
15 Flow–Vegetation Interactions in Restored Floodplain Environments
Rachel Horn and Keith Richards

15.1 The Need for Ecohydraulics 269
15.2 The Basic Hydraulics of Flow–Vegetation Interaction 271
15.2.1 Roughness Properties of Vegetation 272
15.2.2 Nonlinearities 276
15.3 Drag Coefficients and Vegetation 277
15.4 Velocity, Velocity Profiles and Vegetation Character 278
15.5 Dimensionality: Flow Velocity in Compound Channels with Vegetation 281
15.6 Some Empirical Illustrations of Flow–Vegetation Interactions 283
15.6.1 Velocity Profiles in Submerged Rigid Vegetation 283
15.6.2 Velocity Profiles in Emergent Rigid Vegetation 284
15.6.3 Velocity Profiles in a Mixture of Submerged and Emergent Vegetation 284
15.6.4 Velocity Profiles in Submerged, Flexible Vegetation 286
15.6.5 Complex Velocity Patterns in Staggered Arrays 286
15.6.6 Velocity Variation Across a Partially Vegetated Channel 287
15.6.7 An Alternative Means of Assessing Vegetative Roughness: The Water Surface Slope 289
15.6.8 An Alternative Means of Measuring Velocity in the Field 289
15.6.9 Modelling the Wienflüss Flows 290
15.7 Conclusions 291
References 292

16 Hydrogeomorphological and Ecological Interactions in Tropical Floodplains: The Significance of Confluence Zones in the Orinoco Basin, Venezuela
Judith Rosales, Ligia Blanco-Belmonte and Chris Bradley

16.1 Introduction 295
16.2 Hydrogeomorphological Dynamics 296
16.3 The Riparian Ecosystem 303
16.4 Longitudinal Gradients at Confluence Zones 305
16.4.1 Sediment Gradient 305
16.4.2 Biological Gradient 306
16.5 Synthesis and Conclusions 311
Acknowledgements 313
References 314

17 Hydroecological Patterns of Change in Riverine Plant Communities
Birgitta M. Renöfält and Christer Nilsson

17.1 Introduction 317
17.2 Vegetation in Riverine Habitats 318
<table>
<thead>
<tr>
<th>17.3</th>
<th>Hydrological–Ecological Interactions</th>
<th>319</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.3.1</td>
<td>Hydrological Drivers</td>
<td>319</td>
</tr>
<tr>
<td>17.3.2</td>
<td>Ecological Drivers</td>
<td>321</td>
</tr>
<tr>
<td>17.4</td>
<td>Natural Patterns of Change</td>
<td>321</td>
</tr>
<tr>
<td>17.4.1</td>
<td>Lateral Dimension</td>
<td>322</td>
</tr>
<tr>
<td>17.4.2</td>
<td>Vertical Dimension</td>
<td>323</td>
</tr>
<tr>
<td>17.4.3</td>
<td>Longitudinal Dimension</td>
<td>325</td>
</tr>
<tr>
<td>17.4.4</td>
<td>Temporal Dimension</td>
<td>326</td>
</tr>
<tr>
<td>17.5</td>
<td>Human Impacts</td>
<td>327</td>
</tr>
<tr>
<td>17.6</td>
<td>Ways Forward</td>
<td>330</td>
</tr>
<tr>
<td></td>
<td>Acknowledgements</td>
<td>332</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>332</td>
</tr>
</tbody>
</table>

18 Hydroecology of Alpine Rivers

Lee E. Brown, Alexander M. Milner and David M. Hannah

18.1	Introduction	339
18.2	Water Sources Dynamics in Alpine River Systems	341
18.3	Physicochemical Properties of Alpine Rivers	342
18.3.1	Stream Discharge	342
18.3.2	Stream Temperature	343
18.3.3	Suspended Sediment Concentration	344
18.3.4	Hydrochemistry	346
18.4	Biota of Alpine Rivers	346
18.4.1	Biota of Alpine Glacier-fed Rivers	346
18.4.2	Biota of Other (Nonglacier-fed) Alpine Rivers	348
18.4.3	Temporal Variability of Biota in Alpine Rivers	349
18.5	Towards an Integrated Hydroecological Understanding of	351
	Alpine River Systems	
18.6	Conclusions and Future Research Directions	353
	Acknowledgements	356
	References	356

19 Fluvial Sedimentology: Implications for Riverine Ecosystems

Gregory H. Sambrook Smith

19.1	Introduction	361
19.2	The Sedimentology of Barforms	362
19.2.1	Ecological Implications	362
19.2.2	Grain Size and Sorting	363
19.2.3	Bar Surface Structure and Hydraulics	371
19.3	The Evolution of Barforms	373
19.3.1	Ecological Implications	373
19.3.2	Bar Migration	374
19.3.3	Avulsion	376
19.4	Discussion and Conclusion	377
	References	380
20 Physical–Ecological Interactions in a Lowland River System: Large Wood, Hydraulic Complexity and Native Fish Associations in the River Murray, Australia

Victor Hughes, Martin C. Thoms, Simon J. Nicol and John D. Koehn

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.1 Introduction</td>
<td>387</td>
</tr>
<tr>
<td>20.2 Study Area</td>
<td>389</td>
</tr>
<tr>
<td>20.3 Methods</td>
<td>391</td>
</tr>
<tr>
<td>20.4 Results</td>
<td>394</td>
</tr>
<tr>
<td>20.4.1 Physical and Hydraulic Characteristics of Large Wood</td>
<td>394</td>
</tr>
<tr>
<td>20.4.2 Fish Capture</td>
<td>396</td>
</tr>
<tr>
<td>20.4.3 Analysis of Fish Abundance in Areas of Low, Medium and High Velocities</td>
<td>397</td>
</tr>
<tr>
<td>20.5 Discussion</td>
<td>397</td>
</tr>
<tr>
<td>20.6 Conclusions</td>
<td>399</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>400</td>
</tr>
<tr>
<td>References</td>
<td>401</td>
</tr>
</tbody>
</table>

21 The Ecological Significance of Hydraulic Retention Zones

Friedrich Schiemer and Thomas Hein

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.1 Introduction</td>
<td>405</td>
</tr>
<tr>
<td>21.2 Geomorphology and Patch Dynamics Creating Retention Zones</td>
<td>406</td>
</tr>
<tr>
<td>21.3 Retention, Hydraulics and Physiographic Conditions</td>
<td>407</td>
</tr>
<tr>
<td>21.4 Habitat Conditions for Characteristic Biota</td>
<td>409</td>
</tr>
<tr>
<td>21.5 Retention and Water Column Processes</td>
<td>411</td>
</tr>
<tr>
<td>21.6 The Significance of Retention Zones for the River Network</td>
<td>414</td>
</tr>
<tr>
<td>21.7 Implications for River Management</td>
<td>416</td>
</tr>
<tr>
<td>References</td>
<td>417</td>
</tr>
</tbody>
</table>

22 Hydroecology and Ecohydrology: Challenges and Future Prospects

David M. Hannah, Jonathan P. Sadler and Paul J. Wood

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.1 Introduction</td>
<td>421</td>
</tr>
<tr>
<td>22.2 The Need for an Interdisciplinary Approach</td>
<td>422</td>
</tr>
<tr>
<td>22.3 Future Research Themes</td>
<td>423</td>
</tr>
<tr>
<td>22.3.1 Ecosystem Sensitivity to Hydrological Change</td>
<td>424</td>
</tr>
<tr>
<td>22.3.2 Disturbance: Water and Ecological Stress</td>
<td>424</td>
</tr>
<tr>
<td>22.3.3 Aquatic–Terrestrial Linkages</td>
<td>424</td>
</tr>
<tr>
<td>22.3.4 Modern and Palaeo-analogue Studies</td>
<td>425</td>
</tr>
<tr>
<td>22.3.5 Applied Hydroecology</td>
<td>425</td>
</tr>
<tr>
<td>References</td>
<td>426</td>
</tr>
</tbody>
</table>

Index

Index 431
Paul J. Wood is a Senior Lecturer in the Department of Geography at Loughborough University, UK. His interdisciplinary research centres on three themes at the interface of ecology and hydrology: (1) the interactions between hydrological variability and aquatic invertebrate populations and communities within headwater streams, springs and hypogeal systems (including groundwater, caves and the hyporheic zone); (2) the influence of river flow regime variability upon lotic invertebrate communities; and (3) the role of hydrological disturbances (droughts and floods) in structuring aquatic faunal communities and the processes involved in change over varying time-scales.

David M. Hannah is a Senior Lecturer in Physical Geography at the University of Birmingham, UK. His research is interdisciplinary, focusing on three complementary themes within hydroclimatology (interface between hydrology-climatology): (1) hydroclimatological processes within alpine, mountain and glacierized river basins; (2) climate and river flow regimes; and (3) river energy budget and thermal dynamics. He has a strong crosscutting interest in hydroecology, specifically ecological response to hydroclimatological and physico-chemical habitat variability/change. He has also developed new methods for monitoring, analysing and modelling environmental dynamics at a range of space-time scales.

Jonathan P. Sadler is a Reader in Biogeography and Ecology at the University of Birmingham, UK. His research activity is split between urban ecology, hydroecology, and the use and reconfiguration of knowledges associated with biodiversity. The central focus of his hydroecological work examines: (1) how the interaction of flow variability and fluvial geomorphology affects riparian animal communities; (2) how hydrological disturbance affects aquatic riparian animal community structure, food-web fluxes and subsidies, and species populations, and; (3) how riparian management and aquatic pollution affects both lotic and riparian animal communities.
List of Contributors

James J. Anderson University of Washington, Columbia Basin Research

Adam J. Bates School of Geography, Earth and Environmental Sciences, University of Birmingham, UK

Ligia Blanco-Belmonte Fundación La Salle de Ciencias Naturales, Estación de Investigaciones Hidrobiológica de Guayana, Venezuela

Barbara J. Bond Department of Forest Science, Oregon State University, USA

Andrew J. Boulton University of New England, New South Wales, Australia

Chris Bradley School of Geography, Earth and Environmental Sciences, University of Birmingham, UK

Pascal Breil Cemagref, Agricultural and Environmental Engineering Research, Hydrology-hydraulics research unit, Lyon, France

J. Renée Brooks US Environmental Protection Agency, Western Ecology Division, Corvallis, OR, USA

Lee E. Brown School of Geography, University of Leeds, UK

Tony G. Brown School of Archaeology, Geography and Earth Resources, The University of Exeter, UK

Tim Burt Department of Geography, Durham University, UK

Patrice E. Carbonneau Department of Geography, Durham University, UK

Stuart E.G. Findlay Institute of Ecosystem Studies, Millbrook, USA
List of Contributors

R. Andrew Goodwin U.S. Army Engineer Research and Development Center

Wendy S. Gordon The University of Texas at Austin, TX, USA

Nancy B. Grimm School of Life Sciences, Arizona State University, USA

David M. Hannah School of Geography, Earth and Environmental Sciences, University of Birmingham, UK

Mariet M. Hefting Department of Geobiology, Utrecht University, The Netherlands

Thomas Hein Dept. of Limnology and Hydrobotany, University of Vienna, Austria

Rachel Horn Department of Geography, University of Cambridge, UK

Victor Hughes Riverine Landscapes Research Laboratory, University of Canberra, Australia

Travis E. Huxman University of Arizona, AZ, USA

John D. Koehn Arthur Rylah Institute, Department of Sustainability and Environment, Heidelberg, VIC, Australia

Philip S. Lake School of Biological Sciences, Monash University, Victoria, Australia

Stuart N. Lane Department of Geography, Durham University, UK

Frederick C. Meinzer USDA Forest Service, Corvallis, OR, USA

Alexander M. Milner School of Geography, Earth and Environmental Sciences, University of Birmingham and Institute of Arctic Biology, University of Alaska, USA

Wendy A. Monk Department of Geography, Loughborough University, UK and Canadian Rivers Institute, Department of Biology, University of New Brunswick, Canada

John M. Nestler U.S. Army Engineer Research and Development Center

Simon J. Nicol Arthur Rylah Institute, Department of Sustainability and Environment, Heidelberg, VIC, Australia

Christer Nilsson Department of Ecology and Environmental Science, Umeå University, Sweden

Achim Paetzold Catchment Science Centre, The University of Sheffield, UK and Department of Aquatic Ecology, eawag, Dübendorf, Switzerland
Geoffrey E. Petts University of Westminster, London, UK

Gilles Pinay Centre d’Ecologie Fonctionnelle et Evolutive, CNRS, France

Birgitta M. Renöfält Department of Ecology and Environmental Science, Umeå University, Sweden

Keith Richards Department of Geography, University of Cambridge, UK

Judith Rosales Universidad Nacional Experimental de Guayana, Centro de Investigaciones Ecológicas, Venezuela

Sergi Sabater Institute of Aquatic Ecology and Department of Environmental Sciences, University of Girona, Spain

John L. Sabo School of Life Sciences, Arizona State University, USA

Jonathan P. Sadler School of Geography, Earth and Environmental Sciences, University of Birmingham, UK

Gregory H. Sambrook Smith School of Geography, Earth and Environmental Sciences, University of Birmingham, UK

Friedrich Schiemer Department of Limnology and Hydrobotany, University of Vienna, Austria

David L. Smith U.S. Army Engineer Research and Development Center and formerly of S.P. Cramer and Associates, Gresham

Martin C. Thoms Riverine Landscapes Research Laboratory, University of Canberra, Australia

Klement Tockner Department of Aquatic Ecology, eawag, Dübendorf, Switzerland and Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany

Philippe Vervier UMR CNRS-UPS, Paul Sabatier University, France

Paul J. Wood Department of Geography, Loughborough University, UK
Preface

Water-dependent habitats are extremely diverse in terms of their nature (e.g., drylands, wetlands, streams/rivers and ponds/lakes), geography (poles to equator, low to high latitude) and many support communities and species of high conservation value, some of which are under threat from extinction. As pressure is increasing on water-dependent habitats due to global change and ever growing anthropogenic impacts, it is clear that balancing the water needs of people against those of ecosystems (terrestrial and aquatic) is, and will increasingly become, a premier environmental issue. This crucial, often precarious ‘balancing act’ involves some highly complex issues and, thus, it has compelled recent workers to identify the need, not only for new integrative science (between traditional fields of hydrology–ecology) and analytical approaches, but for truly interdisciplinary research. In this context, it has been argued that the ‘new’ discipline(s) of hydroecology/ecohydrology has the potential not only to unlock elements of this complexity, but also to provide a foundation for the sustainable management of water resources.

The terms ecohydrology and hydroecology have been used increasingly in the international scientific literature over the last decade, and this emerging interdisciplinary subject area has gathered considerable momentum as evidenced by the publication of textbooks, special issues of journals, over 150 peer-reviewed scientific journal papers, and the imminent launch of a dedicated John Wiley & Sons journal, *Ecohydrology*. Although there is a growing volume of research output at the interface between the hydrological and biological sciences, the terms hydroecology and ecohydrology and the scientific remit of the field remain remarkably poorly defined. Hence, this book aims to address this research gap and capture the vitality of this current scientific hot-topic in a cutting-edge research text that: (i) reviews the evolution of the discipline (past); (ii) provides detailed coverage of the present state of the art, and (iii) looks to the horizon for the ecohydrology/hydroecology of the future. To achieve this goal, we invited international leaders within their respective fields to author individual chapters. The resultant chapters present significant new results and methodological developments within the field of ecohydrology/hydroecology, while outlining key historical developments and identifying future research needs. The chapters are positioned at the forefront of their fields and draw together individuals from hydrological and biological/ecological sciences and engineering disciplines.
to ‘bridge the gap’ between traditional academic disciplines and to ensure that the book is inclusive and truly interdisciplinary.

We have made every effort to encapsulate the variety of ecohydrological/hydroecological research currently being conducted across the globe and suggest that this book is significantly different from previous texts in providing coverage of: (i) a range of organisms (plants, invertebrates and fish), (ii) physical processes within terrestrial, riparian (aquatic–terrestrial ecotones) and aquatic habitats, and (iii) palaeo-ecological/hydrological perspectives. We have endeavoured to provide a comprehensive overview of the research conducted under the banner of ecohydrology/hydroecology. However, we acknowledge that, due to the rapidly developing nature of the subject, there are inevitably omissions. We hope that in capturing the state of the art, this book will provide a catalyst for future interdisciplinary research and a starting point for scientists, practitioners and end-users with an interest in hydrology–ecology interactions.

There are number of people that require acknowledgement for their contributions to this book. We would like to express our sincere appreciation to the teachers, mentors and colleagues that kindled our interest in hydroecology, and opened opportunities (and our eyes) to develop our work in this interdisciplinary research field. We would like to thank the following chapter reviewers for their important work in enhancing the quality and rigour of this book: Maureen Agnew, Patrick Armitage, Martin Baptist, Valerie Black, Chris Bradley, Lee Brown, Paul Buckland, Leopold Füreder, Jane Fisher, Rob Francis, Alan Hill, Etienne Muller, Pierre Marmonier, Yenory Morales-Chaves, Eric Pattee, Ian Reid, Christopher Robinson, Geoffrey Petts, Gregory Sambrook Smith, Barnaby Smith, Chris Soulsby, Klement Tockner and Larry Weber. We are also very grateful to several anonymous reviewers. We appreciate the support and efforts of John Wiley & Sons’ staff at all stages in the preparation of this book, particularly Richard Davies, Colleen Goldring Richard Lawrence and Fiona Murphy.

Paul J. Wood
David M. Hannah
Jonathan P. Sadler
1

Ecohydrology and Hydroecology:
An Introduction

Paul J. Wood, David M. Hannah and Jonathan P. Sadler

1.1 Wider Context

Water is essential for life on our ‘blue planet’ but just 2.5% of all the Earth’s water comprises freshwater. Of this precious freshwater resource, 0.3% is estimated to be surface water, held in rivers and streams (2%), wetlands (11%) and lakes (87%) (see, for example, Oki and Kanae, 2006). This tiny proportion of global water supports at least 6% (>100 000) of all described species (Dudgeon et al., 2006). Water-dependent habitats are extremely diverse, located from poles to equator and low to high altitude, and comprise dynamic systems that vary in scale from individual plants to large complex vegetation communities, from the smallest headwater stream to the largest lowland river, complex floodplains, a myriad of wetland types, and lentic ecosystems ranging from ponds to vast lakes. Many of these habitats support communities and species of high conservation value, some of which are under threat from extinction (e.g., Grootjans et al., 2006; Hannah et al., 2007; Ricciardi and Rasmussen 1999; Sadler et al., 2004; Wilcox and Thurow, 2006). Because of water’s many uses, humans have fundamentally altered natural hydrological processes and conditions in many areas and, consequently, freshwater ecosystems have experienced reductions in biodiversity at least as great as the most impacted terrestrial ecosystems (Dudgeon et al., 2006). When viewed against a backdrop of rapidly rising global population (predicted to reach about 8 billion by 2025; United Nations, 2000), it is clear that balancing the water needs of people against those of ecosystems (terrestrial and aquatic) is, and will increasingly become, a premier environmental issue (see, for example, Petts et al., 2006a). This crucial, precarious ‘balancing act’
involves some highly complex issues and, thus, it has compelled recent workers to identify the need, not only for new integrative science and new analytical approaches (e.g. Newman et al., 2006; Petts et al., 2006b), but for truly interdisciplinary research (e.g. Hannah et al., 2004). In this context, it has been argued that the ‘new’ discipline(s) of hydroecology/echohydrology has the potential not only to unlock elements of this complexity, but also to provide a foundation for the sustainable management of water resources (e.g. Zalewski, 2000; Zalewski et al., 1997).

1.2 Hydroecology and Ecohydrology: A Brief Retrospective

The terms ecohydrology (eco-hydrology) and hydroecology (hydro-ecology), which include the subdiscipline of ecohydraulics, are being used increasingly by the international scientific community (see e.g. Janauer, 2000; Wilcox and Newman 2003, Wood et al., 2001). Although there is a growing volume of research output at the interface between the hydrological and life (biological) sciences (e.g. Gurnell et al., 2000; Zalewski, 2000), the terms hydroecology and ecohydrology and the scientific remit of the field are remarkably poorly defined, with limited consensus between many of the published definitions (e.g. Wassen and Grootjans, 1996; Zalewski et al., 1997; Baird and Wilby, 1999; Dunbar and Acreman, 2001; Eagleson, 2002; Nuttle, 2002; Bond, 2003; Rodriguez-Iturbe, 2005). Furthermore, it has been suggested that while physical scientists, and hydrologists in particular, are embracing the new ‘hot topic’, ecologists and biologists are less aware or less inclined to engage in the debate regarding its status as a ‘new paradigm’ or subdiscipline (Bond, 2003). Bibliographic analysis (for details refer to Hannah et al., 2004) has demonstrated the proliferation of the terms ecohydrology and hydroecology, and the breadth of subject matter; however, it has also identified a larger body of ‘hidden’ ecohydrological and hydroecological literature that does not flag itself as such (also see Bond, 2003; Bonell, 2002; Kundzewicz, 2002). Perhaps most significantly, the review of hydroecological/echohydrological literature showed clearly that the majority of the research was undertaken within traditional subject boundaries (i.e., groups dominated by either physical or biological scientists) rather than interdisciplinary teams, uniting researchers from both traditions (Hannah et al., 2004). Whether or not the terms are widely recognised or accepted as something ‘new’ (or as a subdiscipline) by scientists, the fact remains that the terms are increasingly making an impact within the hydrological and ecological literature. Indeed, the yearly citation rate of the terms has more than doubled since 2004 (Figure 1.1).

1.3 A Focus

It is apparent from our previous literature review and bibliographic analysis (Hannah et al., 2004) that a definition identifying a theoretical core is needed before hydroecology and ecohydrology become established paradigms or disciplines. A definition including the discipline’s aim and subject scope would serve as a focal point to help unite the research community. In this regard, a single definition that applies equally to hydroecology and ecohydrology is essential. At present, there is arguably no single accepted definition of either term, never mind a joint definition.
There has been specific use of the term ecohydrology to refer to plant–water interactions both in the past (e.g., Baird and Wilby, 1999; Eagleson, 2002) and increasingly more recently, with special reference to semi-arid/dryland/rangeland environments (e.g. Newman et al., 2006; Wilcox and Thurow, 2006). However, ecohydrology has also been employed to describe wider hydrology–ecology linkages (i.e. all biota and environments, e.g., Kundzewicz, 2002; Zalewski, 2002). Arguably, this specific versus generalist usage of ecohydrology could lead to confusion and misunderstanding. Therefore, we propose the use of the term hydroecology to refer to hydrology–ecology interactions in the broadest sense (cf. Dunbar and Acreman, 2001) and so provide an umbrella under which ecohydrology in its stricter form can be included.

We recognise the potential danger that definitions can become either too restrictive or nebulous to be effective and/or applicable. Like hydroecology, other ‘new’ scientific paradigms have begun life as ‘hot topics’ but they have faded away due to a problem of identity. If hydroecology is to avoid a similar fate, we must ensure that it is an identifiable and constructive discipline, and not a deconstructed version of existing paradigms or academic disciplines. A clear and inclusive definition of hydroecology should help to this end. Rather than debating and deliberating over the appropriate form of words in a revised definition, we suggest that it may be more instructive to provide a list of ‘target elements’ that outline the theoretical core and range of process interactions and scales that should encapsulate hydroecological research (Hannah et al., 2004):

(i) the bi-directional nature of hydrological–ecological interactions and importance of feedback mechanisms;
(ii) the requirement for fundamental process understanding, rather than simply establishment of functional (statistical) links without a probable chain of causality;
(iii) the subject scope to encompass: (a) the full range of (natural and human-impacted) water-dependent habitats/environments, and (b) flora, fauna and whole ecosystems;

Figure 1.1 Number of peer-reviewed journal articles using the terms ecohydrology, eco-hydrology, hydroecology and hydro-ecology (1991–2006)
(iv) the need to consider process interactions operating at a range of spatial and temporal scales (including palaeohydrological and palaeoecological viewpoints); and (v) the interdisciplinary nature of the research philosophy (see Chapter 22).

1.4 This Book

Given the current upsurge in hydroecology and ecohydrology, we thought it important and timely to capture the current state-of-the-art in one place as a research-level text. Our intention was to create a cutting-edge volume, which presents new results and methodological developments within the rapidly evolving field of hydroecology/ecohydrology. To achieve this goal, recognised international leaders in their subjects have written the individual chapters and have aimed to position their contributions at the research forefront. In terms of content, the book covers a range of hydrological and ecological processes, methodological approaches and ecohydrologically sensitive habitats from an array of geographical locations (e.g., Australia, Europe, and North and South America). The book differs from others currently available not only in terms of its environmental breadth but it also covers a wide range of organisms (plants, invertebrates and fish) and their interactions with water.

The book is structured in three sections: Part 1 considers fundamental ecohydrological/hydroecological process understanding and how floral and faunal communities and ecosystem functions (e.g. nutrient cycling) are influenced and respond to water and its availability (Chapter 2 to Chapter 7). Part 2 of the book draws together up-to-date methodological approaches and critiques of how ecohydrological/hydroecological patterns and processes can (may) be monitored/modelled to maintain and protect the natural environment, and be managed to ensure the continued supply of water for human uses (Chapters 8–13). Part 3 comprises detailed ecohydrological and hydroecological case-studies of research undertaken on different floral and faunal groups in different environments across the globe (Chapter 14 to Chapter 21). The final chapter (Chapter 22) identifies some challenges and future prospects for hydroecology/ecohydrology.

We do not claim that this volume is all encompassing in its coverage of research that could be deemed to be hydroecology or ecohydrology. Indeed, we are conscious that this volume only begins to address palaeohydrology and palaeoecology. Palaeoecohydrology studies may provide valuable baseline information regarding pre-human influences on the environment and for climatic change/variability investigations (Lytle, 2005; Prebble et al., 2005). In addition, the chapters almost exclusively deal with freshwater and do not consider marine/brackish water ecosystems or terrestrial environments subject to salinisation (e.g., Williams and Williams, 1998; Brown et al., 2006). Saline water represents a challenging environment for floral and faunal communities and, as yet, these avenues of research have not been explored fully by ecohydrologists and hydroecologists.

1.5 Final Opening Remarks

It is clear that researchers actively involved in ecohydrological and hydroecological studies are increasingly aware of the need for a truly interdisciplinary philosophical