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Preface

This book is about multivariate and hyperspectral imaging, not only
on how to make the images but on how to clean, transform, analyze
and present them. The emphasis is on visualization of images, models
and statistical diagnostics, but some useful numbers and equations are
given where needed. The idea to write this book originated at an Image
Analysis Session at the Eastern Analytical Symposium (Somerset, NJ) in
November 2002. At this session, the lectures were so inspiring that it
was felt necessary to have something on paper for those not present.

An earlier book, also published by John Wiley & Sons, Ltd, came
out in 1996. It was called Multivariate Image Analysis by Geladi and
Grahn. This book contains a lot of the basic theory. The examples in
this book are not very advanced because in the early 1990s it was not
so easy to get 10 or more wavelength bands in an image. There has also
been an evolution in theory and algorithms, requiring additions to the
1996 book, but a major difference is that image files are much larger in
size and sizes are expected to keep on growing. This is a challenge to
the data analysis methods and algorithms, but it is also an opportunity
to get more detailed results with higher precision and accuracy.

It would have been possible to make a revised second edition of Geladi
and Grahn, but it was considered more useful to include extra authors,
thus creating a multi-authored book with chapters on hyperspectral
imaging. The chapters would be written by groups or persons whom
we felt would be able to contribute something meaningful. The book
can roughly be divided into two parts. The earlier chapters are about
definitions, nomenclature and data analytical and visualization aspects.
The later chapters present examples from different fields of science,
including extra data analytical aspects. The subdivision in theory and
application parts is not ideal. Many attempts of putting the chapters in
the correct order were tried and the final result is only one of them.



xiv PREFACE

Chapter 1 is about the definition of multivariate and hyperspectral
images and introduces nomenclature. It contains basic information that
is applicable to all subsequent chapters. The basic ideas of multivariate
interactive image analysis are explained with a simple color (three chan-
nels) photograph.

Chapters 2–5 give a good insight into factor and component modeling
used on the spectral information in the images. This is called multi-
variate image analysis (MIA). Chapter 2 introduces interactive explo-
ration of multivariate images in the scene and variable space in more
detail using an eight channel optical image taken from an airplane. The
role of visualization in this work is extremely important; something that
Chapter 2 succeeds in highlighting. Chapter 3 gives a good overview
of classification in optical images of agricultural products. The special
topics of fuzzy clustering and clustering aided by spatial information
are explained. In Chapter 4, the SIMPLISMA technique and its use on
images are explained. This technique is an important alternative to those
explained in Chapters 2 and 3. SIMPLISMA is not just exploratory, but
tries to find deterministic pure component spectra by using spectroscopic
constraints on the model. The examples are from Fourier transform
infrared (FTIR) and time-of-flight - secondary ion mass spectrometry
(TOF-SIMS) imaging. Chapter 5 is about even more factor analysis
methods that can be applied to hyperspectral images. The special case
of unsymmetrical noise distributions is emphasized.

Chapters 6–9 introduce the concepts and models for regression
modeling on hyperspectral images: multivariate image regression (MIR).
Chapter 6 is about regression on image data. This is the situation where
the spectrum in each pixel is able to predict the value of an external
variable, be it another image, an average property or something in
between like localized information. Emphasis is also given on cleaning
and preprocessing a hyperspectral image to make the spectral infor-
mation suitable for regression model building. Chapter 7 takes up the
important aspect of validation in classification and regression on images.
The example of Chapter 2 is reused by defining one of the channels as
a dependent variable. Also, a new example for the calibration of fat
content in sausages is introduced. The advantage of image data is that
many pixels (=spectra) are available, making testing on subsets a much
easier task. Chapter 8 describes classical, extended and general least
squares models for Raman images of aspirin/polyethylene mixtures. The
theory part is extensive. Chapter 9 is about the need for expressing
hyperspectral data in the proper SI and IUPAC units and about stan-
dards for multivariate and hyperspectral imaging. In particular, diffuse
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reflection, the most practical technique of imaging used in the labora-
tory, is in need of such standardization. Without the standards, repro-
ducible image data would not be available and spectral model building
and interpretation would be hampered severely.

The applied chapters do not give a complete overview of all possible
applications, but they give a reasonable catalog of things that can
be done with hyperspectral images using different types of variables.
Chapter 10 is about multivariate movies in different variables, mainly
optical, infrared, Raman and nuclear magnetic resonance (NMR).
Multivariate movies represent huge amounts of data and efficient data
reduction is needed. The applications are in polymer and pharmaceutical
tablet dissolution. Chapter 11 describes the DECRA technique as it can
be used on phantoms and brain images in magnetic resonance imaging.
Chapter 12 gives an overview of agricultural and biological applica-
tions of optical multivariate and hyperspectral imaging. Chapter 13 is
about brain studies using positron emission tomography (PET). The
PET images are extremely noisy and require special care. Chapter 14 is
about chemical imaging using near infrared spectroscopy. Pharmaceu-
tical granulate mixtures are the examples used.

When writing a book one should always have students in mind. Books
are ideal as course material and there is not much material available yet
for learning about nonremote sensing hyperspectral imaging. Recom-
mendations for newcomers are to read Chapters 1–9 together with
Geladi and Grahn (Geladi and Grahn, 1996) in order to get the basics.
Chapters 2–5 form the factor analysis block and Chapters 6–9 form
the regression/calibration block. More advanced readers may review the
basics quickly and plunge directly into the applied chapters (10–15).
An alternative choice of reading would be Bhargava and Levin (Bhar-
gava and Levin, 2005). There are also some interesting books from the
remote sensing field (Chang, 2003; Varhsney and Arora, 2004).
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1
Multivariate Images,
Hyperspectral Imaging:
Background and Equipment
Paul L. M. Geladi, Hans F. Grahn and James E. Burger

1.1 INTRODUCTION

This chapter introduces the concepts of digital image, multivariate
image and hyperspectral image and gives an overview of some of the
image generation techniques for producing multivariate and hyperspec-
tral images. The emphasis is on imaging in the laboratory or hospital
on a scale going from macroscopic to microscopic. Images describing
very large scenes are not mentioned. Therefore, the specialized research
fields of satellite and airborne imaging and also astronomy are left out.
A color image is used to introduce the multivariate interactive visual-
ization principles that will play a major role in further chapters.

1.2 DIGITAL IMAGES, MULTIVARIATE IMAGES
AND HYPERSPECTRAL IMAGES

All scientific activity aims at gathering information and turning this
information into conclusions, decisions or new questions. The informa-
tion may be qualitative, but is often and preferably quantitative. This

Techniques and Applications of Hyperspectral Image Analysis Edited by H. F. Grahn and P. Geladi
© 2007 John Wiley & Sons, Ltd



2 MULTIVARIATE IMAGES, HYPERSPECTRAL IMAGING

means that the information is a number or a set of numbers. Sometimes
even a large set of numbers is not enough and an image is needed.
Images have the dual property of both being large datasets and visually
interpretable entities.

Freehand drawing and photography have been used extensively in the
sciences to convey information that would be too complicated to be
expressed in a text or in a few numbers. From the middle of the 1900s
the TV camera and electronic image digitization have become available
and images can be saved in digital format as files (Geladi and Grahn,
2000). A digital image is an array of I rows and J columns made of I × J
greyvalues or intensities, also called pixels. A pixel is a greyvalue with
an associated coordinate in the image. The image is also a data matrix
of size I × J with the greyvalues as entries. (Pratt, 1978; Rosenfeld and
Kak, 1982; Gonzalez and Woods, 1992; Schotton, 1993) For three-
dimensional images, the array has I rows, J columns and H depth slices.
The pixel becomes a voxel. For color imaging in TV, video and on
computer screens, three images are needed to contain the red, green
and blue information needed to give the illusion of color to the human
eye (Callet, 1998; Johnson and Fairchild, 2004) For photocopying and
printing the three primary colors are yellow, cyan and magenta. One
may say that the pixels (or voxels) are not greyvalues anymore, but
triplets of numbers (Figure 1.1).

J columns

I rows

Figure 1.1 A digital image is an array of I rows and J columns. Each coordinate
pair has a greyvalue and the small grey square (or rectangle) is called a pixel. For
color images, the pixel becomes a red, green and blue triplet instead of a greyvalue
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Because pixels are digitized greyvalues or intensities, they may be
expressed as integers. Simple images may have a greyvalue range of 28

meaning that 0 is the blackest black and 255 is the whitest white. In
more advanced systems, 212 grey levels (0–4095), 214 or 216 greylevels
are used. Some systems average images over a number of scans. In such
a case, greylevels may have decimals and have to be expressed as double
precision numbers.

The fact that a digitized image is a data matrix makes it easy to do
calculations on it. The result of the calculations can be a number, a
vector of numbers or a modified image. Some simple examples would
be counting of particles (image to number), the calculation of intensity
histograms (image to vector), image smoothing and edge enhancement
(image to modified image). There are many books describing how this
is done (Pratt, 1978; Rosenfeld and Kak, 1982; Low, 1991; Gonzalez
and Woods, 1992).

Color images have three layers (or bands) that each have different infor-
mation. It is possible to make even more layers by using smaller wave-
length bands, say 20 nm wide between 400 nm and 800 nm. Then each
pixel would be a spectrum of 21 wavelength bands. This is the multivariate
image. The 21 wavelength bands in the example are called the image vari-
ables and in general there are K variables. An I × J image in K variables
would form a three-way array of size I × J × K. (Figures 1.2–1.4).

K variables

J columns

I rows

Figure 1.2 An I × J image in K variables is an I × J × K array of data
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K variables

J columns

I rows

Figure 1.3 The I × J × K image can be presented as K slices where each slice is a
greyvalue image

K variables

J columns

I rows

Figure 1.4 The I × J × K image can be presented as an image of vectors. In special
cases. the vectors can be shown and interpreted as spectra

The human eye only needs the three wavelength bands red, green and
blue in order to see color. With more than three wavelength bands,
simple color representation is not possible, but some artificial color
images may be made by combining any three bands. In that case the
colors are not real and are called pseudocolors. This technique makes
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no sense when more than three bands are combined because of the
limitations of the human visual system.

Many imaging techniques make it possible to make multivariate images
and their number is constantly growing. Also, the number of variables
available is constantly growing. From about 100 variables upwards
the name hyperspectral images was coined in the field of satellite and
airborne imaging (Vane, 1988; Goetz and Curtiss, 1996), but hyperspec-
tral imaging is also available in laboratories and hospitals. The following
sections will introduce some multivariate and hyperspectral images
and the physical variables used to make them with literature references.

Images as in Figures 1.2–1.4 with K = 2 or more are multivariate
images. Hyperspectral images are those where each pixel forms an
almost continuous spectrum. Multivariate images can also be mixed
mode, e.g. K = 3 for an UV wavelength image, a near infrared (NIR)
image and a polarization image in white light. In this case, the vector of
three variables is not really a spectrum.

So what characterizes hyperspectral images? Two things:

• many wavelength or other variable bands, often more than 100;
• the possibility to express a pixel as a spectrum with spectral inter-

pretation, spectral transformation, spectral data analysis, etc.

1.3 HYPERSPECTRAL IMAGE GENERATION

1.3.1 Introduction

Many principles from physics can be used to generate multivariate and
hyperspectral images (Geladi and Grahn, 1996, 2000). Examples of
making NIR optical images are used to illustrate some general principles.

A classical spectrophotometer consists of a light source, a monochro-
mator or filter system to disperse the light into wavelength bands, a sample
presentation unit and a detection system including both a detector and
digitization/storage hardware and software (Siesler et al., 2002). The most
common sources for broad spectral NIR radiation are tungsten halogen
or xenon gas plasma lamps. Light emitting diodes and tunable lasers may
also be used for illumination with less broad wavelength bands. In this
case, more diodes or more laser are needed to cover the whole NIR spec-
tral range (780–2500 nm). For broad spectral sources, selection of wave-
length bands can be based on specific bandpass filters based on simple
interference filters, liquid crystal tunable filters (LCTFs), or acousto-optic
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tunable filters (AOTFs), or the spectral energy may be dispersed
by a grating device or a prism–grating–prism (PGP) filter. Scanning
interferometers can also be used to acquire NIR spectra from a single spot.

A spectrometer camera designed for hyperspectral imaging has the
hardware components listed above for acquisition of spectral informa-
tion plus additional hardware necessary for the acquisition of spatial
information. The spatial information comes from measurement directly
through the spectrometer optics or by controlled positioning of the
sample, or by a combination of both. Three basic camera configurations
are used based on the type of spatial information acquired; they are
called point scan, line scan or plane scan.

1.3.2 Point Scanning Imaging

The point scanning camera configuration shown in Figure 1.5 can
be used to measure a spectrum on a small spot. The sample is then
repositioned before obtaining a new spectrum. By moving the sample

Interferometer

Lamp

Optics

White Light

Sample

Hyperspectral Image

Diffuse Reflectance

Figure 1.5 A scanning set-up measures a complete spectrum in many variables at
a single small spot. An image is created by systematically scanning across the surface
in two spatial dimensions


