Techniques and Applications of Hyperspectral Image Analysis

Hans F. Grahn and Paul Geladi

John Wiley & Sons, Ltd

Techniques and Applications of Hyperspectral Image Analysis

Techniques and Applications of Hyperspectral Image Analysis

Hans F. Grahn and Paul Geladi

John Wiley & Sons, Ltd

Copyright © 2007

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The Publisher is not associated with any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

The Publisher and the Author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of fitness for a particular purpose. The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the Publisher nor the Author shall be liable for any damages arising herefrom.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 6045 Freemont Blvd, Mississauga, Ontario, L5R 4J3, Canada

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Anniversary Logo Design: Richard J. Pacifico

Library of Congress Cataloging in Publication Data

Techniques and applications of hyperspectral image analysis/[edited by] Hans Grahn and Paul Geladi. p. cm.

Includes bibliographical references.

ISBN 978-0-470-01086-0 (cloth)

1. Image processing—Statistical methods. 2. Multivariate analysis. 3. Multispectral photography. I. Grahn, Hans. II. Geladi, Paul.

TA1637.T42 2007 621.36'7—dc22

2007021097

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 978-0-470-01086-0

Typeset in 10/12pt Times by Integra Software Services Pvt. Ltd, Pondicherry, India Printed and bound in Great Britain by TJ International, Padstow, Cornwall

This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production.

Contents

Pr	Preface		
List of Contributors			
Li	st of	Abbreviations	xix
1	Equ	tivariate Images, Hyperspectral Imaging: Background and ipment l L. M. Geladi, Hans F. Grahn and James E. Burger	1
	1.1	Introduction	1
	1.2	Digital Images, Multivariate Images and Hyperspectral	
		Images	1
	1.3	Hyperspectral Image Generation	5 5
		1.3.1 Introduction	
		1.3.2 Point Scanning Imaging	6
		1.3.3 Line Scanning Imaging	7 8
	1 /	1.3.4 Focal Plane Scanning Imaging	8
	1.4	Essentials of Image Analysis Connecting Scene and Variable Spaces	9
	Refe	erences	14
2	Drin	ciples of Multivariate Image Analysis (MIA) in Remote	
2	Sens	sing, Technology and Industry H. Esbensen and Thorbjørn T. Lied	17
	2.1	Introduction	17
		2.1.1 MIA Approach: Synopsis	18
	2.2	Dataset Presentation	18
		2.2.1 Master Dataset: Rationale2.2.2 Montmorency Forest, Quebec, Canada: Forestry	18
		Background	19

2.3	Tools	in MIA	21
	2.3.1	MIA Score Space Starting Point	21
	2.3.2	Colour-slice Contouring in Score Cross-plots:	
		a 3-D Histogram	24
	2.3.3	Brushing: Relating Different Score Cross-plots	24
	2.3.4	Joint Normal Distribution (or Not)	26
	2.3.5	Local Models/Local Modelling: a Link to	
		Classification	27
2.4	MIA	Analysis Concept: Master Dataset Illustrations	28
	2.4.1	A New Topographic Map Analogy	28
	2.4.2	MIA Topographic Score Space Delineation of	
		Single Classes	31
	2.4.3	MIA Delineation of End-member Mixing	
		Classes	33
	2.4.4	Which to Use? When? How?	38
	2.4.5	Scene-space Sampling in Score Space	39
2.5	Conc	lusions	40
References			41

3	Clu	stering	and Classification in Multispectral Imaging for	
	Qua	ality In	spection of Postharvest Products	43
	Jaco	:0 C. N	Joordam and Willie H. A. M. van den Broek	
	3.1	Intro	duction to Multispectral Imaging in Agriculture	43
		3.1.1	Measuring Quality	43
		3.1.2	Spectral Imaging in Agriculture	44
	3.2	Unsu	pervised Classification of Multispectral Images	46
		3.2.1	Unsupervised Classification with FCM	46
		3.2.2	FCM Clustering	47
		3.2.3	cFCM Clustering	48
		3.2.4	csiFCM	49
		3.2.5	Combining Spectral and Spatial Information	51
		3.2.6	sgFCM Clustering	52
	3.3	Super	vised Classification of Multispectral Images	54
		3.3.1	Multivariate Image Analysis for Training Set	
			Selection	55
		3.3.2	FEMOS	57
		3.3.3	Experiment with a Multispectral Image of Pine	
			and Spruce Wood	58
		3.3.4	Clustering with FEMOS Procedure	60

	3.4		lization and Coloring of Segmented Images and hs: Class Coloring	62
	35	-	lusions	64
		erences		65
4			ing Image Analysis with SIMPLISMA indig, Sharon Markel and Patrick M. Thompson	69
	4.1	Intro	duction	69
	4.2	Mate	rials and Methods	70
		4.2.1	FTIR Microscopy	70
		4.2.2	SIMS Imaging of a Mixture of Palmitic and Stearic Acids on Aluminum foil	71
		4.2.3	Data Analysis	73
	4.3	Theor	•	73
			ts and Discussion	75
		4.4.1	FTIR Microscopy Transmission Data of a	
			Polymer Laminate	75
		4.4.2	FTIR Reflectance Data of a Mixture of Aspirin	
			and Sugar	80
		4.4.3		
			Stearic Acids on Aluminum Foil	80
			lusions	85
	Refe	erences		87
5			te Analysis of Spectral Images Composed of	
		i <mark>nt Dat</mark> hael R	ta 2. Keenan	89
	5.1	Intro	duction	89
			ple Datasets and Simulations	92
			oonent Analysis	95
		-	ogonal Matrix Factorization	96
		5.4.1	PCA and Related Methods	97
		5.4.2	PCA of Arbitrary Factor Models	102
		5.4.3	Maximum Likelihood PCA (MLPCA)	104
		5.4.4	Weighted PCA (WPCA)	105
		5.4.5		107
		5.4.6	0	108
	5.5		mum Likelihood Based Approaches	113
		5.5.1	8	
			(PNNMF)	114

		5.5.2 Iteratively Weighted Least Squares (IWLS)	117
		5.5.3 NNMF: Gaussian Case (Approximate Noise)	118
		5.5.4 Factored NNMF: Gaussian Case	
		(Approximate Data)	119
		5.5.5 Alternating Least Squares (ALS)	120
		5.5.6 Performance Comparisons	121
	5.6	Conclusions	124
	Ack	nowledgements	125
		erences	125
6	Hyp	erspectral Image Data Conditioning and Regression	
	Ana	lysis	127
	Jam	es E. Burger and Paul L. M. Geladi	
	6.1	Introduction	127
		Terminology	128
	6.3	0 0	128
		6.3.1 Regression Diagnostics	130
		6.3.2 Differences between Normal Calibration and	
		Image Calibration	132
	6.4	8	132
		6.4.1 Reflectance Transformation and Standardization	133
		6.4.2 Spectral Transformations	135
		6.4.3 Data Clean-up	137
		6.4.4 Data Conditioning Summary	138
	6.5	PLS Regression Optimization	138
		6.5.1 Data Subset Selection	138
		6.5.2 Pseudorank Determination	139
	6.6	Regression Examples	140
		6.6.1 Artificial Ternary Mixture	142
		6.6.2 Commercial Cheese Samples	146
		6.6.3 Wheat Straw Wax	149
		Conclusions	150
		nowledgements	152
	Refe	erences	152
7		ciples of Image Cross-validation (ICV): Representative	
	0	nentation of Image Data Structures	155
		H. Esbensen and Thorbjørn T. Lied	
	7.1	Introduction	155
	7.2	Validation Issues	156

	7.2.1 2-way 7.2.2 MIA/MIR	156 158
	7.3 Case Studies	160
	7.3.1 Case 1: Full Y-image	163
	7.3.2 Case 2: Critical Segmentation Issues	165
	7.3.3 Case 3: Y-composite	168
	7.3.4 Case 4: Image Data Structure Sampling	
	7.4 Discussion and Conclusions	, 177
	7.5 Reflections on 2-way Cross-validation	178
	References	180
8	Detection, Classification, and Quantification in	
	Hyperspectral Images Using Classical Least	
	Squares Models	181
	Neal B. Gallagher	
	8.1 Introduction	181
	8.2 CLS Models	182
	8.2.1 CLS	183
	8.2.2 ELS	187
	8.2.3 GLS	189
	8.3 Detection, Classification, and Quantification	192
	8.3.1 Detection	194
	8.3.2 Classification	196
	8.3.3 Quantification	197
	8.4 Conclusions	200
	Acknowledgements	200
	References	201
9	8	203
	Paul L. M. Geladi	
	9.1 Introduction	203
	9.2 The Need for Calibration in General	203
	9.3 The Need for Image Calibration	204
	9.4 Resolution in Hyperspectral Images	205
	9.5 Spectroscopic Definitions	207
	9.6 Calibration Standards	209
	9.7 Calibration in Hyperspectral Images	213
	9.8 Conclusions	219
	References	219

10		variate Movies and their Applications in accutical and Polymer Dissolution Studies	221
	Jaap van der Weerd and Sergei G. Kazarian		
	10.1	Introduction	221
		10.1.1 Introducing the Time Axis	222
		10.1.2 Data Structure and Reduction	223
		10.1.3 Compression of Spectra	224
		10.1.4 Space Dimensions	227
		10.1.5 Time Dimension	231
		10.1.6 Simultaneous Compression of all Variables	235
	10.2	Applications: Solvent Diffusion and	
		Pharmaceutical Studies	237
		10.2.1 Solvent Diffusion in Polymers	238
		10.2.2 Optical and NMR Studies	242
		10.2.3 Line Imaging	245
		10.2.4 Global MIR Imaging Studies of Solvent	
		Intake	246
	10.3	Drug Release	249
		10.3.1 ATR-FTIR Imaging	251
	10.4	Conclusions	254
		wledgement	255
	Refere	nces	255
11		variate Image Analysis of Magnetic Resonance	
	Images: Component Resolution with the Direct		
	-	ential Curve Resolution Algorithm (DECRA)	261
	Brian	Antalek, Willem Windig and Joseph P. Hornak	
	11.1	Introduction	261
	11.2	DECRA Approach	264
	11.3	DECRA Algorithm	269
	11.4	¹ H Relaxation	270
	11.5	T ₁ Transformation	271
	11.6	Imaging Methods	271
	11.7	Phantom Images	273
		11.7.1 T_2 Series	273
		11.7.2 T_1 Series	277
	11.8	Brain Images	278
		11.8.1 T_2 Series	278
		11.8.2 T_1 Series	281
	11.9	Regression Analysis	282
	11.10	Conclusions	285
	Refere	nces	285

12	for th Vince	e Analy	l Imaging Techniques: an Attractive Solution sis of Biological and Agricultural Materials m, Juan Antonio Fernández Pierna and nne	289
	12.1	Introdu	iction	289
			Characterization and Chemical Species	202
	12.2	Distrib		291
			Analysis of Fruit	291
			Analysis of Kernels	294
			Analysis of Food and Feed Mixtures	296
	12.3		ng Contamination and Defects in Agro-food	
		Produc	0	297
		12.3.1	Detecting Contamination in Meat	
			Products	297
		12.3.2	Detecting Contamination and Defects in	
			Fruit	298
		12.3.3	Detecting Contamination and Defects in	
			Cereals	301
		12.3.4	Detecting Contamination in Compound	
			Feed	302
	12.4	Other A	Agronomic and Biological Applications	304
	12.5	Conclu		306
	Refer	ences		307
13	Medi Hum (PET	cine: Pri an Brain	of Multivariate Image Analysis in Nuclear ncipal Component Analysis (PCA) on Dynamic a Studies with Positron Emission Tomography scrimination of Areas of Disease at High	313
			r and Mats Bergström	515
		Introdu	iction	313
	13.2			315
			History	315
			Principles	315
		13.2.3	Scanning Modes in PET	317
		13.2.4	Analysis of PET Data/Images	318
	13.3	PCA		319
		13.3.1	History	319
		13.3.2	Definition	319
		13.3.3	Pre-processing and Scaling	320
		13.3.4	Noise Pre-normalization	321

	13.4	Application of PCA in PET	322
		13.4.1 SWPCA	323
		13.4.2 VWPCA	326
		13.4.3 MVWPCA	327
	13.5	Conclusions	330
	Refere	nces	332
14	E. Nei	nfrared Chemical Imaging: Beyond the Pictures l Lewis, Janie Dubois, Linda H. Kidder and th S. Haber	335
	14.1	Introduction	335
	14.2	Data Measurement	338
	14.3	Selection of Samples and Acquisition Schemes	340
	14.4	What, How Much and Where	343
	14.5	Data Analysis and the Underlying Structure	
		of the Data	344
	14.6	Imaging with Statistically Meaningful	
		Spatial Dimensions	348
	14.7	Chemical Contrast	350
	14.8	Measure, Count and Compare	355
	14.9	Correlating Data to Sample Performance and/or	
		Behavior: the Value of NIRCI Data	359
	14.10	Conclusions	360
	Refere	nces	361

Index

363

Preface

This book is about multivariate and hyperspectral imaging, not only on how to make the images but on how to clean, transform, analyze and present them. The emphasis is on visualization of images, models and statistical diagnostics, but some useful numbers and equations are given where needed. The idea to write this book originated at an Image Analysis Session at the Eastern Analytical Symposium (Somerset, NJ) in November 2002. At this session, the lectures were so inspiring that it was felt necessary to have something on paper for those not present.

An earlier book, also published by John Wiley & Sons, Ltd, came out in 1996. It was called *Multivariate Image Analysis* by Geladi and Grahn. This book contains a lot of the basic theory. The examples in this book are not very advanced because in the early 1990s it was not so easy to get 10 or more wavelength bands in an image. There has also been an evolution in theory and algorithms, requiring additions to the 1996 book, but a major difference is that image files are much larger in size and sizes are expected to keep on growing. This is a challenge to the data analysis methods and algorithms, but it is also an opportunity to get more detailed results with higher precision and accuracy.

It would have been possible to make a revised second edition of Geladi and Grahn, but it was considered more useful to include extra authors, thus creating a multi-authored book with chapters on hyperspectral imaging. The chapters would be written by groups or persons whom we felt would be able to contribute something meaningful. The book can roughly be divided into two parts. The earlier chapters are about definitions, nomenclature and data analytical and visualization aspects. The later chapters present examples from different fields of science, including extra data analytical aspects. The subdivision in theory and application parts is not ideal. Many attempts of putting the chapters in the correct order were tried and the final result is only one of them. Chapter 1 is about the definition of multivariate and hyperspectral images and introduces nomenclature. It contains basic information that is applicable to all subsequent chapters. The basic ideas of multivariate interactive image analysis are explained with a simple color (three channels) photograph.

Chapters 2–5 give a good insight into factor and component modeling used on the spectral information in the images. This is called multivariate image analysis (MIA). Chapter 2 introduces interactive exploration of multivariate images in the scene and variable space in more detail using an eight channel optical image taken from an airplane. The role of visualization in this work is extremely important; something that Chapter 2 succeeds in highlighting. Chapter 3 gives a good overview of classification in optical images of agricultural products. The special topics of fuzzy clustering and clustering aided by spatial information are explained. In Chapter 4, the SIMPLISMA technique and its use on images are explained. This technique is an important alternative to those explained in Chapters 2 and 3. SIMPLISMA is not just exploratory, but tries to find deterministic pure component spectra by using spectroscopic constraints on the model. The examples are from Fourier transform infrared (FTIR) and time-of-flight - secondary ion mass spectrometry (TOF-SIMS) imaging. Chapter 5 is about even more factor analysis methods that can be applied to hyperspectral images. The special case of unsymmetrical noise distributions is emphasized.

Chapters 6-9 introduce the concepts and models for regression modeling on hyperspectral images: multivariate image regression (MIR). Chapter 6 is about regression on image data. This is the situation where the spectrum in each pixel is able to predict the value of an external variable, be it another image, an average property or something in between like localized information. Emphasis is also given on cleaning and preprocessing a hyperspectral image to make the spectral information suitable for regression model building. Chapter 7 takes up the important aspect of validation in classification and regression on images. The example of Chapter 2 is reused by defining one of the channels as a dependent variable. Also, a new example for the calibration of fat content in sausages is introduced. The advantage of image data is that many pixels (=spectra) are available, making testing on subsets a much easier task. Chapter 8 describes classical, extended and general least squares models for Raman images of aspirin/polyethylene mixtures. The theory part is extensive. Chapter 9 is about the need for expressing hyperspectral data in the proper SI and IUPAC units and about standards for multivariate and hyperspectral imaging. In particular, diffuse reflection, the most practical technique of imaging used in the laboratory, is in need of such standardization. Without the standards, reproducible image data would not be available and spectral model building and interpretation would be hampered severely.

The applied chapters do not give a complete overview of all possible applications, but they give a reasonable catalog of things that can be done with hyperspectral images using different types of variables. Chapter 10 is about multivariate movies in different variables, mainly optical, infrared, Raman and nuclear magnetic resonance (NMR). Multivariate movies represent huge amounts of data and efficient data reduction is needed. The applications are in polymer and pharmaceutical tablet dissolution. Chapter 11 describes the DECRA technique as it can be used on phantoms and brain images in magnetic resonance imaging. Chapter 12 gives an overview of agricultural and biological applications of optical multivariate and hyperspectral imaging. Chapter 13 is about brain studies using positron emission tomography (PET). The PET images are extremely noisy and require special care. Chapter 14 is about chemical imaging using near infrared spectroscopy. Pharmaceutical granulate mixtures are the examples used.

When writing a book one should always have students in mind. Books are ideal as course material and there is not much material available yet for learning about nonremote sensing hyperspectral imaging. Recommendations for newcomers are to read Chapters 1–9 together with Geladi and Grahn (Geladi and Grahn, 1996) in order to get the basics. Chapters 2–5 form the factor analysis block and Chapters 6–9 form the regression/calibration block. More advanced readers may review the basics quickly and plunge directly into the applied chapters (10–15). An alternative choice of reading would be Bhargava and Levin (Bhargava and Levin, 2005). There are also some interesting books from the remote sensing field (Chang, 2003; Varhsney and Arora, 2004).

REFERENCES

- Bhargava, R. and Levin, I. (Eds) (2005) Spectrochemical Analysis Using Infrared Multichannel Detectors, Blackwell, Oxford.
- Chang, C. (2003) Hyperspectral Imaging: Techniques for Spectral Detection and Classification, Kluwer Academic Publishers, Dordrecht.
- Geladi, P. and Grahn, H. (1996) Multivariate Image Analysis, John Wiley & Sons, Ltd, Chichester.

Varshney, K. and Arora, M. (Eds) (2004) Advanced Image Processing Techniques for Remotely Sensed Hyperspectral Data, Springer, Berlin.

List of Contributors

Brian Antalek, Eastman Kodak Company, Research Laboratories B82, Rochester, NY 14650-2132, USA

Vincent Baeten, Département Qualité des Produits agricoles, Centre wallon de recherches agronomiques CRA-W, 24, Chaussée de Namur, B-5030 Gembloux, Belgium

Mats Bergström, Novartis Pharma AG, CH-4002, Basel, Switzerland

James E. Burger, Burger Metrics, Applied Hyperspectral Imaging for Automation and Research, Ladehammerveien 36, 7041 Trondheim, Norway

Pierre Dardenne, Département Qualité des Produits agricoles, Centre wallon de recherches agronomiques CRA-W, 24, Chaussée de Namur, B-5030 Gembloux, Belgium

Jane Dubois, Malvern Instruments, Analytical Imaging Systems, 3416 Olandwood Court #210, Olney, MD 20832, USA

Kim H. Esbensen, ACABS, Aalborg University Esbjerg (AAUE), Niels Bohrs Vej 8, DK-6700 Esbjerg, Denmark

Neal B. Gallagher, Eigenvector Research, Inc., 160 Gobblers Knob Lane, Manson, WA 98831, USA

Paul L. M. Geladi, NIRCE, The Unit of Biomass Technology and Chemistry SLU Röbäcksdalen, PO Box 4097, SE 90403 Umeå, Sweden

Hans F. Grahn, Division of Behavioral Neuroscience, Department of Neuroscience, Karolinska Institutet, S-17177, Stockholm, Sweden

Kenneth S. Haber, Malvern Instruments, Analytical Imaging Systems, 3416 Olandwood Court #210, Olney, MD 20832, USA

Joseph P. Hornak, Magnetic Resonance Laboratory, 54 Lomb Memorial Drive, Center for Imaging Science, Rochester Institute of Technology, Rochester, NY 14623-5604, USA

Sergei G. Kazarian, Department of Chemical Engineering, ACE Building 208A/210, Imperial College London, South Kensington Campus, London SW7 2AZ, UK

Michael R. Keenan, Sandia National Laboratories, Albuquerque, NM 87185-0886, USA

Linda H. Kidder, Malvern Instruments, Analytical Imaging Systems, 3416 Olandwood Court #210, Olney, MD 20832, USA

E. Neil Lewis, Malvern Instruments, Analytical Imaging Systems, 3416 Olandwood Court #210, Olney, MD 20832, USA

Sharon Markel, Eastman Kodak Company, Rochester, NY 14650-2132, USA

Jacco C. Noordam, TNO Defence, Security and Safety, PO Box 96864, 2509 JG The Hague, The Netherlands

Juan Antonio Fernández Pierna, Département Qualité des Produits agricoles, Centre wallon de recherches agronomiques CRA-W, 24, Chaussée de Namur, B-5030 Gembloux, Belgium

Pasha Razifar, Computerized Image Analysis & PET Uppsala Applied Science Lab (UASL) GEMS PET Systems AB, Husbyborg, 752 28 Uppsala, Sweden

P. M. Thompson, Eastman Kodak Company, Rochester, NY 14650-2132, USA

Thorbjørn Tønnesen Lied, Kongsberg Maritime AS, R&D, Hydrography & Hydroacustic Division, Horten, Norway

Willie H. A. M. van den Broek, TNO Defence, Security and Safety, PO Box 96864, 2509 JG The Hague, The Netherlands

Jaap van der Weerd, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK

Willem Windig, Eigenvector Research, Inc., 6 Olympia Drive, Rochester, NY 14615, USA

List of Abbreviations

2-D	Two-dimensional
3-D	Three-dimensional
ABES	Agricultural, biology and environmental sciences
ACD	Annihilation coincidence detection
AIS	Airborne imaging system
ALS	Alternating least squares
ANN	Artificial neural network
ARMA	Autoregressive moving average
AOTF	Acousto-optic tunable filter
API	Active pharmaceutical ingredient
ATR	Attenuated total reflection
AVHRR	Advanced very high resolution radiometer
AVIRIS	Airborne visible and infrared imaging spectrometer
CAS	Chemical Abstracts Service
CASI	Compact airborne spectrographic imager
CCD	Charge coupled device
CLS	Classical least squares
cFCM	Conditional Fuzzy C-Means
CSF	Cerebrospinal fluid
csiFCM	Cluster size insensitive Fuzzy C-Means
DECRA	Direct exponential curve resolution analysis
EDS	Energy dispersive spectrometer (mainly X-rays)
EMSC	Extended multiplicative scatter correction
ELS	Extended least squares
FA	Factor analysis
fALS	Factored alternating least squares
FCM	Fuzzy C-Means
FEMOS	Feedback Multivariate Model Selection

fNNMF	Factored non-negative matrix factorization
FBP	Filtered back projection
FOV	Field of view
FPA	Focal plane array
FT	Fourier transform
FTIR	Fourier transform infrared
FWHM	Full width at half maximum
GIS	Geographical information system
GLS	Generalized least squares
GOME	Global ozone monitoring experiment
GPS	Global positioning system
GRAM	Generalized rank annihilation method
HD	High density (for polymers)
HIA	Hyperspectral image analysis
HPLC	High pressure liquid chromatography
HPMC	Hydroxypropylmethylcellulose
ICV	Image cross-validation
ILS	Inverse least squares
ILS	Iterative partial least squares
IR	Infrared
IUPAC	International Union of Pure and Applied Chemistry
IWLS	Iteratively weighted least squares
LCTF	Liquid crystal tunable filter
LD	Low density (for polymers)
LDA	Linear discriminant analysis
LOR	Line of response
LUT	Look up table
MBM	Meat and bone meal
MCR	Multivariate curve resolution
MEIS	Multispectral electro-optical imaging spectrometer
MI	Multivariate image
MIA	Multivariate image analysis
MIR	Multivariate image regression
MIR	Mid infrared
MLPCA	Maximum likelihood principal component analysis
MNF	Minimum noise fraction
MRI	Magnetic resonance imaging
MSC	Multiplicative scatter correction
MVWPCA	Masked volume wise principal component analysis
NIR	Near infrared
NIRCI	Near infrared chemical imaging
-	0

LIST OF ABBREVIATIONS

NMR	Nuclear magnetic resonance
NNMF	Non-negative matrix factorization
NSLS	National Synchrotron Light Source
OSEM	Ordered subset expectation maximization
PAL	Phase alternating line
PAA	Polyacrylamide
PAMS	Poly (α -methyl styrene)
PAS	Photo-acoustic spectroscopy
PBMA	Poly (butyl methacrylate)
PC	Principal component
PCA	Principal component analysis
PCR	Principal component regression
PE	Polyethylene
PET	Poly (ethylene terephthalate)
PET	Positron emission tomography
PETT	Positron emisison transaxial tomography
PFA	Principal factor analysis
PGP	Prism-grating-prism
PGSE	Pulse gradient spin echo
PLS	Partial least squares
PMSC	Piecewise multiplicative scatter correction
PNNMF	Poisson non-negative matrix factorization
PVA	Poly (vinyl alcohol)
PVC	Poly (vinyl chloride)
PW	Pixel wise
PRESS	Prediction residual error sum of squares
QA	Quality assurance
QC	Quality control
RGB	Red green blue
RMSEC	Root mean square error of calibration
RMSECV	Root mean square error of cross-validation
RMSEP	Root mean square error of prediction
ROI	Region of interest
SECAM	Séquentielle couleur a mémoire
SECV	Standard error of cross-validation
SEM	Scanning electron microscope
SIA	Self-modeling image analysis
sgFCM	Spatially guided Fuzzy C-Means
SI	Système international
SLDA	Stepwise linear discriminant analysis
SIMCA	Soft independent modeling of class analogy

SIMPLISMA	Simple-to-use interactive self-modeling mixture analysis
SIMS	Secondary ion mass spectrometry
SNR	Signal to noise ratio
SNV	Standard normal variate
SPOT	Satellite pour l'observation du terre
SRM	Standard reference material
SS	Sum of squares
SSE	Sum of squared errors
SVD	Singular value decomposition
SVM	Support Vector Machine
SWPCA	Slice wise principal component analysis
TAC	Time-activity curve
TOF-SIMS	Time-of-flight-secondary ion mass spectrometry
TOMS	Total ozone mapping spectrometer
USP	United States Pharmacopeia
UV	Ultraviolet
VWPCA	Volume wise principal component analysis
WPCA	Weighted principal component analysis
WTFA	Window target factor analysis

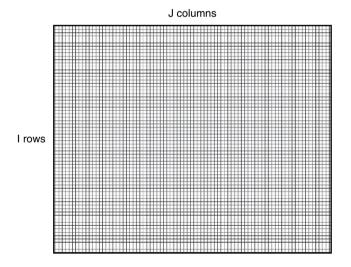
1

Multivariate Images, Hyperspectral Imaging: Background and Equipment

Paul L. M. Geladi, Hans F. Grahn and James E. Burger

1.1 INTRODUCTION

This chapter introduces the concepts of digital image, multivariate image and hyperspectral image and gives an overview of some of the image generation techniques for producing multivariate and hyperspectral images. The emphasis is on imaging in the laboratory or hospital on a scale going from macroscopic to microscopic. Images describing very large scenes are not mentioned. Therefore, the specialized research fields of satellite and airborne imaging and also astronomy are left out. A color image is used to introduce the multivariate interactive visualization principles that will play a major role in further chapters.


1.2 DIGITAL IMAGES, MULTIVARIATE IMAGES AND HYPERSPECTRAL IMAGES

All scientific activity aims at gathering information and turning this information into conclusions, decisions or new questions. The information may be qualitative, but is often and preferably quantitative. This

Techniques and Applications of Hyperspectral Image Analysis Edited by H. F. Grahn and P. Geladi © 2007 John Wiley & Sons, Ltd

means that the information is a number or a set of numbers. Sometimes even a large set of numbers is not enough and an image is needed. Images have the dual property of both being large datasets and visually interpretable entities.

Freehand drawing and photography have been used extensively in the sciences to convey information that would be too complicated to be expressed in a text or in a few numbers. From the middle of the 1900s the TV camera and electronic image digitization have become available and images can be saved in digital format as files (Geladi and Grahn, 2000). A digital image is an array of I rows and I columns made of $I \times I$ grevvalues or intensities, also called pixels. A pixel is a grevvalue with an associated coordinate in the image. The image is also a data matrix of size I \times J with the greyvalues as entries. (Pratt, 1978; Rosenfeld and Kak, 1982; Gonzalez and Woods, 1992; Schotton, 1993) For threedimensional images, the array has I rows, J columns and H depth slices. The pixel becomes a voxel. For color imaging in TV, video and on computer screens, three images are needed to contain the red, green and blue information needed to give the illusion of color to the human eye (Callet, 1998; Johnson and Fairchild, 2004) For photocopying and printing the three primary colors are yellow, cyan and magenta. One may say that the pixels (or voxels) are not grevvalues anymore, but triplets of numbers (Figure 1.1).

Figure 1.1 A digital image is an array of I rows and J columns. Each coordinate pair has a greyvalue and the small grey square (or rectangle) is called a pixel. For color images, the pixel becomes a red, green and blue triplet instead of a greyvalue

Because pixels are digitized greyvalues or intensities, they may be expressed as integers. Simple images may have a greyvalue range of 2^8 meaning that 0 is the blackest black and 255 is the whitest white. In more advanced systems, 2^{12} grey levels (0–4095), 2^{14} or 2^{16} greylevels are used. Some systems average images over a number of scans. In such a case, greylevels may have decimals and have to be expressed as double precision numbers.

The fact that a digitized image is a data matrix makes it easy to do calculations on it. The result of the calculations can be a number, a vector of numbers or a modified image. Some simple examples would be counting of particles (image to number), the calculation of intensity histograms (image to vector), image smoothing and edge enhancement (image to modified image). There are many books describing how this is done (Pratt, 1978; Rosenfeld and Kak, 1982; Low, 1991; Gonzalez and Woods, 1992).

Color images have three layers (or bands) that each have different information. It is possible to make even more layers by using smaller wavelength bands, say 20 nm wide between 400 nm and 800 nm. Then each pixel would be a spectrum of 21 wavelength bands. This is the multivariate image. The 21 wavelength bands in the example are called the image variables and in general there are K variables. An I \times J image in K variables would form a three-way array of size I \times J \times K. (Figures 1.2–1.4).

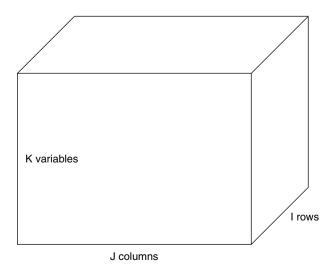


Figure 1.2 An I \times J image in K variables is an I \times J \times K array of data

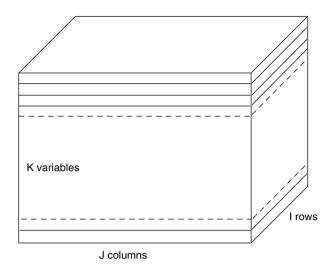


Figure 1.3 The I \times J \times K image can be presented as K slices where each slice is a greyvalue image

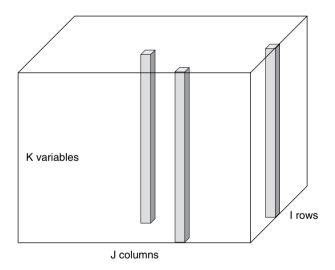


Figure 1.4 The $I \times J \times K$ image can be presented as an image of vectors. In special cases, the vectors can be shown and interpreted as spectra

The human eye only needs the three wavelength bands red, green and blue in order to see color. With more than three wavelength bands, simple color representation is not possible, but some artificial color images may be made by combining any three bands. In that case the colors are not real and are called pseudocolors. This technique makes no sense when more than three bands are combined because of the limitations of the human visual system.

Many imaging techniques make it possible to make multivariate images and their number is constantly growing. Also, the number of variables available is constantly growing. From about 100 variables upwards the name hyperspectral images was coined in the field of satellite and airborne imaging (Vane, 1988; Goetz and Curtiss, 1996), but hyperspectral imaging is also available in laboratories and hospitals. The following sections will introduce some multivariate and hyperspectral images and the physical variables used to make them with literature references.

Images as in Figures 1.2–1.4 with K = 2 or more are multivariate images. Hyperspectral images are those where each pixel forms an almost continuous spectrum. Multivariate images can also be mixed mode, e.g. K = 3 for an UV wavelength image, a near infrared (NIR) image and a polarization image in white light. In this case, the vector of three variables is not really a spectrum.

So what characterizes hyperspectral images? Two things:

- many wavelength or other variable bands, often more than 100;
- the possibility to express a pixel as a spectrum with spectral interpretation, spectral transformation, spectral data analysis, etc.

1.3 HYPERSPECTRAL IMAGE GENERATION

1.3.1 Introduction

Many principles from physics can be used to generate multivariate and hyperspectral images (Geladi and Grahn, 1996, 2000). Examples of making NIR optical images are used to illustrate some general principles.

A classical spectrophotometer consists of a light source, a monochromator or filter system to disperse the light into wavelength bands, a sample presentation unit and a detection system including both a detector and digitization/storage hardware and software (Siesler *et al.*, 2002). The most common sources for broad spectral NIR radiation are tungsten halogen or xenon gas plasma lamps. Light emitting diodes and tunable lasers may also be used for illumination with less broad wavelength bands. In this case, more diodes or more laser are needed to cover the whole NIR spectral range (780–2500 nm). For broad spectral sources, selection of wavelength bands can be based on specific bandpass filters based on simple interference filters, liquid crystal tunable filters (LCTFs), or acousto-optic tunable filters (AOTFs), or the spectral energy may be dispersed by a grating device or a prism–grating–prism (PGP) filter. Scanning interferometers can also be used to acquire NIR spectra from a single spot.

A spectrometer camera designed for hyperspectral imaging has the hardware components listed above for acquisition of spectral information plus additional hardware necessary for the acquisition of spatial information. The spatial information comes from measurement directly through the spectrometer optics or by controlled positioning of the sample, or by a combination of both. Three basic camera configurations are used based on the type of spatial information acquired; they are called point scan, line scan or plane scan.

1.3.2 Point Scanning Imaging

The point scanning camera configuration shown in Figure 1.5 can be used to measure a spectrum on a small spot. The sample is then repositioned before obtaining a new spectrum. By moving the sample

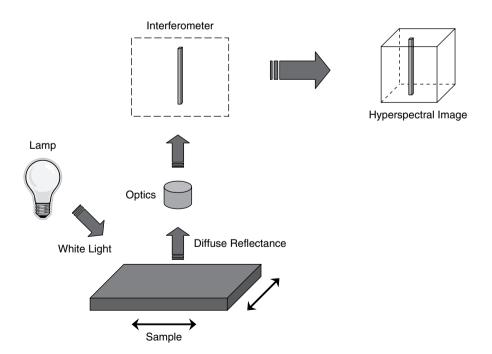


Figure 1.5 A scanning set-up measures a complete spectrum in many variables at a single small spot. An image is created by systematically scanning across the surface in two spatial dimensions